×
10.12.2015
216.013.95c4

ГИБРИДНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области ракетной техники, в частности к конструкциям гибридных ракетных двигателей космического назначения. Гибридный ракетный двигатель содержит камеру сгорания с размещенным в ней зарядом твердого топлива с внутренним сквозным каналом и сопловой блок. Во входном сечении заряда размещена форсунка для подачи окислителя в канал заряда. Заряд твердого топлива содержит горючие и окислительный компоненты, причем массовая доля окислительного компонента в заряде монотонно увеличивается по его длине в направлении соплового блока в соответствии с уравнением, включающим характеристики заряда и компонентов топлива гибридного ракетного двигателя. Изобретение позволяет повысить удельный импульс тяги двигателя. 4 ил., 8 табл.
Основные результаты: Гибридный ракетный двигатель, содержащий камеру сгорания с размещенным в ней зарядом твердого топлива, по оси которого выполнен сквозной канал, в головной части которого расположена форсунка, магистраль подачи окислителя к форсунке и сопловой блок, отличающийся тем, что заряд твердого топлива содержит горючие и окислительный компоненты, причем массовую долю окислительного компонента увеличивают по длине заряда в направлении соплового блока в соответствии с уравнением где х - длина заряда, м;α - удельный расход окислителя, подаваемого в канал заряда, необходимый для полного сгорания горючих компонентов твердотопливного заряда, кг/кг;β - удельный расход окислителя, входящего в состав заряда, необходимый для полного сгорания горючих компонентов твердотопливного заряда, кг/кг;П - периметр поперечного сечения сквозного канала в заряде, м;ω - массовая скорость горения твердотопливного заряда во входном сечении канала (х=0), кг/(с·м);G - массовый секундный расход окислителя, подаваемого на входе в канал заряда, кг/с;ν - эмпирическая константа в законе скорости горения твердотопливного заряда в потоке окислителяω=ρa(ρw),где ρ - плотность твердого топлива, кг/м;a - эмпирическая константа в законе скорости горения, м/с;ρ - плотность окислителя, подаваемого в канал заряда, кг/м;w - скорость окислителя, подаваемого в канал заряда, м/с.
Реферат Свернуть Развернуть

Изобретение относится к области ракетной техники, в частности к конструкциям гибридных ракетных двигателей (ГРД) космического назначения.

Известен гибридный ракетный двигатель [1], содержащий зарядную камеру с размещенным в ней канальным зарядом твердого компонента топлива, струйную форсунку для подачи жидкого компонента топлива, камеру дожигания и сопловый блок.

В данном двигателе жидкий компонент топлива по магистрали подачи поступает в форсунку, через которую в распыленном состоянии впрыскивается в осевой канал заряда твердого компонента топлива и вступает с ним в реакцию горения. Образующиеся в результате горения продукты сгорания поступают в камеру дожигания, в которой происходит полное завершение реакции горения. Продукты полного сгорания топливных компонентов истекают через сопловой блок, создавая тягу ГРД.

Недостатком данной конструкции ГРД является неравномерность выгорания заряда по его длине. Из-за расходования окислителя на реакцию горения плотность потока окислителя непостоянна вдоль поверхности топливного канала. Наиболее интенсивное горение происходит в области переднего торца топливного заряда, а в области ниже по потоку параллельно с реакцией горения происходит высокотемпературная эрозия канала. При этом из-за недостатка окислителя возможен унос непрореагировавшего горючего. Все это приводит к снижению удельного импульса тяги за счет неполного сгорания топливной смеси.

Известен гибридный ракетный двигатель [2], в котором для обеспечения близкого к оптимальному соотношению компонентов топлива в процессе его работы форсуночная головка имеет форму, максимально приближенную к форме горящей поверхности твердого компонента топлива. При этом в форсуночной головке размещены в виде чередующихся поясов струйные и центробежные форсунки, сообщающиеся с раздельными коллекторными полостями.

К недостаткам данной схемы относятся сложность конструкции форсуночной головки, и ее размещение непосредственно в зоне горения горящего канала твердотопливного заряда, что снижает надежность ее функционирования вплоть до полного разрушения.

Наиболее близким по техническому решению к заявляемому изобретению является гибридный ракетный двигатель [3], содержащий зарядную камеру с канальным твердотопливным зарядом, форсунку для подачи жидкого компонента топлива и сопло. Для обеспечения равномерности горения заряда форсунка выполнена в виде полого корпуса и установленного в нем с зазором вкладыша с центральным каналом. Один торец вкладыша со стороны подачи жидкого компонента топлива снабжен кольцевым фланцем с отверстием, а в другой имеет плавно расширяющуюся наружную поверхность. В центральном канале вкладыша установлен шнековый завихритель.

Однако данная схема ГРД также не обеспечивает полного сгорания заряда; процесс горения завершается в камере дожигания, размещенной перед сопловым блоком. Наличие камеры дожигания снижает коэффициент объемного заполнения двигателя [4].

Техническим результатом настоящего изобретения является разработка гибридного ракетного двигателя, обеспечивающего равномерность и полноту сгорания твердотопливного заряда вдоль поверхности осевого канала и, в конечном счете, высокие значения энергомассовых характеристик удельного импульса тяги и коэффициента заполнения.

Технический результат изобретения достигается тем, что разработан гибридный ракетный двигатель, содержащий камеру сгорания с размещенным в ней зарядом твердого топлива, по оси которого выполнен сквозной канал, в головной части которого расположена форсунка, магистраль подачи окислителя к форсунке и сопловой блок.

Заряд твердого топлива содержит горючие и окислительный компоненты, причем массовую долю окислительного компонента увеличивают по длине заряда в направлении соплового блока в соответствии с уравнением:

,

где x - длина заряда, м;

α - удельный расход окислителя, подаваемого в канал заряда, необходимый для полного сгорания горючих компонентов твердотопливного заряда, кг/кг;

β - удельный расход окислителя, входящего в состав заряда, необходимый для полного сгорания горючих компонентов твердотопливного заряда, кг/кг;

П - периметр поперечного сечения сквозного канала в заряде, м;

ω0 - массовая скорость горения твердотопливного заряда во входном сечении канала (x=0), кг/(с·м2);

G0 - массовый секундный расход окислителя, подаваемого на входе в канал заряда, кг/с;

ν - эмпирическая константа в законе скорости горения твердотопливного заряда в потоке окислителя:

ω=ρma(ρw)ν,

где ρm - плотность твердого топлива, кг/м3;

a - эмпирическая константа в законе скорости горения, м/с;

ρ - плотность окислителя, подаваемого в канал заряда, кг/м3;

w - скорость окислителя, подаваемого в канал заряда, м/с.

Полученный положительный эффект изобретения (равномерность и полнота сгорания твердотопливного заряда вдоль поверхности осевого канала) обусловлен следующими факторами.

Скорость газификации твердотопливного заряда ГРД (линейная скорость горения) определяется степенной зависимостью от плотности потока окислителя [1]:

где u - линейная скорость горения;

y=ρw - плотность потока окислителя;

ρ, w - плотность и скорость окислителя вдоль оси канала;

a, ν - эмпирические константы в законе скорости горения (1).

Уравнение закона сохранения массы окислителя по длине заряда при квазистационарном течении имеет вид:

где x - длина канала (0<x<L);

S, П - площадь проходного сечения и периметр осевого канала;

α - отношение массы окислителя, поступающего из потока, к массе твердого горючего в процессе горения;

L - длина заряда.

В предположении постоянства S и П (S=const, П=const) уравнение (2) сводится к виду:

,

где

Интеграл уравнения (3) имеет вид:

где y00w0=G0/S - плотность потока окислителя на входе в канал;

G0 - массовый секундный расход окислителя на входе в канал.

Уравнение (5) представим в виде:

где

Из уравнения (6) следует, что плотность потока окислителя монотонно уменьшается по длине осевого канала (с ростом x) за счет его расходования в процессе горения.

При определенных условиях, если в уравнении (6)

процесс горения вообще прекращается из-за полного расходования окислителя в потоке.

В результате снижения плотности потока окислителя y(x) по длине канала скорость горения твердотопливного заряда неравномерна по его длине; в ряде случаев - при выполнении неравенства (8) - скорость горения снижается до нуля (горение прекращается).

Наряду с этим, снижение содержания окислителя в потоке приводит к неполноте сгорания топлива в ГРД и, следовательно, к снижению энерготяговых характеристик двигателя.

В заявляемом изобретении предлагается в состав твердого топлива наряду с горючими компонентами (горючее-связующее и порошок алюминия, например) вводить дополнительно твердый окислитель (например, перхлорат аммония, нитрат аммония, нитрамины и др.), распределенный по длине заряда таким образом, чтобы уменьшающаяся по длине канала плотность потока окислителя y(x) компенсировалась введенным в состав твердотопливного заряда твердым окислителем.

Для определения закона распределения твердого окислителя по длине заряда рассмотрим осевое распределение величины несгоревшей массы горючего

,

где m0, m(x) - масса сгоревшего в единицу времени на единице длины заряда твердого горючего в начальном сечении канала (x=0) и в его произвольном сечении x (0<x≤L).

С учетом того, что

получим:

Подставляя в (10) выражение для y(x) из (6), получим:

Путем несложных алгебраических преобразований уравнение (11) можно привести к виду:

где - массовая скорость горения твердого топлива.

Подставляя в (12) выражения для A из (7) и y0=G0/S, получим:

В соответствии с уравнением (13) несгоревшая масса горючего Δm(x) монотонно увеличивается по длине заряда (с ростом x).

Для полного сгорания горючих компонентов твердотопливного заряда предлагается вводить твердый окислитель в состав самого заряда, причем количество вводимого окислителя должно быть пропорционально величине несгоревшей массы горючих компонентов твердотопливного заряда Δm(x).

Из уравнения (13) следует уравнение для соотношения массы окислителя mок и горючего mгор в составе твердотопливного заряда, обеспечивающего полноту сгорания горючих компонентов по всей длине заряда:

где β - удельный расход окислителя, входящего в состав заряда, необходимого для полного сгорания горючих компонентов твердотопливного заряда (кг/кг).

Массовая доля окислителя в твердотопливном заряде (отношение массы окислителя к суммарной массе топлива) определяется уравнением

в котором f(x) определяется из уравнения (14). При этом получим:

При распределении содержания окислительного компонента по длине твердотопливного заряда ГРД в соответствии с уравнением (16) обеспечивается стехиометрическое соотношение горючего и окислителя (содержащегося в потоке и в составе заряда) по всей длине заряда. Тем самым обеспечиваются равномерность и полнота сгорания топливных компонентов ГРД и, следовательно, высокие энерготяговые характеристики двигателя.

Примеры реализации

На Фиг. 1 приведен пример реализации гибридного ракетного двигателя. Двигатель состоит из камеры сгорания 1, твердотопливного заряда 2 длиной L со сквозным цилиндрическим каналом радиусом r. Во входном сечении заряда 2 размещена форсунка 3, в которую через магистраль 4 подается жидкий или газообразный окислитель из бака 5. В выходном сечении двигателя размещен сопловый блок 6. Горение заряда 2 в потоке распыленного форсункой окислителя происходит в разгорающемся в процессе работы ГРД цилиндрическом канале. Продукты сгорания истекают через сопловой блок 6, создавая тягу ГРД.

Уравнение (6), определяющее распределение плотности потока окислителя по длине канала, для канала в форме кругового цилиндра имеет вид: (П=2πr, S=πr2)

Скорость горения твердотопливного заряда по длине канала определяется уравнением:

Уравнение (16), определяющее массовую долю окислителя в твердотопливном заряде, для цилиндрического канала имеет вид:

Рассмотрим гибридный ракетный двигатель со следующими типичными значениями параметров [5, 6]:

- длина заряда L=1 м;

- начальный радиус канала r=0.1 м;

- массовый секундный расход окислителя G0=10 кг/с;

- плотность твердого топлива ρm=1600 кг/м3;

- параметры закона скорости горения a=0.0127 мм/с, ν=0.65.

В качестве типичной композиции твердого горючего материала (ТГМ) для твердотопливного заряда ГРД рассмотрим состав, содержащий 85% инертного горючего-связующего (ГСВ) - бутадиенового каучука, пластифицированного трансформаторным маслом, и 15% порошка алюминия марки АСД-4. В качестве окислителя, подаваемого в канал твердотопливного заряда, рассмотрим газообразный кислород.

Эквивалентные формулы отдельных компонентов, твердого горючего материала и топливной смеси в целом, рассчитанные по методике [1], приведены в таблице 1.

Компонентный состав топливной смеси приведен в таблице 2.

При горении данной композиции твердого горючего материала в потоке кислорода для обеспечения полного сгорания (при коэффициенте избытка окислителя, равном единице) удельный расход окислителя, подаваемого в канал заряда, составляет α=2.94 кг/кг (для полного сгорания 1 кг ТГМ необходимо 2.94 кг кислорода).

Рассмотрим горение рассматриваемой композиции ТГМ при введении в нее твердого окислителя, в качестве которого используется перхлорат аммония, перхлорат калия или перхлорат нитрония.

1. Окислитель - перхлорат аммония (ПХА) - NH4ClO4.

Эквивалентные формулы отдельных компонентов и топливной композиции в целом приведены в таблице 3.

Компонентный состав ТГМ на основе ПХА приведен в таблице 4.

Для полного сгорания 1 кг ТГМ необходимо 8.61 кг ПХА (β=8.61 кг/кг).

2. Окислитель - перхлорат калия (ПХК) - КСlO4.

Эквивалентные формулы отдельных компонентов и топливной композиции в целом приведены в таблице 5.

Компонентный состав ТГМ на основе ПХК приведен в таблице 6.

Для полного сгорания 1 кг ТГМ необходимо 6.35 кг ПХК (β=6.35 кг/кг).

3. Окислитель - перхлорат нитрония (ПХН) - NO2ClO4.

Эквивалентные формулы отдельных компонентов и топливной композиции в целом приведены в таблице 7.

Компонентный состав ТГМ на основе ПХК приведен в таблице 8.

Для полного сгорания 1 кг ТГМ необходимо 1.28 кг ПХН (β=1.28 кг/кг).

На Фиг. 2 приведена зависимость плотности потока окислителя от длины канала y(x) для ГРД с приведенными выше значениями параметров, рассчитанная по уравнению (17).

Из приведенного графика следует, что величина y(x) монотонно уменьшается по длине канала за счет расходования окислителя в процессе горения заряда ТГМ от начального значения 313.3 кг·с-1·м-2 (на входе в канал) до 31.2 кг·с-1·м-2 (на выходе из канала).

На Фиг. 3 приведена зависимость линейной скорости горения ТГМ от длины канала u(x), рассчитанная по уравнению (18). Из приведенного графика следует, что за счет снижения плотности потока окислителя по длине канала y(x) скорость горения также монотонно снижается от 0.54 мм/с до 0.12 мм/с. Это приводит к неравномерному выгоранию заряда ТГМ по его длине и снижению энерготяговых характеристик двигателя.

Для обеспечения равномерного горения твердотопливного заряда по всей длине в его состав вводят твердый окислитель - ПХА, ПХК или ПХН. Распределение массовой доли окислительного компонента по длине заряда, рассчитанное по уравнению (19), приведено на Фиг. 4 для перхлората аммония (кривая 1), перхлората калия (кривая 2) и перхлората нитрония (кривая 3).

Из приведенных графиков следует, что содержание окислительного компонента в составе твердотопливного заряда должно монотонно увеличиваться от нуля (в головном сечении заряда) до максимального значения (z=0.465 - для ПХА, z=0.390 - для ПХК, z=0.114 - для ПХН). При таком распределении компонентов горение заряда вдоль оси канала происходит равномерно, что обеспечивает высокую полноту сгорания.

Таким образом, заявляемый гибридный ракетный двигатель обеспечивает достижение технического результата изобретения - равномерность и высокую полноту сгорания твердотопливного заряда, и, соответственно, высокие значения удельной тяги двигателя.

ЛИТЕРАТУРА

1. Головков Л.Г. Гибридные ракетные двигатели. М.: Воениздат, 1976. - 168 с.

2. Патент РФ №2359145, МПК F02K 9/72. Гибридный ракетный двигатель / Губертов A.M., Миронов В.В., Голлендер Р.Г., Давыденко Н.А., Волков Н.Н., Цацуев С.М.; опубл. 20.06.2009 г.

3. Патент РФ №2070652, МПК F02K 9/08. Гибридный ракетный двигатель / Виноградов В.Н., Стаценко А.Г., Лобанов Ю.Г., Михейчик А.Л., Нятин А.Г.; опубл. 20.12.1996 г.

4. Фахрутдинов И.Х., Котельников А.В. Конструкция и проектирование ракетных двигателей твердого топлива. М.: Машиностроение, 1987. - 328 с.

5. Chiaverini V.J., Kuo К.К. Fundamentals of Hybrid Rocket Combustion and Propulsion. Volume 218 of AIAA Progress in Astronautics and Aeronautics. - AIAA, USA, 2007. - 648 p.

6. Губертов A.M., Миронов B.B., Голлендер Р.Г. и др. Процессы в гибридных ракетных двигателях. М.: Наука, 2008. - 405 с.

7. Соркин Р.Е. Газотермодинамика ракетных двигателей на твердом топливе. М.: Наука, 1967. - 368 с.

Гибридный ракетный двигатель, содержащий камеру сгорания с размещенным в ней зарядом твердого топлива, по оси которого выполнен сквозной канал, в головной части которого расположена форсунка, магистраль подачи окислителя к форсунке и сопловой блок, отличающийся тем, что заряд твердого топлива содержит горючие и окислительный компоненты, причем массовую долю окислительного компонента увеличивают по длине заряда в направлении соплового блока в соответствии с уравнением где х - длина заряда, м;α - удельный расход окислителя, подаваемого в канал заряда, необходимый для полного сгорания горючих компонентов твердотопливного заряда, кг/кг;β - удельный расход окислителя, входящего в состав заряда, необходимый для полного сгорания горючих компонентов твердотопливного заряда, кг/кг;П - периметр поперечного сечения сквозного канала в заряде, м;ω - массовая скорость горения твердотопливного заряда во входном сечении канала (х=0), кг/(с·м);G - массовый секундный расход окислителя, подаваемого на входе в канал заряда, кг/с;ν - эмпирическая константа в законе скорости горения твердотопливного заряда в потоке окислителяω=ρa(ρw),где ρ - плотность твердого топлива, кг/м;a - эмпирическая константа в законе скорости горения, м/с;ρ - плотность окислителя, подаваемого в канал заряда, кг/м;w - скорость окислителя, подаваемого в канал заряда, м/с.
ГИБРИДНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ
ГИБРИДНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ
ГИБРИДНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ
ГИБРИДНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ
ГИБРИДНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Showing 31-40 of 77 items.
13.01.2017
№217.015.6c49

Способ изготовления зарядов смесевого ракетного твердого топлива

Изобретение относится к производству ракетной техники, а именно к изготовлению зарядов смесевого ракетного твердого топлива (СРТТ). Способ изготовления заряда смесевого ракетного твердого топлива включает последовательное механическое перемешивание окислителя и смеси горюче-связующего на основе...
Тип: Изобретение
Номер охранного документа: 0002592599
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7c78

Способ получения трехмерных керамических изделий

Изобретение относится к области порошковой металлургии, в частности к способу получения трехмерных керамических изделий. Техническим результатом является повышение технологичности процесса изготовления и расширение номенклатуры изделий. Технический результат достигается способом получения...
Тип: Изобретение
Номер охранного документа: 0002600647
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.86d2

Способ получения диборида алюминия

Изобретение относится к бору и его соединениям, а именно к способам синтеза диборида алюминия, являющегося перспективным энергетическим материалом для ракетных топлив. Диборид алюминия получают высокотемпературной обработкой смеси порошков бора и алюминия в инертной атмосфере путем...
Тип: Изобретение
Номер охранного документа: 0002603793
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9c71

Способ пассивирования тонкого порошка алюминия

Изобретение относится к пассивированию тонкого порошка алюминия. Способ включает термическую обработку и последующее охлаждение порошка, при этом порошок алюминия нагревают до температуры пассивации 200-350°С и ведут термическую обработку порошка алюминия в воздушной среде с влажностью 8-12 г/м...
Тип: Изобретение
Номер охранного документа: 0002610580
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9ddb

Способ исследования процесса гравитационного осаждения совокупности твердых частиц в жидкости

Изобретение относится к области разработки способов и установок для лабораторных исследований физических процессов, в частности для исследования закономерностей движения совокупности твердых частиц в жидкой среде при их гравитационном осаждении. Частицы предварительно смачивают водным раствором...
Тип: Изобретение
Номер охранного документа: 0002610607
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a0a0

Эжекционная форсунка для распыления расплавов

Изобретение относится к области порошковой металлургии и может быть использовано для получения металлических порошков. Эжекционная форсунка для распыления расплавов содержит корпус с кольцевой щелью для подачи горячего сжатого газа, ниппель с защитным чехлом и центральным каналом для подачи...
Тип: Изобретение
Номер охранного документа: 0002606674
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a467

Способ получения молекулярного комплекса [1,2,5]оксадиазоло[3,4-е][1,2,3,4]-тетразин-4,6-ди-n-оксида с 2,4-динитро-2,4-диазапентаном

Изобретение относится к способу получения молекулярного комплекса [1,2,5]оксадиазоло[3,4-е][1,2,3,4]-тетразин-4,6-ди-N-оксида с 2,4-динитро-2,4-диазапентаном (FTDO-ДНП), включающему получение раствора [1,2,5]оксадиазоло[3,4-е][1,2,3,4]-тетразин-4,6-ди-N-оксида с использованием смеси полярных...
Тип: Изобретение
Номер охранного документа: 0002607516
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.abd6

Устройство для измерения малоугловой индикатрисы рассеяния

Изобретение относится к измерительной технике и может найти применение, в частности, в процессах измерения характеристик аэрозольных частиц в двухфазных средах оптическим методом, в химической технологии, коллоидной химии, в технологии диспергирования жидкости форсунками, при контроле...
Тип: Изобретение
Номер охранного документа: 0002612199
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.bfa6

Установка для исследования осаждения совокупности твердых частиц в жидкости

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей движения совокупности твердых частиц в жидкой среде при их гравитационном осаждении. Устройство ввода частиц в жидкость выполнено в виде плоского...
Тип: Изобретение
Номер охранного документа: 0002617167
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.ce4f

Способ исследования осаждения сферического облака твердых частиц в жидкости

Изобретение относится к области исследований закономерностей движения совокупности твердых частиц в жидкой среде при их гравитационном осаждении. При реализации способа исследования осаждения сферического облака твердых частиц указанные частицы предварительно вводят в сферический контейнер,...
Тип: Изобретение
Номер охранного документа: 0002620761
Дата охранного документа: 29.05.2017
Showing 31-40 of 103 items.
13.01.2017
№217.015.86d2

Способ получения диборида алюминия

Изобретение относится к бору и его соединениям, а именно к способам синтеза диборида алюминия, являющегося перспективным энергетическим материалом для ракетных топлив. Диборид алюминия получают высокотемпературной обработкой смеси порошков бора и алюминия в инертной атмосфере путем...
Тип: Изобретение
Номер охранного документа: 0002603793
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9c71

Способ пассивирования тонкого порошка алюминия

Изобретение относится к пассивированию тонкого порошка алюминия. Способ включает термическую обработку и последующее охлаждение порошка, при этом порошок алюминия нагревают до температуры пассивации 200-350°С и ведут термическую обработку порошка алюминия в воздушной среде с влажностью 8-12 г/м...
Тип: Изобретение
Номер охранного документа: 0002610580
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9ddb

Способ исследования процесса гравитационного осаждения совокупности твердых частиц в жидкости

Изобретение относится к области разработки способов и установок для лабораторных исследований физических процессов, в частности для исследования закономерностей движения совокупности твердых частиц в жидкой среде при их гравитационном осаждении. Частицы предварительно смачивают водным раствором...
Тип: Изобретение
Номер охранного документа: 0002610607
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a0a0

Эжекционная форсунка для распыления расплавов

Изобретение относится к области порошковой металлургии и может быть использовано для получения металлических порошков. Эжекционная форсунка для распыления расплавов содержит корпус с кольцевой щелью для подачи горячего сжатого газа, ниппель с защитным чехлом и центральным каналом для подачи...
Тип: Изобретение
Номер охранного документа: 0002606674
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a467

Способ получения молекулярного комплекса [1,2,5]оксадиазоло[3,4-е][1,2,3,4]-тетразин-4,6-ди-n-оксида с 2,4-динитро-2,4-диазапентаном

Изобретение относится к способу получения молекулярного комплекса [1,2,5]оксадиазоло[3,4-е][1,2,3,4]-тетразин-4,6-ди-N-оксида с 2,4-динитро-2,4-диазапентаном (FTDO-ДНП), включающему получение раствора [1,2,5]оксадиазоло[3,4-е][1,2,3,4]-тетразин-4,6-ди-N-оксида с использованием смеси полярных...
Тип: Изобретение
Номер охранного документа: 0002607516
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.abd6

Устройство для измерения малоугловой индикатрисы рассеяния

Изобретение относится к измерительной технике и может найти применение, в частности, в процессах измерения характеристик аэрозольных частиц в двухфазных средах оптическим методом, в химической технологии, коллоидной химии, в технологии диспергирования жидкости форсунками, при контроле...
Тип: Изобретение
Номер охранного документа: 0002612199
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.bfa6

Установка для исследования осаждения совокупности твердых частиц в жидкости

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей движения совокупности твердых частиц в жидкой среде при их гравитационном осаждении. Устройство ввода частиц в жидкость выполнено в виде плоского...
Тип: Изобретение
Номер охранного документа: 0002617167
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.ce4f

Способ исследования осаждения сферического облака твердых частиц в жидкости

Изобретение относится к области исследований закономерностей движения совокупности твердых частиц в жидкой среде при их гравитационном осаждении. При реализации способа исследования осаждения сферического облака твердых частиц указанные частицы предварительно вводят в сферический контейнер,...
Тип: Изобретение
Номер охранного документа: 0002620761
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce5a

Ракетный двигатель активно-реактивного снаряда

Изобретение относится к артиллерийской технике, в частности к ракетным двигателям снарядов, запускаемых из ствола орудия или миномета. Ракетный двигатель активно-реактивного снаряда содержит камеру сгорания с зарядом твердого топлива, сопло, инициатор и сопловую заглушку. В критическом сечении...
Тип: Изобретение
Номер охранного документа: 0002620613
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d02c

Способ получения упрочненного нанокомпозиционного материала на основе магния

Изобретение относится к получению упрочненного нанокомпозиционного материала, который может быть использован в авиастроении и в автомобильной промышленности. Готовят лигатуру в виде компактированных стержней из равномерно перемешанной смеси порошка магния и нанопорошка нитрида алюминия с...
Тип: Изобретение
Номер охранного документа: 0002621198
Дата охранного документа: 01.06.2017
+ добавить свой РИД