×
27.11.2015
216.013.9490

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКИХ БЛОЧНО-ЯЧЕИСТЫХ ФИЛЬТРОВ-СОРБЕНТОВ ДЛЯ УЛАВЛИВАНИЯ ГАЗООБРАЗНОГО РАДИОАКТИВНОГО ЦЕЗИЯ

Вид РИД

Изобретение

№ охранного документа
0002569651
Дата охранного документа
27.11.2015
Аннотация: Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах улавливания паров цезия при остекловывании высокоактивных отходов, высокотемпературной переработке облученного ядерного топлива, в производстве цезиевых источников ионизирующего излучения. Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразного радиоактивного цезия включает пропитку полиуретановой матрицы ячеистой структуры шликером, состоящим из инертного наполнителя - электроплавленного корунда, дисперсного порошка оксида алюминия и раствора поливинилового спирта, сушку и обжиг. на полученную корундовую матрицу со средним размером ячейки 0,5-1,5 мм наносят методом многократной пропитки и термообработки в интервале температур 600-700ºС сорбционно-активную композицию из смеси алюмозоля и кремнезоля, взятых в соотношении оксидов алюминия и кремния 30-35:70-65 мас.%, с добавлением 0,3-0,8 мас.% поливинилового спирта по отношению к сухому веществу композиции. Количество композиции составляет 21-45 мас.% от массы матрицы. Керамический блочно-ячеистый фильтр-сорбент радиоактивного цезия имеет открытую пористость 85-90 об.%, предел прочности при сжатии 2,5-4,0 МПа, удельную поверхность сорбционно-активного слоя 300-360 м/г. В результате процесса хемосорбции на полученных фильтрах-сорбентах образуются устойчивые кристаллические алюмосиликаты цезия: CsAlSiO (кальсилит) и CsAlSiO (поллуцит), сорбционная емкость составляет 0,16-0,32 г CsO/г фильтра-сорбента. Технический результат изобретения - повышение сорбционной емкости фильтра. 4 пр.
Основные результаты: Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразного радиоактивного цезия, включающий пропитку полиуретановой матрицы ячеистой структуры шликером, состоящим из инертного наполнителя - электроплавленного корунда, дисперсного порошка оксида алюминия и раствора поливинилового спирта, сушку и обжиг, нанесение на корундовую высокопористую блочно-ячеистую матрицу со средним размером ячейки 0,5-1,5 мм методом многократной пропитки и термообработки активной композиции, отличающийся тем, что сорбционно-активная композиция наносится на корундовую высокопористую блочно-ячеистую матрицу в количестве 21-45 мас.% от массы матрицы из смеси алюмозоля и кремнезоля, взятых в соотношении оксидов алюминия и кремния 30-35:70-65 мас.%, с добавлением 0,3-0,8 мас.% поливинилового спирта по отношению к сухому веществу композиции при термообработке в интервале температур 600-700С.

Предлагаемое изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах обращения с радиоактивными отходами, а именно для улавливания паров цезия при остекловывании жидких высокоактивных отходов, высокотемпературной переработке облученного ядерного топлива, в производстве цезиевых источников ионизирующего излучения.

Целый ряд высокотемпературных процессов, например кальцинация, остекловывание высокоактивных отходов, изготовление источников ионизирующего излучения, волоксидация облученного ядерного топлива, сопровождается выделением радиоактивного цезия в парогазовой фазе. Улавливание его традиционно осуществляется низкотемпературной конденсацией паров 137Cs в системе газоочистки (конденсаторы, скрубберы) и последующей тонкой очисткой отходящих газов аэрозольными фильтрами.

Однако этот способ приводит к загрязнению коммуникаций и к образованию вторичных жидких радиоактивных отходов, требующих дополнительной переработки.

Более эффективным с точки зрения дальнейшей утилизации является метод фиксации цезия в различных силикатных матрицах, основанный на свойствах и структуре природных минералов, содержащих цезий.

Известен способ получения и применения для высокотемпературной хемосорбции паров радиоактивного цезия фильтра-«Губки», представляющего собой полые алюмосиликатные микросферы, выделенные из летучей золы от сжигания каменных углей, смешанные со смачивающим агентом и силикатным связующим и спеченные при температуре выше 800oС (разработка НИУ "Института Химии и Химической Технологии" СО РАН, ФГУП "Горно-Химический Комбинат" и ГУП "Научно- производственное объединение "Радиевый институт им. В.Г.Хлопина": патент РФ №2165110, патент РФ №2196119).

Кажущаяся плотность полученной "губки" составляет 0,40..0,44 г/см3, открытая пористость - 50..55%, предел прочности при сжатии - до 1,6 МПа, удельная поверхность - 180 м2/г; коэффициент газопроницаемости 0,03 мм2. Предельная сорбционная емкость, рассчитанная по оксиду цезия, составляет 0,2 г/г фильтра (Баранов С. В. Баторшин Г.Ш., Максименко А.Д., Сизов П.В., Алой А.С., Стрельников А.В., Гаспарян М.Д., Грунский В.Н., Беспалов А.В. Алюмосиликатные фильтры для высокотемпературной хемосорбции паров цезия //Вопросы радиационной безопасности. - 2013. №1. - С.3-12).

Известен способ получения алюмосиликатного фильтра с разупорядоченной структурой для высокотемпературной хемосорбции паров изотопов цезия (патент РФ №2498430 «Алюмосиликатный фильтр для высокотемпературной хемосорбции паров изотопов цезия» /Алой А.С., Стрельников А.В., Соколов В.И., Баранов С. В., Максименко А.Д., Сизов П.В.). Алюмосиликатный фильтр с разупорядоченной структурой имеет открытую пористость 73..84 об.%, удельную поверхность 78..101 м2/г и предел прочности при сжатии - 1,1..3,7 МПа. Фильтр выполнен из пористого шамота (ПШ) - легковесного огнеупорного кирпича ШЛ-0,4 [ГОСТ 5040-96] с различной степенью дополнительной термообработки при температурах 1350..1500 оС. Коэффициент газопроницаемости таких фильтров составляет 0,65..0,68 мм2, сорбционная емкость находится в интервале 0,1..0,3 г Cs2O/г фильтра.

При удовлетворительной сорбционной емкости (до 0,3 г Cs2O/г фильтра) общими недостатками указанных фильтров являются относительно высокая плотность (0,4..0,55 г/см3), низкий коэффициент газопроницаемости (0,03..0,68 мм2), относительно низкая открытая пористость (50...84%), удельная поверхность (80..180 м2/г) и механическая прочность (предел прочности при сжатии - 1,1..3,7 МПа). В результате в процессе насыщения цезием при загрузках выше предельной емкости из-за отсутствия жесткого, инертного к его парам каркаса происходит деформация (разбухание) фильтра вплоть до разрушения и, как следствие, возникают проблемы при извлечении фильтров из реакционной зоны, транспортировке и длительном хранении. Для фильтров из керамической губки и пористого шамота эти нежелательные явления обнаруживаются при степени насыщения цезием 0,18-0,20 г Cs2O /г фильтра.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразных радиоактивных вредных веществ (Патент РФ №2474558 «Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразных радиоактивных и вредных веществ » /Гаспарян М.Д., Козлов И.А., Грунский В.Н., Беспалов А.В., Глаговский Э.М.), который заключается в пропитке полиуретановой матрицы ячеистой структуры керамическим шликером, состоящим из инертного наполнителя - электроплавленного корунда, дисперсного порошка оксида алюминия и раствора поливинилового спирта (ПВС), сушке и обжиге полученной корундовой матрицы и нанесении активной композиции следующего состава: алюмозоль - 20-80 мас. %, кремнезоль - 80-20 мас. %, - в количестве 5-20 мас. % от массы матрицы.

Полученные фильтры-сорбенты имеют высокую открытую пористость (до 88%), предел прочности при сжатии (до 2,5 МПа), удельную поверхность активного слоя (250-350 м2/г) и коэффициент газопроницаемости (20..30 мм2), однако в процессе высокотемпературной (700-1000 ºС) хемосорбции паров цезия они имеют относительно низкую сорбционную емкость по оксиду цезия до начала проскока - 0,05..0,12 г Cs2O/г фильтра.

Сущность и отличие заявляемого технического решения заключается в способе получения керамических блочно-ячеистых фильтров-сорбентов газообразного радиоактивного цезия с повышенной сорбционной емкостью за счет увеличения содержания сорбционно-активного слоя и оптимизации его состава и структуры при сохранении высокой пористости, газопроницаемости и механической прочности.

Для достижения указанного технического результата предлагается способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразного радиоактивного цезия, заключающийся в следующем.

Высокопористый ячеистый материал (ВПЯМ) изготавливают методом воспроизведения структуры ретикулированного пенополиуретана (ППУ), пропитывая блоки, вырезанные из ППУ, шликером, содержащим инертный наполнитель - электроплавленый корунд, дисперсный порошок оксида алюминия и раствор поливинилового спирта, с последующей сушкой и обжигом в интервале температур 1450..1550 оС. В результате такой обработки органическая основа выгорает полностью и получается высокопористый блочно-ячеистый керамический каркас с общей открытой пористостью не менее 85..90%.

Для эффективной высокотемпературной хемосорбции паров изотопов цезия на полученный корундовый (на основе α-Al2O3) каркас со средним размером ячейки 0,5..1,5 мм методом многократной пропитки (от 1 до 3 раз) и последовательной термообработки в интервале температур 600..700ºС наносится сорбционно-активная композиция следующего состава (по сухому веществу): алюмозоль - 30..35 мас. %, кремнезоль - 70..65 мас. %, приближенного к стехиометрическому соотношению оксидов алюминия и кремния в наиболее устойчивом алюмосиликате цезия - поллуците (CsAlSi2O6). Для улучшения условий сцепления с корундовым каркасом и припекания активного слоя, увеличения его общей пористости и удельной поверхности в состав композиции вводится 0,3-0,8 мас. % по отношению к сухому веществу (суммарному содержанию оксидов алюминия и кремния) временной технологической связки - поливинилового спирта (ПВС), выгорающей в процессе термообработки. Перед каждой операцией пропитки проводили вакуумирование образцов.

Реализованные составы сорбционно-активного слоя и характеристики полученных фильтров-сорбентов приведены в примерах.

Пример 1.

Образцы керамических высокопористых блочно-ячеистых фильтров-сорбентов размерами 30..35 мм (диаметр) × 10..15 мм (высота) получали по шликерной технологии методом воспроизведения структуры исходных блоков ППУ с последующей сушкой и обжигом в интервале температур 1450..1550оС и дальнейшим нанесением на полученный корундовый каркас со средним размером ячейки 0,5..1,5 мм сорбционно-активной композиции методом последовательной пропитки, вакуумирования и последовательной термообработки при температуре 600ºС. Состав сорбционно-активной композиции по сухому веществу: γ-Al2O3 - 30 мас.%, SiO2 - 70 мас.%, ПВС - 0,3 мас.%. Содержание активной композиции после окончания цикла термообработки составляет 21 мас.% от массы корундовой матрицы. Открытая пористость образцов - 90 об.%, механическая прочность 2,5 МПа, удельная поверхность - 300 м2/г.

Сорбционную емкость образцов фильтров-сорбентов определяли при кальцинации стабильного CsNО3 в статическом режиме в лабораторной муфельной печи при t=1000°С. Алундовые тигли с CsNO3 помещали в алундовые стаканы, на которые устанавливали испытуемые и контрольные образцы фильтров-сорбентов. Через каждые 10 часов протекания процесса хемосорбции паров цезия в воздушной среде печи образцы фильтров-сорбентов взвешивали для определения степени их насыщения цезием (испытуемые) и контроля проскока цезия (контрольные). Эксперимент проводили до заметного проскока цезия через испытуемые образцы. Сорбционная емкость образцов фильтров-сорбентов, рассчитанная по оксиду цезия, в течение времени τ=40 ч составила 0,16 г Cs2O/г фильтра-сорбента.

Пример 2.

Методика изготовления образцов фильтров-сорбентов аналогична методике, изложенной в примере 1.

Состав сорбционно-активной композиции по сухому веществу: γ-Al2O3 - 30 мас.%, SiO2 - 70 мас.%, ПВС - 0,5 мас.%. Содержание активной композиции после термообработки при температуре 600ºС составляет 29 мас.% от массы корундовой матрицы. Открытая пористость образцов - 88 об.%, механическая прочность 3,0 МПа, удельная поверхность - 320 м2/г.

Сорбционная емкость образцов фильтров-сорбентов в аналогичных условиях эксперимента в течение времени τ=60 ч составила 0,20 г Cs2O/г фильтра-сорбента.

Пример 3.

Методика изготовления образцов фильтров-сорбентов аналогична методике, изложенной в примере 1.

Состав сорбционно-активной композиции по сухому веществу: γ-Al2O3 - 35 мас.%, SiO2 - 65 мас.%, ПВС - 0,5 мас.%. Содержание активной композиции после термообработки при температуре 650ºС составляет 37 мас.% от массы корундовой матрицы. Открытая пористость образцов - 86 об.%, механическая прочность 3,5 МПа, удельная поверхность - 340 м2/г.

Сорбционная емкость образцов фильтров-сорбентов в аналогичных условиях эксперимента в течение времени τ=60 ч составила 0,25 г Cs2O/г фильтра-сорбента.

Пример 4.

Методика изготовления образцов фильтров-сорбентов аналогична

методике, изложенной в примере 1.

Состав сорбционно-активной композиции по сухому веществу: γ-Al2O3 - 35 мас.%, SiO2 - 65 мас.%, ПВС - 0,8 мас.%. Содержание активной композиции после термообработки при температуре 700ºС составляет 45 мас.% от массы корундовой матрицы. Открытая пористость образцов - 85 об.%, механическая прочность 4,0 МПа, удельная поверхность - 360 м2/г.

Сорбционная емкость образцов фильтров-сорбентов в аналогичных условиях эксперимента в течение времени τ=90 ч составила 0,32 г Cs2O/г фильтра-сорбента.

Испытанные образцы фильтров-сорбентов характеризуются высокой открытой пористостью - 85..90 об.%, механической прочностью (предел прочности при сжатии 2,5..4,0 МПа), удельной поверхностью - 300..360 м2/г; кажущаяся плотность фильтров-сорбентов - 0,35..0,40 г/см3, коэффициент газопроницаемости - не менее 20 мм2. Суммарное количество нанесенной сорбционно-активной композиции составляет 21..45 мас.% от массы матрицы. При таком ее содержании сорбционная емкость возрастает в 2 - 2,6 раза и составляет 0,16..0,32 г Cs2O/г фильтра-сорбента.

При дальнейшем увеличении содержания сорбционно-активного слоя (свыше 45 масс.% от массы каркаса) заметно снижается размер ячеек, увеличивается плотность и газодинамическое сопротивление.

Данные РФА и микроанализа образцов после хемосорбции газообразного цезия подтверждают образование в сорбционно-активном слое, состоящем из аморфных γ - оксида алюминия (γ-Al2O3) и кремнезема (SiO2) в заданном соотношении 30..35: 70..65 мас.%, основной фазы - поллуцита при незначительном количестве кальсилита.

Образцы фильтров-сорбентов сохраняют ячеистую проницаемую структуру после насыщения парами цезия и имеют достаточную механическую прочность для транспортирования, дальнейшего хранения и последующей иммобилизации.

Применение предлагаемого изобретения позволяет получить новый тип керамических фильтров-сорбентов радиоактивного цезия с высокой сорбционной емкостью, механической прочностью, газопроницаемостью и рекомендовать их применение в процессах обращения с газообразными радиоактивными отходами, образующимися при регенерации облученного ядерного топлива, при отверждении жидких высокоактивных отходов и в системе газоочистки производства цезиевых источников ионизирующего излучения.

Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразного радиоактивного цезия, включающий пропитку полиуретановой матрицы ячеистой структуры шликером, состоящим из инертного наполнителя - электроплавленного корунда, дисперсного порошка оксида алюминия и раствора поливинилового спирта, сушку и обжиг, нанесение на корундовую высокопористую блочно-ячеистую матрицу со средним размером ячейки 0,5-1,5 мм методом многократной пропитки и термообработки активной композиции, отличающийся тем, что сорбционно-активная композиция наносится на корундовую высокопористую блочно-ячеистую матрицу в количестве 21-45 мас.% от массы матрицы из смеси алюмозоля и кремнезоля, взятых в соотношении оксидов алюминия и кремния 30-35:70-65 мас.%, с добавлением 0,3-0,8 мас.% поливинилового спирта по отношению к сухому веществу композиции при термообработке в интервале температур 600-700С.
Источник поступления информации: Роспатент

Showing 51-53 of 53 items.
04.04.2018
№218.016.2f08

Композиция для химического серебрения керамических материалов

Изобретение предназначено для химического серебрения керамических материалов. Композиция для химического серебрения керамических материалов содержит нитрат серебра, глюкозу, гидроксид калия, оксиэтилендифосфоновую кислоту, нитрат церия при следующем содержании компонентов, г/л: нитрат серебра –...
Тип: Изобретение
Номер охранного документа: 0002644462
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.34ec

Насыпная насадка для массообменных колонн

Изобретение относится к области процессов и аппаратов химической технологии, а именно к насыпным насадкам для массообменных колонн, и может быть использовано в качестве контактного устройства в химико-технологических процессах ректификации, абсорбции, химического обмена и пр., осуществляемых в...
Тип: Изобретение
Номер охранного документа: 0002646076
Дата охранного документа: 01.03.2018
20.03.2019
№219.016.e3b1

Установка для получения из облученного ядерного топлива диоксида плутония, пригодного для приготовления мох-топлива

Изобретение относится к области обращения с отработавшим ядерным топливом. Сущность изобретения: установка для получения из облученного ядерного топлива диоксида плутония, пригодного для приготовления МОХ-топлива, содержит аппарат для осаждения оксалата плутония, патронный фильтр и печь для...
Тип: Изобретение
Номер охранного документа: 0002285301
Дата охранного документа: 10.10.2006
Showing 51-60 of 60 items.
20.02.2019
№219.016.c1dd

Адаптивная система управления исполнительными устройствами объектов теплоснабжения жилищно-коммунального хозяйства

Изобретение относится к системам теплоснабжения городов и других населенных пунктов и может быть использовано для автоматического учета и регулирования расхода тепла в системах теплоснабжения. Технический результат - повышение эффективности регулирования тепловых потоков по территориально...
Тип: Изобретение
Номер охранного документа: 0002425292
Дата охранного документа: 27.07.2011
20.02.2019
№219.016.c270

Способ автоматического установления местоположения лесного пожара

Способ автоматического установления местоположения лесного пожара, преимущественно на торфяниках, при котором выделяют наиболее пожароопасные участки торфяников, размещают по площади участков вертикальные скважины с установкой в них перфорированных труб, фиксируют их координаты на лесопожарной...
Тип: Изобретение
Номер охранного документа: 0002457875
Дата охранного документа: 10.08.2012
10.04.2019
№219.016.fff4

Способ получения концентрата радионуклида молибден-99

Изобретение относится к области химической технологии производства радиоактивных изотопов медицинского назначения. Молибден-99 в течение последних 30 лет является наиболее используемым в радиоизотопной диагностике радионуклидом. Сущность изобретения: в качестве сорбента для выделения...
Тип: Изобретение
Номер охранного документа: 0002288516
Дата охранного документа: 27.11.2006
19.04.2019
№219.017.2bba

Способ извлечения серебра из отработанных сорбентов, содержащих йод-129

Изобретение относится к области переработки и утилизации твердых радиоактивных отходов радиохимических предприятий атомной промышленности, в частности к способу иммобилизации йода-129 и извлечению серебра из отработанных сорбентов, которое может быть использовано для изготовления йодного...
Тип: Изобретение
Номер охранного документа: 0002277599
Дата охранного документа: 10.06.2006
19.06.2019
№219.017.86d8

Способ и реактор для взаимодействия газообразных водорода и кислорода

Изобретение относится к реактору для взаимодействия газообразного водорода и кислорода и к способу осуществления реакции газообразных водорода и кислорода и может быть использовано в процессах для производства дейтерированной воды и при удалении трития из воды. Способ включает смешение водорода...
Тип: Изобретение
Номер охранного документа: 0002384521
Дата охранного документа: 20.03.2010
19.06.2019
№219.017.86eb

Контейнер для водорода и его изотопов

Изобретение относится к средствам для очистки, хранения и подачи газов преимущественно водорода и его изотопов, а также гелия, аргона и других газов. Контейнер включает водоохлаждаемый герметичный корпус, выполненный в виде обечайки цилиндрической формы с фланцем, размещенной внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002383955
Дата охранного документа: 10.03.2010
06.10.2019
№219.017.d325

Способ получения монофазных солей актинидов и устройство для их получения

Изобретение относится к области ядерной энергетики, в частности к получению монофазных порошков солей актинидов, которые являются прекурсорами при создании таблеток ядерного топлива. Способ получения монофазных порошков солей актинидов включает непрерывное дозирование азотнокислого...
Тип: Изобретение
Номер охранного документа: 0002702095
Дата охранного документа: 04.10.2019
22.01.2020
№220.017.f812

Способ получения коллоидного раствора наночастиц серебра с экстрактами листьев растений

Настоящее изобретение относится к области биохимических методов получения коллоидных растворов наночастиц серебра (Ag-НЧ) с использованием экстрактов листьев растений. Описан способ получения коллоидного раствора наночастиц серебра с экстрактами листьев растений, включающий замачивание листьев...
Тип: Изобретение
Номер охранного документа: 0002711559
Дата охранного документа: 17.01.2020
28.03.2020
№220.018.110b

Композиционный материал для сорбционной очистки воздуха от летучих форм радиоактивного иода

Изобретение относится к атомной энергетике и предназначено для очистки воздуха от газообразных соединений радиоактивного иода, в первую очередь его органических форм при очистке и контроле газообразных радиоактивных отходов. Композиционный материал представляет собой пористую полиуретановую...
Тип: Изобретение
Номер охранного документа: 0002717818
Дата охранного документа: 25.03.2020
06.06.2023
№223.018.77f7

Способ приготовления гидрозоля

Изобретение относится к коллоидной химии, а более конкретно, к электроэрозионной обработке жидкости серией быстротекущих электрических разрядов между электродами с образованием взвеси наночастиц их материалов, характеризующейся биоцидными свойствами. При приготовлении гидрозоля осуществляют...
Тип: Изобретение
Номер охранного документа: 0002780652
Дата охранного документа: 28.09.2022
+ добавить свой РИД