×
10.12.2015
216.013.992e

Результат интеллектуальной деятельности: МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат состоит в повышении надежности, энергоэффективности и минимизация тепловыделений, повышении кпд Диэлектрический остов статора выполнен в виде рубашки охлаждения с аксиальными трубками. Форма трубок профилирует форму пространства между подковообразными сердечниками. По периметру диэлектрического остова введены дополнительные каналы охлаждения. Боковые поверхности, дно и внутренняя поверхность пазов с уложенной в них обмоткой залиты неэлектропроводящим немагнитным материалом с высокой теплопроводностью так, что нутренняя поверхность расточки статора гладкая. 4 н.п. ф-лы, 6 ил.

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов.

Известен сердечник из аморфного железа [патент US №5903082 А, H02K 1/12, H02K 21/12, H02K 37/12, H02P 9/18, H02K 21/24, H02K 1/14, H02K 1/02, H02K 1/04, H02K 29/10, H02K 1/18, 11.05.1999], содержащий отдельно сформированные аморфное ярмо и аморфные полюса, которые совместно установлены в корпусе из диэлектрика, образовывая при этом сердечник статора электромеханического преобразователя энергии.

Недостатками данного магнитопровода статора из аморфного железа являются сложность его изготовления и низкие магнитные свойства, обусловленные значительными нарушениями геометрии магнитопровода статора из аморфного железа при сборки отдельных полюсов и ярма, а также низкий теплоотвод потерь энергии от магнитопровода статора из аморфного железа.

Известен статор электрической машины, например электродвигателя электрического транспортного средства [патент DE 102012207508 A1, H02K 1/06, H02K 1/12, H02K 15/02, 7.11.2013], содержащий П-образные сердечники, которые ламинированы из нескольких листов электротехнической стали. Из n-П-образных сердечников набирается магнитопровод.

Недостатками данного магнитопровода статора являются сложность его изготовления и установки в корпусе электрической машины, а также значительные аэродинамические потери энергии на трение ротора с воздухом.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является магнитопровод статора из аморфного железа [патент US 6960860 В1, H02K 1/14, H02K 1/12, H02K 15/02, 01.10.2005], содержащий ротор, n подковообразных сердечников, набранных из ленты аморфного железа, установленных в диэлектрическом остове.

Недостатками данного магнитопровода статора из аморфного железа является его низкая эффективность и низкие удельные показатели в составе электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения, обусловленные повышенными габаритными размерами, из-за низкой индукции насыщения ленты аморфного железа, а также значительными потерями энергии на трение ротора с воздухом, обусловленными не гладкой внутренней поверхностью расточки статора.

Задача изобретения - расширение функциональных возможностей магнитопровода статора из аморфного железа в составе электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения благодаря повышению выходной мощности при неизменных массогабаритных показателях, повышение эффективности и удельных показателей магнитопровода статора из аморфного железа в составе электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения благодаря интеграции системы охлаждения в магнитопровод статора, повышение выходной мощности а также минимизация потерь энергии на трение ротора с воздухом благодаря выполнению внутренней поверхности расточки статора гладкой.

Техническим результатом является повышение надежности, энергоэффективности и минимизация тепловыделений электромеханических преобразователей энергии, повышение КПД ЭМПЭ на 1-2%, и при использовании на роторе постоянных магнитов достигается защита от их теплового размагничивания, а также повышенная линейная токовая нагрузка электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения.

Поставленная задача решается и указанный результат достигается по первому варианту тем, что в магнитопроводе электромеханических преобразователей энергии с интенсивным охлаждением, содержащем ротор, n подковообразных сердечников, набранных из ленты аморфного железа, установленных в диэлектрическом остове и образующих пазы и зубцы магнитопровода статора, обмотку, уложенную в пазах статора, согласно изобретению диэлектрический остов выполнен в виде рубашки охлаждения с аксиальными трубками, при этом форма трубок профилирует форму пространства между подковообразными сердечниками, а по периметру диэлектрического остова введены дополнительные каналы охлаждения, причем боковые поверхности и дно пазов с уложенной в них обмоткой залиты неэлектропроводящим, немагнитным материалом с высокой теплопроводностью, а внутренняя поверхность пазов залита неэлектропроводящим, немагнитным материалом с низкой теплопроводностью таким образом, что внутренняя поверхность расточки статора гладкая.

Поставленная задача решается и указанный результат достигается по второму варианту тем, что в магнитопроводе электромеханических преобразователей энергии с интенсивным охлаждением, содержащем ротор, n подковообразных сердечников, набранных из ленты аморфного железа, установленных в диэлектрическом остове и образующих пазы и зубцы магнитопровода статора, обмотку, уложенную в пазах статора, согласно изобретению диэлектрический остов выполнен в виде рубашки охлаждения с аксиальными трубками, при этом форма трубок профилирует форму пространства между подковообразными сердечниками, а по периметру диэлектрического остова введены дополнительные каналы охлаждения, причем по всей осевой длине боковых поверхностей пазов установлена система из охлаждающих трубок, одна из поверхностей которой плотно прилегает к обмотке, а другая - к зубцу, дно пазов с уложенной в них обмоткой и трубками охлаждения залиты неэлектропроводящим, немагнитным материалом с высокой теплопроводностью, а внутренняя поверхность пазов залита неэлектропроводящим, немагнитным материалом с низкой теплопроводностью таким образом, что внутренняя поверхность расточки статора гладкая.

Поставленная задача решается и указанный результат достигается по третьему варианту тем, что в магнитопроводе электромеханических преобразователей энергии с интенсивным охлаждением, содержащем ротор, n подковообразных сердечников, набранных из ленты аморфного железа, установленных в диэлектрическом остове и образующих пазы и зубцы магнитопровода статора, обмотку, уложенную в пазах статора, согласно изобретению диэлектрический остов выполнен в виде рубашки охлаждения с аксиальными трубками, при этом форма трубок профилирует форму пространства между подковообразными сердечниками, а по периметру диэлектрического остова введены дополнительные каналы охлаждения, причем по всей осевой длине дна пазов установлена система из охлаждающих трубок, одна поверхность которых выполнена профилирующей дно паза, а другая - прямоугольной формы, боковые поверхности и дно пазов с уложенной в них обмоткой и трубками охлаждения залиты неэлектропроводящим, немагнитным материалом с высокой теплопроводностью, а внутренняя поверхность пазов залита неэлектропроводящим, немагнитным материалом с низкой теплопроводностью таким образом, что внутренняя поверхность расточки статора гладкая.

Поставленная задача также достигается тем, что способ изготовления магнитопровода статора электромеханических преобразователей энергии с интенсивным охлаждением осуществляют путем последовательной сборки n подковообразных сердечников, набранных из ленты аморфного железа, в диэлектрическую основу, которая в отличие от прототипа представляет собой систему охлаждения, при этом внутри n подковообразных сердечников укладывают обмотку, залитую неэлектропроводящим, немагнитным материалом с высокой теплопроводностью, оставляя пространство между воздушным зазором и обмоткой для монтажа аксиальных трубок охлаждения и для заливки неэлектропроводящего, немагнитного материала с низкой теплопроводностью, в пространство между подковообразными сердечниками и дополнительными каналами охлаждения, расположенными по периметру диэлектрического остова, монтируют аксиальные трубки.

Сущность изобретения поясняется чертежами.

На фиг. 1 изображен магнитопровод статора электромеханических преобразователей энергии с интенсивным охлаждением по первому варианту. На фиг. 2 изображен паз магнитопровода статора электромеханических преобразователей энергии с интенсивным охлаждением. На фиг. 3 изображен магнитопровод статора электромеханических преобразователей энергии с интенсивным охлаждением по второму варианту. На фиг. 4 изображена система из охлаждающих трубок с зубцовой и пазовой поверхностями. На фиг. 5 изображен магнитопровод статора электромеханических преобразователей энергии с интенсивным охлаждением по третьему варианту. На фиг. 6 изображена система охлаждающих трубок с поверхностью, профилирующей дно паза, и прямоугольной поверхностью.

Предложенное устройство по первому варианту (фиг. 1) содержит ротор 1, n подковообразных сердечников 2, набранных из ленты аморфного железа 3, установленных в диэлектрическом остове 4 и образующих пазы 5 и зубцы 6 магнитопровода статора 7, обмотку 8, уложенную в пазах магнитопровода статора 7, аксиальные трубки 9, установленные в пространстве между подковообразными сердечниками 2, дополнительные каналы охлаждения 10, расположенные по периметру диэлектрического остова 4, боковые поверхности пазов 11 (фиг. 2), дно пазов 12, внутреннюю поверхность пазов 13, неэлектропроводящий, немагнитный материал с высокой теплопроводностью 14, неэлектропроводящий, немагнитный материал с низкой теплопроводностью 15.

Предложенное устройство по второму варианту (фиг. 3) содержит ротор 1, n подковообразных сердечников 2, набранных из ленты аморфного железа 3, установленных в диэлектрическом остове 4 и образующих пазы 5 и зубцы 6 магнитопровода статора 7, обмотку 8, уложенную в пазах магнитопровода статора 7, аксиальные трубки 9, установленные в пространстве между подковообразными сердечниками 2, дополнительные каналы охлаждения 10, расположенные по периметру диэлектрического остова 4, боковые поверхности пазов 11, дно пазов 12, внутреннюю поверхность пазов 13 (фиг. 2), неэлектропроводящий, немагнитный материал с высокой теплопроводностью 14, неэлектропроводящий, немагнитный материал с низкой теплопроводностью 15, при этом в пазах установлена система из охлаждающих трубок 16 (фиг. 4), с зубцовой 17 и пазовой 18 поверхностями.

Предложенное устройство по третьему варианту (фиг. 5) содержит ротор 1, n подковообразных сердечников 2, набранных из ленты аморфного железа 3, установленных в диэлектрическом остове 4 и образующих пазы 5 и зубцы 6 магнитопровода статора 7, обмотку 8, уложенную в пазах магнитопровода статора 7, аксиальные трубки 9, установленные в пространстве между подковообразными сердечниками 2, дополнительные каналы охлаждения 10, расположенные по периметру диэлектрического остова 4, боковые поверхности пазов 11, дно пазов 12, внутреннюю поверхность пазов 13 (фиг. 2), неэлектропроводящий, немагнитный материал с высокой теплопроводностью 14, неэлектропроводящий, немагнитный материал с низкой теплопроводностью 15, при этом в пазах установлена система из охлаждающих трубок 16 (фиг. 6), с поверхностью, профилирующей дно паза 17, и прямоугольной поверхностью 18.

Предложенное устройство по первому варианту работает следующим образом: при вращении ротора 1, по n подковообразным сердечникам 2, набранным из ленты аморфного железа 3, протекает магнитный поток возбуждения. При этом по закону электромагнитной индукции в обмотке 8 наводится электродвижущая сила, величина которой зависит от числа витков обмотки, частоты вращения ротора 1 и магнитного потока возбуждения. При подключении нагрузки в обмотках 8 начинает протекать ток, при этом создаются тепловые потери в обмотках 8, обусловленные током в обмотках 8 и ее активным сопротивлением, а также потери на вихревые токи, обусловленные частотой вращения ротора, размерами обмотки и ее удельным сопротивлением, тепловые потери в магнитопроводе статора 7, обусловленные величиной магнитного потока возбуждения, массой магнитопровода статора 7 и удельными потерями материала магнитопровода статора 7, потери энергии на трение ротора 1 с воздухом, обусловленные частотой вращения ротора 1, его геометрическими размерами, температурой воздуха и давлением в зазоре между ротором 1 и магнитопроводом статора 7. Отвод всех вышеперечисленных потерь обеспечивается по законам теплопереноса, при протекании хладагента по аксиальным трубкам 9, установленным в пространстве между подковообразными сердечниками 2, и дополнительным каналам охлаждения 10, расположенным по периметру диэлектрического остова 4. При этом благодаря тому, что аксиальные трубки 9 установлены в пространстве между подковообразными сердечниками 2, достигается интеграция системы охлаждения в магнитопровод статора 7 электромеханических преобразователей энергии с интенсивным охлаждением. Так как магнитопровод статора 7 выполняется из n подковообразных сердечников 2, набранных из ленты аморфного железа 3, обладающего минимальными удельными потерями, достигается минимизация тепловых потерь в магнитопроводе статора 7. При этом благодаря тому, что боковые поверхности 11 и дно 12 пазов 5 с уложенными в них обмотками 8 залиты неэлектропроводящим, немагнитным материалом с высокой теплопроводностью 14, а внутренняя поверхность пазов 13 залита неэлектропроводящим, немагнитным материалом с низкой теплопроводностью 15, достигается теплоперенос практически всех тепловых потерь в обмотки 8, аксиальными трубками 9 и дополнительными каналами охлаждения 10, при этом тепловые потери в обмотки практически не переносятся в воздушный зазор и тем самым не являются причиной увеличения потерь энергии ротора 1 на трение с воздухом. А также достигается при использовании постоянных магнитов защита их от теплового размагничивания. Кроме того, заливка пазов 5 немагнитным материалом с высокой теплопроводностью 14 и неэлектропроводящим, немагнитным материалом с низкой теплопроводностью 15 обеспечивает минимальные потери энергии ротора 1 на трение с воздухом.

Предложенное устройство по второму варианту работает следующим образом: при вращении ротора 1, по n подковообразным сердечникам 2, набранным из ленты аморфного железа 3, протекает магнитный поток возбуждения. При этом по закону электромагнитной индукции в обмотке 8 наводится электродвижущая сила, величина которой зависит от числа витков обмотки, частоты вращения ротора 1 и магнитного потока возбуждения. При подключении нагрузки в обмотках 8 начинает протекать ток, при этом создаются тепловые потери в обмотках 8, обусловленные током в обмотках 8 и ее активным сопротивлением, а также потери на вихревые токи, обусловленные частотой вращения ротора, размерами обмотки и ее удельным сопротивлением, тепловые потери в магнитопроводе статора 7, обусловленные величиной магнитного потока возбуждения, массой магнитопровода статора 7 и удельными потерями материала магнитопровода статора 7, потери энергии на трение ротора 1 с воздухом, обусловленные частотой вращения ротора 1, его геометрическими размерами, температурой воздуха и давлением в зазоре между ротором 1 и магнитопроводом статора 7. Отвод всех вышеперечисленных потерь обеспечивается по законам теплопереноса, при протекании хладагента по аксиальным трубкам 9, установленным в пространстве между подковообразными сердечниками 2, дополнительным каналам охлаждения 10, расположенным по периметру диэлектрического остова 4, системой из охлаждающих трубок 16 с зубцовой 17 и пазовой 18 поверхностями. При этом благодаря тому, что аксиальные трубки 9 установлены в пространстве между подковообразными сердечниками 2, достигается интеграция системы охлаждения в магнитопровод статора 7 электромеханических преобразователей энергии с интенсивным охлаждением, а благодаря тому, что используется система из охлаждающих трубок 16 с зубцовой 17 и пазовой 18 поверхностями достигается повышение интенсивности охлаждения электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения, и, как следствие этого, повышение мощности при неизменных массогабаритных показателях и их линейной токовой нагрузки. Так как магнитопровод статора 7 выполнен из n подковообразных сердечников 2, набранных из ленты аморфного железа 3, обладающего минимальными удельными потерями, то достигается минимизация тепловых потерь в магнитопроводе статора 7. При этом благодаря тому, что боковые поверхности 11 и дно 12 пазов 5 с уложенными в них обмотками 8 залиты неэлектропроводящим, немагнитным материалом с высокой теплопроводностью 14, а внутренняя поверхность пазов 13 залита неэлектропроводящим, немагнитным материалом с низкой теплопроводностью 15, достигается теплоперенос практически всех тепловых потерь в обмотки 8, аксиальными трубками 9, дополнительными каналами охлаждения 10 и системой из охлаждающих трубок 16, с зубцовой 17 и пазовой 18 поверхностями. При этом тепловые потери в обмотки практически не переносятся в воздушный зазор, а отводятся в радиальном направлении по всей длине магнитопровода статора 7 аксиальными трубками 9 и в тангенциальном направлении по всей длине магнитопровода статора 7 системой из охлаждающих трубок 16 с зубцовой 17 и пазовой 18 поверхностями и тем самым не являются причиной увеличения потерь энергии ротора 1 на трение с воздухом. А также достигается при использовании постоянных магнитов защита их от теплового размагничивания. Кроме того, заливка пазов 5 немагнитным материалом с высокой теплопроводностью 14 и неэлектропроводящим, немагнитным материалом с низкой теплопроводностью 15 обеспечивает минимальные потери энергии ротора 1 на трение с воздухом.

Предложенное устройство по третьему варианту работает следующим образом: при вращении ротора 1, по n подковообразным сердечникам 2, набранным из ленты аморфного железа 3, протекает магнитный поток возбуждения. При этом по закону электромагнитной индукции в обмотке 8 наводится электродвижущая сила, величина которой зависит от числа витков обмоток 8, частоты вращения ротора 1 и магнитного потока возбуждения. При подключении нагрузки в обмотках 8 начинает протекать ток, при этом создаются тепловые потери в обмотках 8, обусловленные током в обмотках 8 и ее активным сопротивлением, а также потери на вихревые токи, обусловленные частотой вращения ротора, размерами обмотки и ее удельным сопротивлением, тепловые потери в магнитопроводе статора 7, обусловленные величиной магнитного потока возбуждения, массой магнитопровода статора 7 и удельными потерями материала магнитопровода статора 7, потери энергии на трение ротора 1 с воздухом, обусловленные частотой вращения ротора 1, его геометрическими размерами, температурой воздуха и давлением в зазоре между ротором 1 и магнитопроводом статора 7. Отвод всех вышеперечисленных потерь обеспечивается по законам теплопереноса, при протекании хладагента по аксиальным трубкам 9, установленным в пространстве между подковообразными сердечниками 2, дополнительным каналам охлаждения 10, расположенным по периметру диэлектрического остова 4, системой охлаждающих трубок 16 с поверхностью, профилирующей дно паза 17, и прямоугольной поверхностью 18. При этом благодаря тому, что аксиальные трубки 9 установлены в пространстве между подковообразными сердечниками 2, достигается интеграция системы охлаждения в магнитопровод статора 7 электромеханических преобразователей энергии с интенсивным охлаждением, а благодаря тому, что используется система охлаждающих трубок 16, с поверхностью профилирующей дно паза 17 и прямоугольной поверхностью 18 достигается повышение интенсивности охлаждения электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения, и как следствие этого повышение мощности при неизменных массогабаритных показателях и их линейной токовой нагрузки. Так как магнитопровод статора 7 выполняется из n подковообразных сердечников 2, набранных из ленты аморфного железа 3, обладающего минимальными удельными потерями, то достигается минимизация тепловых потерь в магнитопроводе статора 7. При этом благодаря тому, что боковые поверхности 11 и дно 12 пазов 5 с уложенными в них обмотками 8 залиты неэлектропроводящим, немагнитным материалом с высокой теплопроводностью 14, а внутренняя поверхность пазов 13 залита неэлектропроводящим, немагнитным материалом с низкой теплопроводностью 15, достигается теплоперенос практически всех тепловых потерь в обмотки 8, аксиальными трубками 9, дополнительными каналами охлаждения 10 и системой охлаждающих трубок 16 с поверхностью, профилирующей дно паза 17, и прямоугольной поверхностью 18. При этом тепловые потери в обмотки практически не переносятся в воздушный зазор, а отводятся в радиальном направлении по всей длине магнитопровода статора 7 аксиальными трубками 9 и системой охлаждающих трубок 16 с поверхностью, профилирующей дно паза 17, и прямоугольной поверхностью 18, и тем самым не являются причиной увеличения потерь энергии ротора 1 на трение с воздухом. А также достигается при использовании постоянных магнитов защита их от теплового размагничивания. Кроме того, заливка пазов 5 немагнитным материалом с высокой теплопроводностью 14 и неэлектропроводящим, немагнитным материалом с низкой теплопроводностью 15 обеспечивает минимальные потери энергии ротора 1 на трение с воздухом.

Пример конкретной реализации способа изготовления.

Магнитопровод статора генератора мощностью 100 кВ·А изготавливают путем последовательной сборки шести подковообразных сердечников из аморфного железа Metglas 2605НВ1М (производства компании hitachi) с толщиной 25 мм, шириной 150 мм, высотой 75 мм, длиной 250 мм, набранных из ленты аморфного железа с толщиной 0,02 мм, в диэлектрическую остову, выполненную из алюминия марки АЛ2, с дополнительными каналами охлаждения (размеры определяются габаритами магнитопровода) при помощи болтов, в результате получаем магнитопровод статора с внутренним диаметром 220 мм и внешним диаметром 350 мм. Полученная конструкция образует пазы с высотой 50 мм, шириной 20 мм и зубцы с высотой 50 мм, шириной 15 мм. В пазы укладывается обмотка и в зависимости от вариантов охлаждающие трубки 16, залитые неэлектропроводящим, немагнитным материалом с высокой теплопроводностью, оставляя пространство между воздушным зазором и обмоткой для заливки неэлектропроводящего, немагнитного материала с низкой теплопроводностью. При сборке образуется пространство между шестью подковообразными сердечниками, в данное пространство прокладывают аксиальные трубки с габаритами охлаждения (размеры определяются габаритами магнитопровода).

При этом в процессе работы генератора в охлаждающих трубках индуцируются эдс, но так как в пазу установлено две аксиальные трубки, то эдс в них компенсируют друг друга, а следовательно, потери в предлагаемой системе охлаждения будут минимальны.

Итак, заявляемое изобретение позволяет расширить функциональные возможности магнитопровода статора из аморфного железа в составе электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения благодаря повышению выходной мощности, обеспечить повышение эффективности и удельных показателей магнитопровода статора из аморфного железа в составе электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения благодаря интеграции системы охлаждения в магнитопровод статора, обеспечить повышение выходной мощности при неизменных массогабаритных показателях, а также обеспечить минимизацию потерь энергии на трение ротора с воздухом благодаря выполнению внутренней поверхности статора гладкой.

Таким образом, достигаются повышение надежности, энергоэффективности и минимизация тепловыделений электромеханических преобразователей энергии, обеспечивается повышение кпд ЭМПЭ на 1-2%, и при использовании на роторе постоянных магнитов достигается защита от их теплового размагничивания, а также достигается возможность повышения линейной токовой нагрузки электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения.


МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 131-140 of 141 items.
19.01.2018
№218.016.05f3

Электропривод летательного аппарата (варианты)

Группа изобретений относится к авиакосмическим летательным аппаратам. Электропривод для летательного аппарата содержит корпус, шарико-винтовую пару, состоящую из гайки и винта, аксиальный подшипник, электродвигатель, зубчатую передачу, датчик положения ротора, демпфер и систему управления....
Тип: Изобретение
Номер охранного документа: 0002630966
Дата охранного документа: 15.09.2017
20.01.2018
№218.016.153d

Устройство защиты от короткого замыкания высокотемпературного стартер-генератора обращённой конструкции

Использование: в области электротехники. Технический результат: защита от короткого замыкания стартер-генератора обращенной конструкции в составе газотурбинного двигателя в температурном режиме до 450°С за счет механического расцепления статора с неподвижным стержнем, сопровождающегося...
Тип: Изобретение
Номер охранного документа: 0002634836
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1b7e

Гибридный магнитный подшипник с использованием сил лоренца (варианты)

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Отличие по первому варианту гибридного магнитного подшипника с использованием сил Лоренца состоит в том, что введены две управляющие m-фазные...
Тип: Изобретение
Номер охранного документа: 0002636629
Дата охранного документа: 24.11.2017
04.04.2018
№218.016.2f3d

Способ управления системой защиты магнитоэлектрического генератора от короткого замыкания

Использование: в области электротехники. Технический результат: повышение надежности системы управления, системы защиты и пожаробезопасности магнитоэлектрического генератора. Согласно способу после обнаружения короткого замыкания на фазной обмотке генератора, данную обмотку последовательно...
Тип: Изобретение
Номер охранного документа: 0002644586
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2f5d

Гибридный магнитопровод статора электромеханических преобразователей энергии

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение надежности, механической прочности, энергоэффективности и минимизация тепловыделений электромеханических...
Тип: Изобретение
Номер охранного документа: 0002644577
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.330e

Устройство и способ автоматизированной очистки солнечной панели

Изобретение относится к системам автоматической очистки солнечных панелей. Устройство очистки солнечной панели, содержащее источник питания, соединенный с солнечной панелью, датчики контроля загрязнения и провода, расположенные на поверхности солнечной панели, отличающееся тем, что провода...
Тип: Изобретение
Номер охранного документа: 0002645444
Дата охранного документа: 21.02.2018
18.05.2018
№218.016.50dd

Амортизатор безрезонансный

Изобретение относится к области машиностроения. Амортизатор содержит расположенные в корпусе амортизатора на его оси эластомерные элементы. Эластомерные элементы выполнены в виде сборной комбинации из двух элементов, расположенных по одной с каждой стороны оси амортизатора. Внешняя поверхность...
Тип: Изобретение
Номер охранного документа: 0002653321
Дата охранного документа: 07.05.2018
19.04.2019
№219.017.3211

Способ получения ультрамелкозернистой структуры в заготовках из металлов и сплавов

Изобретение относится к деформационной обработке металлов и сплавов и может быть использовано в машиностроении, авиа-двигателестроении, автомобильной промышленности. Способ включает многократное повторение операций осадка-протяжка с приложением деформирующего усилия поочередно по трем осям...
Тип: Изобретение
Номер охранного документа: 0002456111
Дата охранного документа: 20.07.2012
19.06.2019
№219.017.89c9

Способ линейной сварки трением деталей из титановых сплавов

Изобретение может быть использовано при соединении трением деталей в виде пера лопатки и диска турбомашины, в частности при производстве или ремонте моноблоков турбомашин из титановых сплавов. На стадии нагрева заготовки прижимают друг к другу по контактным поверхностям с усилием,...
Тип: Изобретение
Номер охранного документа: 0002456141
Дата охранного документа: 20.07.2012
19.06.2019
№219.017.89cf

Способ линейной сварки трением заготовок из титановых сплавов для моноблоков турбомашин

Изобретение может быть использовано при производстве или ремонте моноблоков турбомашин из титановых сплавов. На стадии нагрева заготовки прижимают друг к другу по контактным поверхностям с усилием, обеспечивающим давление процесса сварки стыка при заданной амплитуде и частоте относительного...
Тип: Изобретение
Номер охранного документа: 0002456143
Дата охранного документа: 20.07.2012
Showing 131-140 of 191 items.
25.08.2017
№217.015.ae97

Электромагнитная машина ударного действия

Изобретение относится к электромагнитной машине ударного действия. Электромагнитная машина ударного действия содержит корпус, на котором закреплен электромагнит с магнитопроводом, рейку, выполненную с возможностью вращения на оси, закрепленной в боковой стенке корпуса, и шток, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002612865
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.bc8f

Способ тепловой защиты поршня двигателя внутреннего сгорания из алюминиевых сплавов

Изобретение относится к области двигателестроения и может быть использовано в двигателях внутреннего сгорания для создания теплозащитных покрытий на поршнях из алюминиевых сплавов. Способ тепловой защиты поршня двигателя внутреннего сгорания включает нанесение теплоизолирующего покрытия на...
Тип: Изобретение
Номер охранного документа: 0002616146
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.c6b5

Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов систем al-cu, al-cu-mg и al-cu-mn-mg для получения изделий с повышенной прочностью и приемлемой пластичностью

Изобретение относится к области металлургии, а именно к термомеханической обработке полуфабрикатов из алюминиевых сплавов систем Al-Cu, Al-Cu-Mg и Al-Cu-Mn-Mg, и может быть использовано в авиастроении, судостроении, транспортном машиностроении и других областях промышленности для получения...
Тип: Изобретение
Номер охранного документа: 0002618593
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.c868

Электромагнитная машина вибрационного действия для ручного инструмента

Изобретение относится к электротехнике, к ручным инструментам, предназначенным для чеканки при изготовлении картин на металле и ювелирных изделий. Технический результат состоит в повышении точности позиционирования ручного инструмента. В электромагнитной машине вибрационного действия для...
Тип: Изобретение
Номер охранного документа: 0002619075
Дата охранного документа: 11.05.2017
26.08.2017
№217.015.d54c

Электродинамический тормоз

Использование: относится к электрическим машинам и может быть использовано в стыковочных узлах авиакосмической техники. Технический результат состоит в повышении надежности системы измерения и управления и силовой системы, а также снижении массогабаритных показателей элементов за счет...
Тип: Изобретение
Номер охранного документа: 0002623103
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.d600

Тепловой генератор электрической энергии для космического аппарата

Изобретение относится к электротехнике и может применяться для создания генераторов на космических аппаратах, в которых солнечная тепловая энергия преобразуется в электрическую. Технический результат заключается в снижении удельной массы теплового генератора, обеспечении выработки электрической...
Тип: Изобретение
Номер охранного документа: 0002622907
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d641

Осадительный электрод электрофильтра (варианты)

Группа изобретений относится к электрической очистке газов от взвешенных частиц в различных отраслях промышленности. Устройство по первому варианту содержит отдельные элементы, выполненные в виде полых барабанов, закрепленных на изоляторах и оси, имеющей на обоих концах резьбу, для стыковки...
Тип: Изобретение
Номер охранного документа: 0002622953
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.e409

Магнитотепловой генератор для космического аппарата

Изобретение относится к области энергетики, может применяться для создания генераторов на космических аппаратах, в которых солнечная тепловая энергия преобразуется в электрическую. Технический результат заключается в снижении удельной массы, обеспечении выработки электрической энергии из...
Тип: Изобретение
Номер охранного документа: 0002626412
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e547

Система на магнитных подшипниках

Изобретение относится к электротехнике и может быть использовано в качестве подвеса ротора электрических машин. Технический результат заключается в повышении надежности. Левый пассивный магнитный подшипник выполнен в виде комбинированного радиально-аксиального магнитного подшипника, состоящего...
Тип: Изобретение
Номер охранного документа: 0002626461
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f376

Способ стабилизации выходного напряжения магнитоэлектрического генератора

Изобретение относится к области электротехники и может быть использовано в магнитоэлектрических генераторах автономных систем электроснабжения. Техническим результатом является повышение КПД и повышение точности регулирования напряжения за счет саморегулирования напряжения магнитоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002637767
Дата охранного документа: 07.12.2017
+ добавить свой РИД