×
27.11.2015
216.013.9380

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ИОННОЙ ТЕМПЕРАТУРЫ ВОДОРОДНОЙ ПЛАЗМЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится способу измерения пространственного распределения ионной температуры водородной плазмы и характеризуется тем, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы, калиброванным многоканальным анализатором, каждый канал которого регистрирует атомы определенной энергии. Каждому зарегистрированному атому соответствует электрический импульс на выходе анализатора, и одновременно регистрируют фотоны спектрально-селективным прибором (ССП), имеющим с анализатором общий входной коллиматор. При этом регистрируют атомы с энергией Е i-м каналом анализатора и регистрируют фотоны с длиной волны λ-Δλ i-м каналом ССП, где λ - длина волны водородной линии, излучающейся покоящимся атомом, a Δλ - смещение длины волны, обусловленное эффектом Доплера для энергии Е. Возникшие электрические импульсы с выхода детектора совпадений подают на счетчик импульсов и по соотношению количества импульсов, зарегистрированных в различных каналах анализатора, определяют энергетическое распределение атомов перезарядки и соответственно ионную температуру Т в данном ЛОИ. Далее получают значения T(j) для j локальных областей измерения и зависимость T(L), где L - координата вдоль линии наблюдения, т.е. пространственное распределение ионной температуры. Технический результат изобретения заключается в обеспечении возможности измерений без использования зондирующих атомных пучков, а также в повышении достоверности и точности измерений. 3 ил.
Основные результаты: Способ измерения пространственного распределения ионной температуры водородной плазмы, заключающийся в том, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы калиброванным многоканальным анализатором, каждый канал которого регистрирует атомы определенной энергии, при этом каждому зарегистрированному атому соответствует электрический импульс на выходе анализатора, и одновременно регистрируют фотоны спектрально-селективным прибором (ССП), имеющим с анализатором общий входной коллиматор, отличающийся тем, что в качестве ССП используют многоканальный ССП, каждый канал которого регистрирует фотоны определенной длины волны и каждому зарегистрированному фотону соответствует электрический импульс на выходе соответствующего канала, при этом число каналов спектрометра равно числу каналов анализатора, при этом регистрируют атомы с энергией E i-м каналом анализатора и регистрируют фотоны с длиной волны λ-Δλ i-м каналом ССП, где λ - длина волны водородной линии, излучающейся покоящимся атомом, a Δλ - смещение длины волны, обусловленное эффектом Доплера для энергии E, электрические импульсы с i-го выхода анализатора подают на один из входов детектора совпадений, а импульсы с i-го выхода ССП подают на другой вход детектора совпадений через блок задержки, при этом время задержки устанавливают согласно формуле: где Δτ - время задержки;L - полная длина пути атома/иона от локального объема измерений до поверхности детектора;ν - скорость атома/иона;L - полная длина пути фотона от локального объема измерений до поверхности детектора;с - скорость света;i - номер канала анализатора и ССП;электрические импульсы с выхода детектора совпадений подают на счетчик импульсов и по соотношению количества импульсов, зарегистрированных в различных каналах анализатора, определяют энергетическое распределение атомов перезарядки и соответственно температуру Т в данном ЛОИ, устанавливая между каждыми двумя i-ми сопряженными каналами анализатора и ССП параллельно j электрических цепей, включающих блок задержки, детектор совпадений и счетчик импульсов, с разными временами задержки, получают значения Т(j) для j локальных областей измерения и зависимость T(L), где L - координата вдоль линии наблюдения, т.е. пространственное распределение ионной температуры.

Изобретение относится к области экспериментальной физики плазмы. Например, предлагаемый способ может быть применен в программе управляемого термоядерного синтеза на базе установок с магнитным удержанием плазмы, в частности токамаков. В этих экспериментах температура рабочего газа (изотопов водорода) является важнейшим параметром, поскольку именно она определяет интенсивность реакций синтеза. Ионная температура в токамаке значительно отличается в различных зонах плазмы, поэтому для работы термоядерного реактора необходимы достаточно подробные измерения пространственного распределения этой величины.

СПИСОК ИСПОЛЬЗОВАННЫХ ТЕРМИНОВ И СОКРАЩЕНИЙ

Функция распределения частиц по энергии, энергетическое распределение частиц - , где n - концентрация частиц, E - энергия.

Полный объем измерений, ПОИ - объем плазмы, частицы из которого, двигающиеся по прямолинейным траекториям, могут при определенном направлении вектора скорости быть зарегистрированы; для коллиматора, образованного двумя прямоугольными отверстиями - это пирамида (пирамида наблюдения), усеченная ближней к коллиматору и удаленной от него поверхностями плазмы.

Линия наблюдения - прямая, проходящая через центры отверстий коллиматора.

Калибровка - процесс измерения характеристик (эффективности регистрации, диапазона измеряемых параметров частиц, аппаратной функции, динамического диапазона и т.д.) прибора.

Спектрально-селективный прибор, ССП - прибор, позволяющий выделить и зарегистрировать фотоны одной (одноканальный ССП, монохроматор) или нескольких (напр. спектрометр, спектрограф, полихроматор) областей спектра.

Локальный объем измерений, ЛОИ - часть полного объема наблюдения, заключенного между двумя сферическими поверхностями, центры которых расположены на оси наблюдения посередине между диафрагмами коллиматора; радиусы поверхностей определяются параметрами схемы регистрации электрических импульсов.

Сопряженные каналы анализатора и ССП - каналы, имеющие одинаковые номера i и приведенные в соответствие между собой согласно следующему правилу: i-м каналом анализатора регистрируют атомы с энергией Ei, а i-м каналом спектрометра - фотоны с длиной волны λ0-Δλi, где λ0 - длина волны водородной линии, излучающейся покоящимся атомом, а Δλi - смещение длины волны, обусловленное эффектом Доплера для энергии Ei.

Известен способ измерения пространственного распределения ионной температуры водородной плазмы [В.В. Афросимов, М.П. Петров, В.А. Садовников. Измерение локальных значений ионной температуры в токамаке с использованием перезарядки ионов плазмы на струе водородных атомов. Письма в ЖЭТФ, 1973, т. 18, с. 510], заключающийся в том, что измеряют энергетическое распределение атомов перезарядки термализованных ионов плазмы на атомах водорода; поскольку передача энергии в этом процессе, как правило, пренебрежимо мала по сравнению с энергией регистрируемых атомов, можно считать, что температура атомов перезарядки, рождающихся в некотором объеме плазмы, равна ионной температуре в том же объеме;

энергетическое распределение измеряют калиброванным многоканальным анализатором, каждый канал которого регистрирует атомы определенной энергии;

при этом каждому зарегистрированному атому соответствует электрический импульс на выходе соответствующего канала;

по соотношению числа импульсов на выходе различных каналов, используя характеристики, полученные при калибровке анализатора, и некоторые данные других диагностик, определяют энергетическое распределение атомов перезарядки и соответственно пространственного распределения ионной температуры водородной плазмы;

для получения локальных измерений используют пучок водородных атомов, пересекающий объем наблюдения анализатора. До и после инжекции измеряется «пассивный» сигнал, а во время инжекции - «суммарный» («пассивный» + «активный»); вычитая из «суммарного» энергетического спектра «пассивный» можно определить распределение по энергиям только тех атомов, которые образуются при перезарядке термализованных ионов плазмы на атомах пучка, и получить энергетическое распределение атомов (а следовательно, и ионов плазмы) именно для объема пересечения пучка с полным объемом наблюдения анализатора;

усредняя «активное» энергетическое распределение, определяют температуру атомов перезарядки, а следовательно, и ионов плазмы в объеме пересечения пучка и линии наблюдения анализатора;

одновременно спектрально-селективным прибором (ССП) измеряют яркость одной из линий бальмеровской серии; результаты этих измерений используются только для того, чтобы измерить параметры инжектируемого пучка.

Этот способ выбран в качестве прототипа предлагаемого решения.

Описанный способ обладает следующими недостатками.

Первый недостаток связан с необходимостью применения сложных, дорогостоящих и, как правило, недостаточно надежных инжекторов атомов.

Второй недостаток заключается в том, что инжекция пучка атомов приводит к возмущению плазмы, поэтому измеренная ионная температура может существенно отличаться от существующей в отсутствие инжекции.

Третий недостаток состоит в том, что пространственное разрешение измерений определяется размерами пучка, уменьшать которые можно только до определенного предела из-за технических ограничений; таким образом, отсутствуют действия, позволяющие улучшить детализацию измеряемого пространственного распределения ионной температуры.

Четвертый недостаток - для каждой пространственной зоны измерений необходим отдельный анализатор; отсюда следует, что на больших установках предреакторного поколения и на реакторе нужно иметь несколько десятков анализаторов, что практически неосуществимо.

Технический результат изобретения заключается в обеспечении возможности измерений без использования зондирующих атомных пучков, а также в повышении достоверности и точности измерений.

Для этого предложен способ измерения пространственного распределения ионной температуры водородной плазмы, заключающийся в том, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы, калиброванным многоканальным анализатором, каждый канал которого регистрирует атомы определенной энергии, при этом каждому зарегистрированному атому соответствует электрический импульс на выходе анализатора, и одновременно регистрируют фотоны спектрально-селективным прибором (ССП), имеющим с анализатором общий входной коллиматор, при этом в качестве ССП используют многоканальный ССП, каждый канал которого регистрирует фотоны определенной длины волны, и каждому зарегистрированному фотону соответствует электрический импульс на выходе соответствующего канала, при этом число каналов спектрометра равно числу каналов анализатора, при этом регистрируют атомы с энергией Ei i-м каналом анализатора, и регистрируют фотоны с длиной волны λ0-Δλi i-м каналом ССП, где λ0 - длина волны водородной линии, излучающейся покоящимся атомом, а Δλi - смещение длины волны, обусловленное эффектом Доплера для энергии Ei, электрические импульсы с i-го выхода анализатора подают на один из входов детектора совпадений, а импульсы с i-го выхода ССП подают на другой вход детектора совпадений через блок задержки, при этом время задержки устанавливают согласно формуле:

где Δτ - время задержки;

Lion - полная длина пути атома/иона от локального объема измерений до поверхности детектора;

νi - скорость атома/иона;

Lfot - полная длина пути фотона от локального объема измерений до поверхности детектора;

c - скорость света;

i - номер канала анализатора и ССП;

электрические импульсы с выхода детектора совпадений подают на счетчик импульсов, по соотношению количества импульсов, зарегистрированных в различных каналах анализатора, определяют энергетическое распределение атомов перезарядки и соответственно температуру (Tion) в данном ЛОИ, и, устанавливая между каждыми двумя i-ми сопряженными каналами анализатора и ССП параллельно j электрических цепей, включающих блок задержки, детектор совпадений и счетчик импульсов, с разными временами задержки, получают значения Tion(j) в j локальных областях измерения и зависимость Tion(L), где L - координата вдоль линии наблюдения, т.е. пространственное распределение ионной температуры.

Способ основан на регистрации атомов и фотонов, рождающихся в одном и том же акте одной из ветвей реакции перезарядки термализованного иона плазмы на атоме водорода. Такой процесс протекает с образованием возбужденного атома, который за короткое время релаксирует с испусканием фотона линейчатого излучения. Вот как выглядит формула процесса для водорода:

здесь - термализованный ион плазмы; - атом остаточного водорода, всегда присутствующего в плазме за счет проникновения со стенки, электрон-ионной рекомбинации и т.д.; - вторичный ион, образовавшийся в процессе перезарядки из остаточного атома; - возбужденный атом, образовавшийся из термализованного иона; γ - фотон линейчатого излучения.

Поскольку передача энергии в этом процессе не превышает нескольких эВ, то при ионной температуре плазмы более 100-200 эВ ошибку, связанную с изменением энергии при перезарядке, можно не учитывать, т.е. полагать, что энергия возбужденного и нейтрального атомов равна энергии исходного иона плазмы. Длина волны фотона, излучаемого при релаксации возбужденного атома, будет составлять сумму длины волны линии, излучаемой покоящимся атомом, и добавки, обусловленной доплеровским смещением, определяемым скоростью движения атома перезарядки.

На фиг. 1 показан один из возможных вариантов устройства для реализации предлагаемого способа.

На фиг. 2 показана блок-схема регистрации электрических импульсов (РЭИ).

На фиг. 3 показана блок-схема регистрации электрических импульсов для измерений в М локальных объемах измерения (ЛОИ1…ЛОИМ), что достигается использованием нескольких РЭИ.

Позициями обозначены:

1 - плазма;

2 - входной коллиматор;

3 - вакуумный шибер;

4 - камера ионизации, заполненная газом;

5 - анализирующий магнит;

6 - зеркало;

7 - оптический ввод;

8 - спектрально-селективный прибор ССП;

9 - траектории ионов, образовавшихся после ионизации атомов;

10 - электрические выходы ССП;

11 - электрические выходы анализатора;

12 - анализатор атомов;

13 - БЗi - регулируемая схема задержки;

14 - ДСi - детектор совпадающих импульсов;

15 - СЧi - счетчик импульсов.

16 - РЭИ - схема регистрации электрических импульсов, включающая регулируемую схему задержки, детектор совпадающих импульсов и счетчик импульсов;

ВСi - выход i-го канала ССП;

ВАi - выход i-го канала анализатора;

РЭИij - схема регистрации электрических импульсов, включенная между выходами i-х каналов анализатора и ССП и предназначенная для измерений в локальном объеме ЛОИj, где j - от 1 до М.

Основными компонентами устройства являются энергетический анализатор атомов 12 и спектрально-селективный прибор (ССП) 8. Ближняя к устройству граница объема, занятого плазмой, обозначена цифрой 1.

На входе анализатора атомов устанавливается коллиматор 2. Для анализатора и для ССП используется общий коллиматор, представляющий собой две тонкие пластины с отверстиями прямоугольной формы; плоскости пластин перпендикулярны линии, проходящей через центры отверстий. Параметры коллиматора определяют полный объем измерений как для анализатора, так и ССП. За коллиматором располагаются вакуумный шибер 3 и камера ионизации 4, заполненная водородом, в которой часть атомов, поступающих из плазмы, превращается в ионы. Анализирующий магнит 5, напряженность магнитного поля которого направлена перпендикулярно плоскости рисунка, отклоняет ионы, образовавшиеся в камере ионизации, на разные углы, величина которых зависит от энергии ионов. Электрические импульсы, формирующиеся при регистрации ионов разной энергии в различных каналах анализатора, подаются на электрические выходы анализатора 11. За анализирующим магнитом 5 располагается металлическое зеркало 6, направляющее световое излучение плазмы через оптический ввод 7 - стеклянное вакуумное окно на вход ССП 8. В приведенной иллюстративной схеме ССП, как и анализатор, является пятиканальным, в каждом канале регистрируются фотоны разных длин волн. На практике число каналов может достигать нескольких десятков.

И анализатор, и ССП работают в режиме счета импульсов, это означает, что каждой зарегистрированной частице соответствует отдельный, короткий по сравнению со временем накопления информации, электрический импульс на одном из выходов анализатора и ССП 11 и 10 соответственно.

Перед началом измерений и анализатор, и ССП проходят процедуру калибровки; измеренные характеристики приборов используются при обработке полученных экспериментальных данных.

Каналы приборов, используемых для реализации предлагаемого способа, (сопряженные каналы) устроены таким образом, что i-му каналу анализатора, регистрирующему атомы с энергией Ei, соответствует i-й канал ССП, регистрирующий фотоны с длиной волны λ0-Δλi, где λ0 - длина волны линии, излучающейся покоящимся атомом (например, одной из линий серии Бальмера), а Δλi - смещение длины волны, обусловленное эффектом Доплера для энергии Ei, где i - номер канала от 1 до K.

Без использования дополнительных мер для обеспечения пространственного разрешения измерений как анализатор, так и спектрометр будут регистрировать атомы и фотоны, которые образовались в результате актов перезарядки, происходящих в полном объеме измерений. Однако можно проводить измерения в значительно меньшем объеме (локальном объеме измерений ЛОИ), лежащем внутри полного объема измерений, используя тот факт, что фотон и атом, родившиеся в одном и том же акте перезарядки, движутся с разными скоростями. Время задержки между импульсами, обусловленными регистрацией фотона и атома, родившихся в одном акте, известно для каждой пары сопряженных каналов и составляет:

где Δτ - время задержки; Lion - полная длина пути атома/иона от локального объема измерений до поверхности детектора; vi - скорость атома/иона; Lfot - полная длина пути фотона от локального объема измерений до поверхности детектора; c - скорость света.

Таким образом, можно регистрировать только те пары электрических импульсов, возникающих при регистрации фотонов и атомов в i-х каналах ССП и анализатора, временной сдвиг которыми составляет Δτ; в этом случае существует вероятность того, что и фотон, и атом родились в одном и том же акте перезарядки. Для снижения помехи, связанной с совпадением случайных импульсов, скважность в каналах как анализатора, так и ССП не должна быть менее 8…10. Таким образом, задавая Δτ, можно измерить потоки атомов перезарядки, имеющих различные энергии, из любого локального объема измерения вдоль линии наблюдения.

На фиг. 2 показана блок-схема регистрации электрических импульсов 16 (РЭИ), на которую подаются сигналы с выходов i-х каналов анализатора ВАi и ССП ВСi. Основой схемы является детектор совпадающих импульсов - детектор совпадений 14 ДСi. Импульсы с анализатора поступают в ДСi непосредственно, а с ССП через регулируемый блок задержек 13 БЗi. Блок ДСi выдает импульс на счетчик импульсов 15 СЧi только в том случае, когда импульсы присутствуют одновременно на обоих его входах.

Описанная схема позволяет измерить потоки атомов и фотонов только из одного локального объема измерений. Для одновременного измерения в нескольких локальных объемов достаточно включить между выходами сопряженных каналов анализатора и ССП параллельно М аналогичных схем РЭИ 16 задержки Δτij, каждая из которых настроена для измерений в определенном локальном объеме измерений j (фиг. 3, Блок-схема регистрации в М локальных объемах измерения). На фиг. 3 ВСi - выход i-го канала ССП; ВАi - выход i-го канала анализатора. Блоки задержки в цепях РЭИi1…РЭИiM настроены для измерений в различных локальных объемах плазмы ЛОИj…ЛОИМ вдоль линии наблюдения, т.е. установлены разные времена задержки.

В результате эксперимента получают последовательности количества зарегистрированных в каналах анализатора импульсов N для каждого из локальных объемов измерений j. Обработка данных для получения локальной температуры плазмы Tion(j) проводится с учетом характеристик, полученных в процессе калибровки приборов и некоторых данных других диагностик. Методика алгоритма обработки аналогична таковой, используемой для активной корпускулярной диагностики [В.В. Афросимов, М.П. Петров, В.А. Садовников. Измерение локальных значений ионной температуры в токамаке с использованием перезарядки ионов плазмы на струе водородных атомов. Письма в ЖЭТФ, 1973, т. 18, с. 510.1] и подробно описана в (Ю.В. Готт, В.А. Курнаев, О.Л. Вайнсберг, Корпускулярная диагностика лабораторной и космической плазмы, Учебное пособие, Московский инженерно-физический институт (Государственный университет), 2008, 143 с.). После чего переходят от ряда значений Tion(j) к зависимости Tion(L), где L - координата вдоль линии наблюдения, т.е. к пространственному распределению ионной температуры.

Способ измерения пространственного распределения ионной температуры водородной плазмы, заключающийся в том, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы калиброванным многоканальным анализатором, каждый канал которого регистрирует атомы определенной энергии, при этом каждому зарегистрированному атому соответствует электрический импульс на выходе анализатора, и одновременно регистрируют фотоны спектрально-селективным прибором (ССП), имеющим с анализатором общий входной коллиматор, отличающийся тем, что в качестве ССП используют многоканальный ССП, каждый канал которого регистрирует фотоны определенной длины волны и каждому зарегистрированному фотону соответствует электрический импульс на выходе соответствующего канала, при этом число каналов спектрометра равно числу каналов анализатора, при этом регистрируют атомы с энергией E i-м каналом анализатора и регистрируют фотоны с длиной волны λ-Δλ i-м каналом ССП, где λ - длина волны водородной линии, излучающейся покоящимся атомом, a Δλ - смещение длины волны, обусловленное эффектом Доплера для энергии E, электрические импульсы с i-го выхода анализатора подают на один из входов детектора совпадений, а импульсы с i-го выхода ССП подают на другой вход детектора совпадений через блок задержки, при этом время задержки устанавливают согласно формуле: где Δτ - время задержки;L - полная длина пути атома/иона от локального объема измерений до поверхности детектора;ν - скорость атома/иона;L - полная длина пути фотона от локального объема измерений до поверхности детектора;с - скорость света;i - номер канала анализатора и ССП;электрические импульсы с выхода детектора совпадений подают на счетчик импульсов и по соотношению количества импульсов, зарегистрированных в различных каналах анализатора, определяют энергетическое распределение атомов перезарядки и соответственно температуру Т в данном ЛОИ, устанавливая между каждыми двумя i-ми сопряженными каналами анализатора и ССП параллельно j электрических цепей, включающих блок задержки, детектор совпадений и счетчик импульсов, с разными временами задержки, получают значения Т(j) для j локальных областей измерения и зависимость T(L), где L - координата вдоль линии наблюдения, т.е. пространственное распределение ионной температуры.
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ИОННОЙ ТЕМПЕРАТУРЫ ВОДОРОДНОЙ ПЛАЗМЫ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ИОННОЙ ТЕМПЕРАТУРЫ ВОДОРОДНОЙ ПЛАЗМЫ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ИОННОЙ ТЕМПЕРАТУРЫ ВОДОРОДНОЙ ПЛАЗМЫ
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ИОННОЙ ТЕМПЕРАТУРЫ ВОДОРОДНОЙ ПЛАЗМЫ
Источник поступления информации: Роспатент

Showing 31-40 of 562 items.
20.08.2013
№216.012.6234

Электродвигатель

Изобретение относится к области электротехники, в частности к исполнительным электромагнитным механизмам систем автоматики. Предлагаемый электродвигатель содержит ротор с радиально намагниченными полюсными постоянными магнитами, число пар полюсов которого больше двух, и статор, включающий...
Тип: Изобретение
Номер охранного документа: 0002490772
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.65aa

Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора

Изобретение относится к области термоядерного синтеза. Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора содержит упругую полую опору с фланцами, одним из которых опора соединена с вакуумным корпусом, а другим фланцем связана с модулем посредством компенсатора...
Тип: Изобретение
Номер охранного документа: 0002491663
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.6781

Способ переработки металлических бериллиевых отходов

Изобретение относится к переработке бериллийсодержащих металлических отходов. Способ включает растворение металлических бериллиевых отходов в щелочном растворе в присутствии нитрата натрия или калия. Вводят в процесс азотную кислоту в количестве 2,09-2,26 моль/моль бериллия. Азотная кислота...
Тип: Изобретение
Номер охранного документа: 0002492144
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.680a

Способ нанесения защитного покрытия на изделия из стали или титана

Изобретение относится к области машиностроения, а именно к химико-термической обработке изделий из стали или титана, и может быть использовано для нанесения защитного покрытия на детали, работающие в условиях воздействия агрессивных сред, высоких температур. Осуществляют подготовку защищаемой...
Тип: Изобретение
Номер охранного документа: 0002492281
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.68b1

Устройство для контроля процесса деградации защитных покрытий

Изобретение относится к испытательной технике, а именно к устройствам для контроля процесса деградации защитных гальванических и лакокрасочных покрытий, находящихся в эксплуатационных условиях под действием внешней агрессивной среды. Устройство содержит нижнее основание, установленную на нем...
Тип: Изобретение
Номер охранного документа: 0002492448
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6b3e

Способ разделения циркония и гафния

Изобретение относится к технологии редких металлов, в частности к гидрометаллургии циркония и гафния. Способ разделения циркония и гафния включает получение гидроксидов циркония и гафния при температуре, не превышающей 30-35°С, обезвоживание полученных гидроксидов циркония и гафния, растворение...
Тип: Изобретение
Номер охранного документа: 0002493105
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d05

Система контроля кислорода и водорода в газовых средах

Изобретение относится к устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в атомной энергетике, транспортном, химическом машиностроении и других отраслях техники, например, для контроля водородной...
Тип: Изобретение
Номер охранного документа: 0002493560
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d5a

Генератор акустических шумов

Изобретение относится к электронным устройствам и может быть использовано для защиты информации по акустическим каналам. Достигаемым техническим результатом является возможность формирования низкочастотного сигнала с расширенным частотным диапазоном и улучшенными характеристиками...
Тип: Изобретение
Номер охранного документа: 0002493645
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.70a8

Лазерный источник ионов с активной системой инжекции

Изобретение относится к источникам ионов, предназначенным для ускорителей заряженных частиц. Заявленное изобретение характеризуется подачей на ускоряющий электрод ионно-оптической системы, размещенный между выходом пролетного канала и другим ускоряющим электродом, установленным в системе...
Тип: Изобретение
Номер охранного документа: 0002494491
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.727b

Способ получения фторида бериллия

Изобретение может быть использовано в химической промышленности. Фторид бериллия получают растворением материалов, содержащих бериллий, в плавиковой кислоте. В исходный раствор перед выпариванием вносят фторид аммония в количестве, обеспечивающем мольное отношение фтора к бериллию в пределах...
Тип: Изобретение
Номер охранного документа: 0002494964
Дата охранного документа: 10.10.2013
Showing 31-40 of 411 items.
20.08.2013
№216.012.6234

Электродвигатель

Изобретение относится к области электротехники, в частности к исполнительным электромагнитным механизмам систем автоматики. Предлагаемый электродвигатель содержит ротор с радиально намагниченными полюсными постоянными магнитами, число пар полюсов которого больше двух, и статор, включающий...
Тип: Изобретение
Номер охранного документа: 0002490772
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.65aa

Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора

Изобретение относится к области термоядерного синтеза. Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора содержит упругую полую опору с фланцами, одним из которых опора соединена с вакуумным корпусом, а другим фланцем связана с модулем посредством компенсатора...
Тип: Изобретение
Номер охранного документа: 0002491663
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.6781

Способ переработки металлических бериллиевых отходов

Изобретение относится к переработке бериллийсодержащих металлических отходов. Способ включает растворение металлических бериллиевых отходов в щелочном растворе в присутствии нитрата натрия или калия. Вводят в процесс азотную кислоту в количестве 2,09-2,26 моль/моль бериллия. Азотная кислота...
Тип: Изобретение
Номер охранного документа: 0002492144
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.680a

Способ нанесения защитного покрытия на изделия из стали или титана

Изобретение относится к области машиностроения, а именно к химико-термической обработке изделий из стали или титана, и может быть использовано для нанесения защитного покрытия на детали, работающие в условиях воздействия агрессивных сред, высоких температур. Осуществляют подготовку защищаемой...
Тип: Изобретение
Номер охранного документа: 0002492281
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.68b1

Устройство для контроля процесса деградации защитных покрытий

Изобретение относится к испытательной технике, а именно к устройствам для контроля процесса деградации защитных гальванических и лакокрасочных покрытий, находящихся в эксплуатационных условиях под действием внешней агрессивной среды. Устройство содержит нижнее основание, установленную на нем...
Тип: Изобретение
Номер охранного документа: 0002492448
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6b3e

Способ разделения циркония и гафния

Изобретение относится к технологии редких металлов, в частности к гидрометаллургии циркония и гафния. Способ разделения циркония и гафния включает получение гидроксидов циркония и гафния при температуре, не превышающей 30-35°С, обезвоживание полученных гидроксидов циркония и гафния, растворение...
Тип: Изобретение
Номер охранного документа: 0002493105
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d05

Система контроля кислорода и водорода в газовых средах

Изобретение относится к устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в атомной энергетике, транспортном, химическом машиностроении и других отраслях техники, например, для контроля водородной...
Тип: Изобретение
Номер охранного документа: 0002493560
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d5a

Генератор акустических шумов

Изобретение относится к электронным устройствам и может быть использовано для защиты информации по акустическим каналам. Достигаемым техническим результатом является возможность формирования низкочастотного сигнала с расширенным частотным диапазоном и улучшенными характеристиками...
Тип: Изобретение
Номер охранного документа: 0002493645
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.70a8

Лазерный источник ионов с активной системой инжекции

Изобретение относится к источникам ионов, предназначенным для ускорителей заряженных частиц. Заявленное изобретение характеризуется подачей на ускоряющий электрод ионно-оптической системы, размещенный между выходом пролетного канала и другим ускоряющим электродом, установленным в системе...
Тип: Изобретение
Номер охранного документа: 0002494491
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.727b

Способ получения фторида бериллия

Изобретение может быть использовано в химической промышленности. Фторид бериллия получают растворением материалов, содержащих бериллий, в плавиковой кислоте. В исходный раствор перед выпариванием вносят фторид аммония в количестве, обеспечивающем мольное отношение фтора к бериллию в пределах...
Тип: Изобретение
Номер охранного документа: 0002494964
Дата охранного документа: 10.10.2013
+ добавить свой РИД