×
10.12.2015
216.013.9871

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА И СОПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам газофазной полимеризации этилена и сополимеризации этилена с альфа-олефинами. Описан способ газофазной полимеризации этилена и сополимеризации этилена с альфа-олефинами в присутствии нанесенного катализатора с размером частиц ≥20 мкм, полученного путем взаимодействия раствора магнийорганического соединения с соединением, вызывающим превращение магнийорганического соединения в твердый магнийсодержащий носитель, с последующей обработкой твердого продукта соединением титана, где в качестве магнийорганического соединения используют бутилмагнийхлорид в растворе простого эфира RO, где R=бутил или i-амил, а в качестве соединения, необходимого для превращения магнийорганического соединения в твердый магнийсодержащий носитель, используют композицию, включающую в свой состав продукт взаимодействия алкилхлорсилана состава R'SiCl, где R' - алкил или фенил, k=1, 2, с тетраалкоксидом кремния Si(OEt) при мольном соотношении SiCl/Si(OEt)=0.4-14, при мольных соотношениях Si/Mg=1-2 и температуре 10-40°C. Технический результат - получение полиэтилен с высоким выходом и требуемым размером частиц 450-800 мкм, с узким распределением частиц по размерам (величина SPAN<1). 1 з.п. ф-лы, 1 табл., 11 пр.

Изобретение относится к способам газофазной полимеризации этилена и сополимеризации этилена с альфа-олефинами.

Для получения полиэтилена газофазным методом используют нанесенные катализаторы циглеровского типа с размером частиц >20 мкм, содержащие в своем составе хлориды титана и хлориды магния и получаемые различными способами.

Известен способ получения нанесенного катализатора для газофазной полимеризации этилена пропиткой силикагеля раствором комплекса состава MgCl2·nTiCl4 в тетрагидрофуране с последующей сушкой и обработкой AlR3 [US №4293673, C08F 10/02, 1981]. Основной недостаток такого способа получения катализатора состоит в широкой гранулометрии порошка полимера, что приводит к уносу мелкой фракции из реакционной зоны и налипанию на стенки реактора.

Известен способ получения нанесенного катализатора газофазной полимеризации этилена [ЕР №155770, C08F 10/00, 1984] взаимодействием раствора магнийорганического соединения формулы R1MgR2xAlR33, где R3, R2, R1 - алифатические группы с числом атомов углерода от 1 до 12, х=0.001-10, с органическим хлоралкилом формулы R4C1, где R4 - первичный или третичный алифатический радикал с числом атомов углерода от 3 до 12 в присутствии электронодонорного соединения (эфир, амин, фосфин и т.п.) при мольном соотношении R``Cl/Mg=1.8-2.0 и донор / Mg=0.01-2.0, при температуре 5-80°C с получением микрогранулированного носителя MgCl2. Катализатор получают обработкой носителя углеводородным раствором хлорида титана или ванадия при 20-60°C и мольном отношении 0.05-2.0. Полученный таким способом катализатор имеет следующие характеристики: частицы сфероидальной формы с размерами 20-40 мкм, узкой гранулометрией, поверхностью 20-60 м2/г и содержанием титана или ванадия 1.0-17 мас. %.

Перед проведением газофазной полимеризации этилена проводится форполимеризация в суспензионном режиме. Выход полимера на этой стадии 50-100 г на 1 г катализатора. Полученный продукт используют далее в процессе газофазной полимеризации этилена. Активность катализатора при этом достигает 5.0 кг ПЭ/г Ti·ч·ат С2Н4 или 1.5 кг ПЭ/г V·ч·ат С2Н4, индекс расплава ПЭ при нагрузке 5 кг равен 0.3-0.5 г/10 мин (800°С и 20 об. % водорода). Недостатком такого способа получения катализатора является его низкая активность и наличие дополнительной стадии форполимеризации, что осложняет использование катализатора.

Известен способ получения нанесенного катализатора газофазной полимеризации этилена взаимодействием раствора комплекса формулы MgCl2·miC8H17OH·nD в декане с TiCl4 [WO 8600314, C08F 10/00, 16.01.1986]. Основными недостатками такого способа получения катализатора являются: значительный расход концентрированного TiCl4, достигающий 90 кг на 1 кг катализатора, что приводит к значительным трудностям при регенерации отходов; кроме того, размер частиц катализатора не превышает 10-15 мкм, что осложняет проведение газофазной полимеризации (унос мелких частиц полимера, спекание порошка и т.п.).

Ближайшим известным решением аналогичной задачи по технической сущности и достигаемому эффекту является способ получения титанового или ванадиевого катализатора, получаемого путем нанесения соединения переходного металла на MgCl2-содержащий носитель (РФ 2007424, B01J 37/00, 15.02.94). При этом микрогранулированный носитель MgCl2 получают взаимодействием раствора комплекса формулы (С6Н5)2 Mg·aAlR′3·bR″2O, R′=С2Н5, i-C4H9; R=н-С4Н9, i-C5H11; a=0,01-0,1; b=0,5-2,0, в хлорбензоле с CCl4 при мольном отношении CCl4/Mg=3,0-5,0 и температуре 50-70°C. Носитель промывают углеводородным растворителем (гексан, гептан, октан, бензин, хлорбензол) и обрабатывают раствором алкилалюминийхлорида (моноэтилалюминийдихлорид, диэтилалюминийхлорид, сесквиэтилалюминийхлорид) при мольном отношении Al/Mg=0,5-2,0 и температуре 20-60°C. Катализатор получают обработкой носителя расчетным количеством соединения титана или ванадия при мольном отношении Ti/V/Mg=0,01-0,1 и температуре 20-60°C. Катализаторы, полученные предлагаемым способом, имеют размеры частиц 20-60 мкм, узкое распределение частиц по размерам и обладают высокой активностью в процессе суспензионной полимеризации этилена и сополимеризации этилена с α-олефинами, достигающей 36 кг ПЭ/г Ti·ч·ат С2Н4 и до 8 кг ПЭ/г V·ч·ат С2Н4.

Основными недостатками известного способа является использование магнийорганического соединения (МОС) состава (C6H5)Mg·aAlR′3·bR″2O, получаемого при повышенных температурах реакцией металлического магния с хлорбезолом и эфиром, в котором хлорбензол является реагентом и растворителем, а также токсичных и трудноутилизируемых хлоралкилов и четыреххлористого углерода, используемого в качестве хлорирующего агента. Кроме того, в процессе приготовления растворимого магнийорганического соединения образуется осадок (MgCl2), который необходимо удалять перед формированием носителя из раствора МОС. Недостатками катализатора, получаемого предлагаемым прототипом способом, являются ограниченные возможности в регулировании молекулярной массы полиэтилена (ПЭ) водородом и недостаточно высокая насыпная плотность порошка ПЭ.

Изобретение решает задачу разработки способа газофазной полимеризации этилена и сополимеризации этилена с альфа-олефинами, который позволял бы регулировать молекулярную массу полиэтилена (ПЭ) водородом и позволял бы получать порошок ПЭ с высокой насыпной плотностью.

Задача решается способом газофазной полимеризации этилена и сополимеризации этилена с альфа-олефинами в присутствии нанесенного катализатора с размером частиц ≥20 мкм, полученного путем взаимодействия раствора магнийорганического соединения с соединением, вызывающим превращение магнийорганического соединения в твердый магнийсодержащий носитель, с последующей обработкой твердого продукта соединением титана, где в качестве магнийорганического соединения используют бутилмагнийхлорид в растворе простого эфира R2O, где R=бутил или i-амил, а в качестве соединения, необходимого для превращения магнийорганического соединения в твердый магнийсодержащий носитель, используют композицию, включающую в свой состав продукт взаимодействия алкилхлорсилана состава R′kSiCl4-k, где R′ - алкил или фенил, k=1, 2, с тетраалкоксидом кремния Si(OEt)4 при мольном соотношении SiCl/Si(OEt)=0.4-14, при мольных соотношениях Si/Mg=1-2 и температуре 10-40°C. Обработку твердого продукта соединением титана проводят при молярном отношении Ti/Mg=0.5-2 при температуре 20-60°C.

Используют раствор магнийорганического соединения, который содержит в качестве растворителя простой эфир вместо хлорсодержащего ароматического углеводорода. Кроме того, формирование магнийсодержащего носителя (MgCl2) происходит в отсутствие четыреххлористого углерода. Таким образом, в предлагаемом способе приготовления носителя отсутствуют в качестве побочных продуктов хлорорганические соединения. Кроме того, предлагаемый способ получения катализатора позволяет при полимеризации этилена и сополимеризации этилена с α-олефинами получать полимеры с требуемой морфологией, с регулируемой молекулярной массой (повышенная чувствительность к водороду) и регулируемым молекулярно-массовым распределением (ММР), узким распределением частиц по размеру и повышенной насыпной плотностью (≥0.30 г/см3) при сохранении высокой активности в процессах суспензионной и газофазной полимеризации этилена и сополимеризации этилена с α-олефинами.

Предлагаемый способ получения катализатора отличается от известного тем, что в качестве магнийорганического соединения используют бутилмагнийхлорид в растворе простого эфира R2O, где R=бутил или изо-амил, а в качестве соединения, используемого для превращения МОС в твердый магнийсодержащий носитель, используют композицию, включающую в свой состав продукт взаимодействия алкилхлорсилана состава R′kSiCl4-k, где R′ - алкил или фенил, k=1, 2, с тетраэтоксидом кремния Si(OEt)4.

Технический результат - получение полиэтилена с высоким выходом и требуемым размером частиц 450-800 мкм, с узким распределением частиц по размерам (величина SPAN<1).

Полимеризацию проводят в при температуре 60-100°C и давлении 2-40 атм. В качестве регулятора молекулярной массы полимера используют водород в количестве 10-50 об. %. Катализатор для полимеризации этилена или сополимеризации этилена с α-олефинами используют в сочетании с сокатализатором - триалкилом алюминия, преимущественно, триизобутилалюминием или триэтилалюминием. При сополимеризации этилена с α-олефинами используют пропилен, бутен-1, гексен-1, 4-метил-пентен-1 и другие высшие α-олефины.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

200 мл раствора BuMgCl в дибутиловом эфире с концентрацией 1.05 моль/л, полученного взаимодействием металлического магния с хлористым бутилом (BuCl/Mg=1.1) в среде дибутилового эфира (ДБЭ/Mg=5.9), загружают в реактор с мешалкой, и при температуре 30°C в течение 1.5 ч дозируют в реактор раствор, состоящий из фенилтрихлорсилана PhSiCl3 (60.5 мл) и Si(OEt)4 (7 мл), при мольном соотношении 18:1 (Si/Mg=1.9) в присутствии дибутилового эфира (60 мл). Затем нагревают реакционную смесь до 60°C в течение 30 мин и выдерживают при этой температуре 1 ч. Удаляют маточный раствор и промывают образовавшийся осадок гептаном 5 раз по 250 мл при температуре 50°C. Получают 16 г порошкообразного магнийсодержащего носителя в виде суспензии в гептане.

К полученной суспензии магнийсодержащего носителя добавляют TiCl4 при соотношении TiCl4/Mg=0.5, нагревают реакционную смесь до 60°C и выдерживают при перемешивании в течение 1 ч, затем твердый осадок отстаивают и промывают гептаном при температуре 50-60°C 5 раз по 350 мл. Катализатор содержит 1.9 мас. % Ti и имеет средний размер частиц 25.1 мкм.

Полимеризацию этилена проводят в стальном реакторе объемом 0.8 л, оборудованном мешалкой и термостатирующей рубашкой. В качестве растворителя для полимеризации используют гептан (250 мл) и сокатализатор - триизобутилалюминий (Al(i-Bu)3) с концентрацией 5 ммоль/л. Полимеризацию проводят при температуре 80°C, давлении этилена 4 атм. и давлении водорода 1 атм в течение 2 ч. Результаты полимеризации приведены в таблице.

Пример 2.

Катализатор получают в условиях примера 1, за исключением того, что к полученному раствору МОС дозируют раствор при температуре 10°C, состоящий из фенилтрихлорсилана PhSiCl3 (25 мл) и Si(OEt)4 (9 мл) при мольном соотношении 4:1 (Si/Mg=1.1). К полученной суспензии магнийсодержащего носителя добавляют TiCl4 в растворе хлорбензола при соотношении TiCl4/Mg=1. Катализатор содержит 3.3 мас. % Ti и имеет средний размер частиц 30.4 мкм.

Полимеризацию этилена ведут в условиях примера 1. Результаты полимеризации приведены в таблице.

Пример 3.

Катализатор получают в условиях примера 2, за исключением того, что к полученному раствору МОС дозируют раствор, состоящий из фенилтрихлорсилана PhSiCl3 и Si(OEt)4 при температуре 15°C. Катализатор содержит 3.4 мас. % Ti и имеет средний размер частиц 23 мкм.

Полимеризацию этилена ведут в условиях примера 1, за исключением того, что в качестве сокатализатора используют ТЭА (3.7 ммоль/л). Результаты полимеризации приведены в таблице.

Пример 4.

Катализатор, полученный в условиях примера 3, используют в полимеризации этилена в режиме газофазной полимеризации (в отсутствие растворителя) в условиях примера 3. Результаты полимеризации приведены в таблице.

Пример 5.

Катализатор получают в условиях примера 3, за исключением того, что к полученному раствору МОС дозируют раствор, состоящий из фенилтрихлорсилана PhSiCl3 (25 мл) и Si(OEt)4 (12 мл) при мольном соотношении 3:1 (Si/Mg=1.1) в присутствии гептана (25 мл). К полученной суспензии магнийсодержащего носителя добавляют TiCl4 в растворе хлорбензола при соотношении TiCl4/Mg=2 и выдерживают 2 ч при 120°C. Катализатор содержит 3.7 мас. % Ti и имеет средний размер частиц 27.5 мкм.

Полимеризацию этилена ведут в условиях примера 3. Результаты полимеризации приведены в таблице.

Пример 6.

Катализатор получают в условиях примера 4, за исключением того, что к полученному раствору МОС дозируют раствор, состоящий из фенилтрихлорсилана PhSiCl3 (22.4 мл) и Si(OEt)4 (15.8 мл) при мольном соотношении 2:1 (Si/Mg=1.0). Катализатор содержит 4.3 мас. % Ti и имеет средний размер частиц 28.3 мкм.

Полимеризацию этилена ведут в условиях примера 1. Результаты полимеризации приведены в таблице.

Пример 7.

Катализатор получают в условиях примера 4, за исключением того, что к полученному раствору МОС дозируют раствор, состоящий из фенилтрихлорсилана PhSiCl3 (17 мл) и Si(OEt)4 (24 мл) при мольном соотношении 1:1 (Si/Mg=1.1). Катализатор содержит 4.4 мас. % Ti и имеет средний размер частиц 28.2 мкм.

Полимеризацию этилена ведут в условиях примера 1. Результаты полимеризации приведены в таблице.

Пример 8.

Катализатор получают в условиях примера 4, за исключением того, что к полученному раствору МОС дозируют раствор, состоящий из фенилтрихлорсилана PhSiCl3 (10.5 мл) и Si(OEt)4 (29 мл) при мольном соотношении 0.5:1 (Si/Mg=1.1). К полученной суспензии магнийсодержащего носителя добавляют TiCl4 в условиях примера 2. Катализатор содержит 5.0 мас. % Ti и имеет средний размер частиц 20 мкм.

Полимеризацию этилена ведут в условиях примера 1. Результаты полимеризации приведены в таблице.

Пример 9.

Катализатор, полученный в условиях примера 7, используют в сополимеризации этилена с гексеном - 1: ТИБА в качестве сокатализатора, давление этилена 2 атм, давление водорода 0.5 атм, температура 80°C, а концентрация гексена - 1-0.16 М. Результаты полимеризации приведены в таблице.

Пример 10.

Катализатор, полученный в условиях примера 7, используют в газофазной сополимеризации этилена с гексеном - 1: ТИБА в качестве сокатализатора, давление этилена 4 атм, давление водорода 1 атм, температура 80°C, а концентрация гексена - 1-0.04 М. Результаты полимеризации приведены в таблице.

Пример 11 (сравнительный).

Катализатор получают в условиях примера 2, за исключением того, что к полученному раствору МОС дозируют раствор, состоящий из смеси фенилтрихлорсилана PhSiCl3 (54 мл) в гептане (54 мл) при мольном соотношении (Si / Mg=1.6). Получают нанесенный катализатор с содержанием титана 0.68 мас. % Ti и средним размером частиц 19.6 мкм.

Полимеризацию этилена ведут в условиях примера 1.

Из представленных выше примеров видно, что в случае использования для приготовления магнийсодержащего носителя композиции, включающей в свой состав продукт взаимодействия алкилхлорсилана с тетраалкоксидом кремния, взятых в определенных соотношениях, удается получить катализатор с размером частиц более 20 мкм, имеющий узкое распределение частиц по размерам (SPAN≤1) и насыпную плотность порошка полимера ≥300 г/л.

Катализатор, получаемый по предлагаемому способу, имеет высокую активность и высокую чувствительность к водороду, что позволяет получать полимеры с требуемым индексом расплава при невысоком содержании водорода. Использование для приготовления магнийсодержащего носителя только алкилхлорсиланов приводит к снижению насыпной плотности и индексов расплава ПЭ (сравнительный пример 11).

Источник поступления информации: Роспатент

Showing 21-30 of 99 items.
10.10.2014
№216.012.fad7

Адгезионный состав и способ обработки металлоармирующих материалов

Изобретение относится к адгезионному составу для обработки поверхности металлоармирующих материалов, используемых для армирования эластомерных резиновых композиций, а также к способу обработки поверхности таких материалов. Указанный способ включает обработку поверхности металлоармирующего...
Тип: Изобретение
Номер охранного документа: 0002530061
Дата охранного документа: 10.10.2014
20.11.2014
№216.013.089f

Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана

Изобретение относится к катализаторам, используемым в реакции паровой конверсии диметоксиметана, а именно к катализатору для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды. Предлагаемый катализатор является бифункциональным и содержит на поверхности...
Тип: Изобретение
Номер охранного документа: 0002533608
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0905

Способ получения метана из атмосферного диоксида углерода

Изобретение относится к способу получения метана из атмосферного диоксида углерода. Способ характеризуется тем, что используют механическую смесь термически регенерируемого сорбента - поглотителя диоксида углерода, который представляет собой карбонат калия, закрепленный в порах диоксида титана,...
Тип: Изобретение
Номер охранного документа: 0002533710
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0dfb

Способ приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы

Изобретение относится к способу приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы на основе пеноникеля. Предложенный способ заключается в электролитическом осаждении цинка на пеноникель и термообработке в инертной среде. При этом термообработку...
Тип: Изобретение
Номер охранного документа: 0002534996
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfc

Способ приготовления катализатора гидроочистки углеводородного сырья

Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, который включает в свой состав кобальт, никель, молибден, алюминий и кремний. При этом на носитель, содержащий оксид алюминия и аморфный алюмосиликат, наносят одновременно два биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534997
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfd

Катализатор гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Описан катализатор, включающий в свой состав кобальт, никель, молибден, алюминий и кремний, при этом кобальт, никель и молибден содержатся в форме биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534998
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfe

Способ гидроочистки углеводородного сырья

Изобретение относится к способу гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Изобретение касается способа гидроочистки, в котором осуществляют превращение углеводородного сырья с высоким содержанием серы при температуре 340-375°C, давлении 3,5-6,0 МПа,...
Тип: Изобретение
Номер охранного документа: 0002534999
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e28

Способ очистки газовых потоков от сероводорода

Изобретение относится к нефтехимической и газовой промышленности и может быть использовано при освоении скважин на месторождениях природных углеводородных газов. Сероводород и меркаптаны окисляют (Р-1) в присутствии катализатора с получением элементарной серы и диоксида серы. Полученный газ...
Тип: Изобретение
Номер охранного документа: 0002535041
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.13de

Каталитический реактор для переработки осадков сточных вод и способ их переработки (варианты)

Изобретение относится к способам переработки сточных осадков, содержащих органические вещества, перед их утилизацией или захоронением. Каталитический реактор содержит корпус с расширением в верхней части, патрубок подачи осадка сточных вод, расположенный на уровне соединения нижней и верхней...
Тип: Изобретение
Номер охранного документа: 0002536510
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1429

Катализатор, способ его приготовления и процесс гидроизомеризации дизельного топлива

Изобретение относится к катализаторам для гидроизомеризации дизельного топлива, способам приготовления катализаторов и процессам получения дизельного топлива с низкой температурой застывания. Описан катализатор гидроизомеризации, включающий в свой состав цеолит типа ZSM-23, бор, палладий и...
Тип: Изобретение
Номер охранного документа: 0002536585
Дата охранного документа: 27.12.2014
Showing 21-30 of 99 items.
10.10.2014
№216.012.fad7

Адгезионный состав и способ обработки металлоармирующих материалов

Изобретение относится к адгезионному составу для обработки поверхности металлоармирующих материалов, используемых для армирования эластомерных резиновых композиций, а также к способу обработки поверхности таких материалов. Указанный способ включает обработку поверхности металлоармирующего...
Тип: Изобретение
Номер охранного документа: 0002530061
Дата охранного документа: 10.10.2014
20.11.2014
№216.013.089f

Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана

Изобретение относится к катализаторам, используемым в реакции паровой конверсии диметоксиметана, а именно к катализатору для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды. Предлагаемый катализатор является бифункциональным и содержит на поверхности...
Тип: Изобретение
Номер охранного документа: 0002533608
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0905

Способ получения метана из атмосферного диоксида углерода

Изобретение относится к способу получения метана из атмосферного диоксида углерода. Способ характеризуется тем, что используют механическую смесь термически регенерируемого сорбента - поглотителя диоксида углерода, который представляет собой карбонат калия, закрепленный в порах диоксида титана,...
Тип: Изобретение
Номер охранного документа: 0002533710
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0dfb

Способ приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы

Изобретение относится к способу приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы на основе пеноникеля. Предложенный способ заключается в электролитическом осаждении цинка на пеноникель и термообработке в инертной среде. При этом термообработку...
Тип: Изобретение
Номер охранного документа: 0002534996
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfc

Способ приготовления катализатора гидроочистки углеводородного сырья

Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, который включает в свой состав кобальт, никель, молибден, алюминий и кремний. При этом на носитель, содержащий оксид алюминия и аморфный алюмосиликат, наносят одновременно два биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534997
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfd

Катализатор гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Описан катализатор, включающий в свой состав кобальт, никель, молибден, алюминий и кремний, при этом кобальт, никель и молибден содержатся в форме биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534998
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfe

Способ гидроочистки углеводородного сырья

Изобретение относится к способу гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Изобретение касается способа гидроочистки, в котором осуществляют превращение углеводородного сырья с высоким содержанием серы при температуре 340-375°C, давлении 3,5-6,0 МПа,...
Тип: Изобретение
Номер охранного документа: 0002534999
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e28

Способ очистки газовых потоков от сероводорода

Изобретение относится к нефтехимической и газовой промышленности и может быть использовано при освоении скважин на месторождениях природных углеводородных газов. Сероводород и меркаптаны окисляют (Р-1) в присутствии катализатора с получением элементарной серы и диоксида серы. Полученный газ...
Тип: Изобретение
Номер охранного документа: 0002535041
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.13de

Каталитический реактор для переработки осадков сточных вод и способ их переработки (варианты)

Изобретение относится к способам переработки сточных осадков, содержащих органические вещества, перед их утилизацией или захоронением. Каталитический реактор содержит корпус с расширением в верхней части, патрубок подачи осадка сточных вод, расположенный на уровне соединения нижней и верхней...
Тип: Изобретение
Номер охранного документа: 0002536510
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1429

Катализатор, способ его приготовления и процесс гидроизомеризации дизельного топлива

Изобретение относится к катализаторам для гидроизомеризации дизельного топлива, способам приготовления катализаторов и процессам получения дизельного топлива с низкой температурой застывания. Описан катализатор гидроизомеризации, включающий в свой состав цеолит типа ZSM-23, бор, палладий и...
Тип: Изобретение
Номер охранного документа: 0002536585
Дата охранного документа: 27.12.2014
+ добавить свой РИД