×
20.11.2015
216.013.9361

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области физико-химического анализа, а именно к измерению удельной поверхности (УП) дисперсных, пористых и компактных материалов. Предварительно перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продувают инертным газом и вакуумируют. Далее для обеспечения сорбции температуру камеры с источником поддерживают на уровне 500÷550°C, температуру камеры с исследуемым материалом поддерживают на 20÷30°C выше температуры камеры с источником. Затем обе камеры повторно продувают инертным газом и вакуумируют. А далее проводят десорбцию серебра селективным растворителем при комнатной температуре с дальнейшим анализом количества серебра в растворе спектральным методом. При этом, например, в качестве селективного растворителя можно использовать одномолярную азотную кислоту. А в качестве спектрального метода используют метод индуктивно-связанной плазмы. Процесс сорбции проводят в течение 15-30 минут. Задача и достигаемый при использовании изобретения технический результат - повышение точности измерения УП дисперсных, пористых и компактных материалов с одновременным расширением диапазона измерения УП от 10 м/г до 10 м/г. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области физико-химического анализа, а именно - к измерению удельной поверхности (УП) дисперсных, пористых и компактных материалов.

Многочисленные методы измерения УП дисперсных и пористых материалов, основанные на сорбции газов (азота, аргона) на дисперсные и пористые материалы с последующей десорбцией и определением десорбированного газа в смеси с газом-носителем детектором по теплопроводности, предназначены для определения УП на уровне 0,1÷1000 м2/г. Компактные материалы имеют УП на один-два порядка меньше и для того, чтобы получить заметный пик десорбированного газа в детекторе по теплопроводности, необходимо стандартную пробу (~1 мг) увеличивать в 100÷1000 раз. При этом в процессе десорбции, связанном с резким нагревом пробы, последняя прогревается длительное время, десорбированный газ поступает в детектор медленно (более 10 с) и пик анализируемого газа размазывается, что приводит к резкому росту погрешности измерений (от 2÷5% до 20÷40%).

Актуальность определения УП компактных материалов объясняется тем, что в гетерогенных химических процессах типа газ1+тв→газ2, ж1+тв→ж2 скорость процесса определяют как изменение массы образца, отнесенное к времени испытаний и площади поверхности образца, которую принимают равной геометрической, т.е. произведению длины образца на его ширину для случая прямоугольного образца. Это приводит к завышению скорости гетерогенных процессов на один-два порядка. Этот факт и объясняет необходимость определения УП компактных материалов.

Известен блок адсорбера сорбтометра, который используется в устройствах для определения удельной поверхности материалов. Из описания данного патента известен способ определения УП материалов, включающий создание стационарного потока смеси гелия и аргона с заданным постоянным составом, тренировку поверхности путем нагрева до температуры 350÷700 К, адсорбцию аргона из смеси при температуре 77 К, десорбцию аргона путем нагрева до 200÷300 К и измерения концентрации аргона в смеси с помощью детектора по теплопроводности (Патент РФ №2073860, МПК G01N 30/00, опубл. 20.02.1997).

Недостатки способа:

1. Низкая точность измерений, обусловленная дрейфом нулевой линии хроматографа при изменении температуры газа от 77 К до 300 К с соответствующими увеличениями объема газа, объемной и линейной скорости.

2. Невозможность определения с достаточной точностью величины УП на уровне 0,001÷0,01 м2/г в компактных материалах.

Наиболее близким аналогом, принятым за прототип, является способ измерения УП материалов, включающий подачу адсорбата из камеры с источником адсорбата в камеру с исследуемым материалом, регулирование температуры камеры с исследуемым материалом для обеспечения сорбции адсорбата с последующей десорбцией адсорбата и определения его количества. В известном способе испытуемый образец помещают в стационарный поток газовой смеси, охлаждают образец до температуры 77 К, выдерживают образец до установления динамического равновесия между газовой и адсорбированной фазами, далее проводят нагрев образца и определяют концентрацию десорбированного газа, причем объем с испытуемым образцом заполняют материалом с низкой УП и низкой теплопроводностью для уменьшения объема нагреваемого при десорбции газа и, тем самым, для уменьшения дрейфа нулевой линии (Патент РФ №2196319, МПК G01N 15/08, опубл. 10.01.2003).

Недостаток способа-прототипа заключается в недостаточной точности определения величины УП дисперсных и пористых материалов и отсутствии возможности измерения УП в компактных материалах.

Задача и достигаемый при использовании изобретения технический результат - повышение точности измерения УП дисперсных, пористых и компактных материалов с одновременным расширением диапазона измерения УП от 10-3 м2/г до 103 м2/г.

Поставленная задача решается тем, что в заявленном способе измерения УП, включающем подачу адсорбата из камеры с источником адсорбата в камеру с исследуемым материалом, регулирование температуры камеры с исследуемым материалом для обеспечения сорбции адсорбата с последующей десорбцией адсорбата и определение его количества, согласно изобретению в качестве адсорбата используют серебро, а перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продувают инертным газом и вакуумируют, при этом для обеспечения сорбции температуру камеры с источником поддерживают на уровне 500÷550°C, а температуру камеры с исследуемым материалом поддерживают на 20÷30°C выше температуры камеры с источником, затем обе камеры повторно продувают инертным газом и вакуумируют, далее проводят десорбцию серебра селективным растворителем при комнатной температуре с дальнейшим анализом количества серебра в растворе спектральным методом.

При этом, например, в качестве селективного растворителя можно использовать одномолярную азотную кислоту. А в качестве спектрального метода используют метод индуктивно-связанной плазмы. Процесс сорбции проводят в течение 15-30 минут.

Сущность заявленного изобретения поясняется графическими изображениями.

На фиг. 1 представлена экспериментальная установка для реализации предложенного способа.

На фиг. 2 представлена профилограмма поверхности шлифованного образца сплава ЖС6 с размером шероховатости на уровне 1,2 мкм.

На фиг. 3 представлена профилограмма поверхности полированного образца сплава ЖС6 с размером шероховатости на уровне 26 нм.

Экспериментальная установка для реализации предложенного способа включает:

1 - камеру с источником серебра

2 - источник серебра

3 - нагреватели

4 - трубопровод

5 - вентиль подачи инертного газа

6 - камеру с исследуемым материалом

7 - исследуемый материал

8 - термопары

9 - вакуумный насос

10 - вентиль трубопровода

11 - вентиль вакуумного насоса

Предварительно перед сорбцией камеру с источником (1), соединенную с камерой с исследуемым материалом (6) через трубопровод (4), продувают инертным газом (например аргоном), открыв вентиль подачи инертного газа (5). Затем прекращают подачу инертного газа (аргона) и камеру с источником (1), соединенную с камерой с исследуемым материалом (6) посредством трубопровода (4), вакуумируют, для чего перекрывают вентиль подачи инертного газа (5). После вакуумирования закрывают вентиль трубопровода (10) и вентиль вакуумного насоса (11). Далее для обеспечения сорбции температуру камеры с источником (1) и трубопровода (4) поддерживают на уровне 500÷550°C, температуру камеры с исследуемым материалом поддерживают на 20÷30°C выше температуры камеры с источником (520-580°C) при помощи нагревателей (3). При достижении заданных температур вентиль трубопровода (10) открывают, тем самым уравновешивая давление серебра в камерах (1) и (6) и обеспечивая его поток. По истечении времени сорбции открывают вентили инертного газа (5) и вакуумного насоса (11), а камеры (1) и (6) повторно продувают инертным газом, а далее вакуумируют при помощи вакуумного насоса (9). После чего закрывают вентиль для подачи инертного газа (5), вентиль трубопровода (10) и вентиль вакуумного насоса (11), а камеры (1) и (6) охлаждают до комнатной температуры. И проводят десорбцию серебра селективным растворителем при комнатной температуре с дальнейшим анализом количества серебра в растворе спектральным методом.

Предложенный способ обосновывается следующим образом. В диапазоне температур 500÷550°C давление насыщенного пара серебра составляет 10-8 Па (Пипко А.И., Плисковский В.Я., Пенчко Е.А. Конструирование и расчет вакуумных систем. М., Энергия, 1979 г., с. 491). Температуру камеры с исследуемым материалом выбирают выше температуры источника для предотвращения конденсации серебра, т.к. при пониженной температуре камеры давление насыщенного пара серебра станет ниже давления пара источника серебра.

Предварительные эксперименты показали, что насыщение поверхности испытуемых образцов происходит за время 15÷30 минут. После десорбции серебра с испытуемых материалов одномолярной азотной кислотой объемом 30÷50 мл проводили измерение количества серебра на спектрометре индуктивно-связанной плазмы ИСП «Эридан 500» с чувствительностью 4·10-8 мкг.

Расчет УП материалов проводили по формуле:

где S - площадь геометрической поверхности образца,

m1 - количество сорбированного серебра,

m2 - расчетное количество сорбированного серебра на 1 см2 геометрической площади,

М - масса образца.

Из формулы (1) видно, что величина УП тем больше, чем больше отношение . Величина m2 является фиксированной для 1 см2 геометрической площади. Действительно, для площади поперечного сечения и массы атома серебра соответственно 3,84·10-15 см2 и 1,8·10-19 мг величину m2 находят по формуле:

где S2=1 см2,

S3 - площадь поперечного сечения атома серебра.

Примеры осуществления способа измерения УП материалов.

Пример 1. Определяли величину УП пористого образца графита марки МПГ в виде куба с ребром 5 мм плотностью 1,8 г/см3. Перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продували инертным газом и вакуумировали. Для обеспечения сорбции температуру камеры с источником поддерживали на уровне 520°C, а температуру камеры с исследуемым материалом выбрали равной 540°C. Подавали серебро из камеры с источником в камеру с исследуемым материалом. Процесс сорбции продолжался 30 мин. Затем обе камеры повторно продували инертным газом и вакуумировали. Десорбцию серебра проводили при комнатной температуре селективным растворителем - одномолярной азотной кислотой. Далее проводили анализ количества серебра в растворе спектральным методом - методом индуктивно-связанной плазмы. В результате эксперимента получены следующие данные:

S=1,5 см2,

m1=16 мг, m2=2,4·10-3 мг, М=0,22 г.

Теперь величина УП по формуле (1) составит

Для сравнения величину УП определяли способом, предложенным в прототипе (который по существу является разновидностью метода БЭТ) с использованием газовой хроматографии. При этом величина УП составила 4,7 м2/г.

Пример 2. Определяли величину УП дисков жаропрочного сплава ЖС6 после шлифовки образцов площадью 1 см2. Рельеф поверхности образца сплава показан на фиг. 2.

Перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продували инертным газом и вакуумировали. Для обеспечении сорбции температуру камеры с источником поддерживали на уровне 550°C, а температуру камеры с исследуемым материалом выбрали равной - 570°C. Подавали серебро из камеры с источником в камеру с исследуемым материалом. Процесс сорбции продолжался 20 мин. Затем обе камеры повторно продували инертным газом и вакуумировали. Десорбцию серебра проводили при комнатной температуре селективным растворителем - одномолярной азотной кислотой. Далее проводили анализ количества серебра в растворе спектральным методом - методом индуктивно-связанной плазмы. В результате эксперимента получены следующие данные:

S=2 см2 (учитывались обе стороны диска), m1=0,3 мг, m2=4,8·10-3 мг, М=0,7 г.

Теперь величина УП по формуле (1) составит

Пример 3. Определяли величину УП сплава ЖС 6 после полировки образцов площадью 1 см2.

Рельеф поверхности образцов показан на фиг. 3.

Перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продували инертным газом и вакуумировали. Для обеспечении сорбции температуру камеры с источником поддерживали на уровне 500°C, а температуру камеры с исследуемым материалом выбрали равной - 520°C. Подавали серебро из камеры с источником в камеру с исследуемым материалом. Процесс продолжался 30 мин. Затем обе камеры повторно продували инертным газом и вакуумировали. Десорбцию серебра проводили при комнатной температуре селективным растворителем - одномолярной азотной кислотой. Далее проводили анализ количества серебра в растворе спектральным методом - методом индуктивно-связанной плазмы. В результате эксперимента получены следующие данные: S=2 см2, m1=0,03 мг, m2=4,8·10-3 мг, М=0,7 г.

Величина УП составила

Таким образом, предложенное изобретение повышает точность измерений УП дисперсных, пористых и компактных материалов с одновременным расширением диапазона измерения УП от 10-3 м2/г до 103 м2/г. А кроме того, обеспечивает в процессе измерений очистку поверхности образцов от сорбированных газов (O2, N2, СО, CO2) за счет проведения процесса при температуре в заявленных пределах.


СПОСОБ ИЗМЕРЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ МАТЕРИАЛОВ
СПОСОБ ИЗМЕРЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Showing 21-30 of 79 items.
20.08.2014
№216.012.ec07

Способ изготовления чувствительного элемента датчика концентрации кислорода или водорода

Изобретение относится к ядерной энергетике и может быть использовано в датчиках для измерения содержания кислорода или водорода в энергетических установках. Способ изготовления чувствительного элемента (ЧЭ) датчика кислорода или водорода включает изготовление пробки из твердого электролита и...
Тип: Изобретение
Номер охранного документа: 0002526231
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec68

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а более конкретно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов (твэлов). Устройство содержит оболочку с герметизирующими торцевыми крышками, внутри которой расположена, по крайней мере, одна капсула...
Тип: Изобретение
Номер охранного документа: 0002526328
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ee6d

Имитатор тепловыделяющего элемента ядерного реактора

Изобретение относится к области теплофизических исследований и может быть использовано при изучении поведения тепловыделяющих элементов (ТВЭЛ) ядерных реакторов экспериментальным моделированием тепловых и гидродинамических процессов при различных режимах работы реактора, в том числе аварийных....
Тип: Изобретение
Номер охранного документа: 0002526856
Дата охранного документа: 27.08.2014
27.10.2014
№216.013.02ad

Способ снаряжения сердечников твэлов стержневыми топливными элементами

Изобретение относится к изготовлению тепловыделяющих элементов ядерного реактора. Предложен способ снаряжения сердечников твэлов стержневыми топливными элементами, при котором из партии топливных элементов со средней длиной L случайным образом набирают столбы с количеством элементов n. Если...
Тип: Изобретение
Номер охранного документа: 0002532083
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.0722

Устройство для осаждения покрытий в псевдоожиженном слое

Изобретение относится к области получения пироуглеродных и карбидных покрытий в псевдоожиженном слое (ПС) частиц полифракционного состава, изменяющегося в процессе осаждения покрытий, и может быть использовано в атомной и электронной технике. Устройство для осаждения покрытий в ПС содержит...
Тип: Изобретение
Номер охранного документа: 0002533227
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07d1

Способ пассивации стальной поверхности

Изобретение относится к области поверхностной обработки материалов и может быть использовано для повышения коррозионной стойкости сталей в окислительных (кислород, воздух, водяной пар) средах. Способ включает нанесение на поверхность защитной пленки при повышенной температуре, при этом перед...
Тип: Изобретение
Номер охранного документа: 0002533402
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0ab0

Способ выращивания профилированных кристаллов тугоплавких соединений

Изобретение относится к области выращивания из расплава профилированных кристаллов тугоплавких соединений методом Степанова, например лейкосапфира, рубина, алюмоиттриевого граната, которые могут быть использованы в приборостроении, машиностроении, термометрии, химической промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002534144
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.1319

Способ извлечения урана из фосфорнокислых растворов

Изобретение относится к области гидрометаллургии, в частности к способу извлечения урана из отработанных фосфорнокислых растворов. Способ заключается в том, что в исходный раствор предварительно вводят окислитель, который выбирают из ряда: KMnO, KCrO, HNO, HO, KClO. Затем проводят осаждение...
Тип: Изобретение
Номер охранного документа: 0002536312
Дата охранного документа: 20.12.2014
20.01.2015
№216.013.1ee7

Способ получения тепловыделяющего элемента высокотемпературного ядерного реактора

Изобретение относится к технологии изготовления тепловыделяющих элементов для высокотемпературных ядерных реакторов. Способ включает изготовление матрицы на основе пластин(2) из углеродных материалов, в которых выполнены посадочные места с заложенными в них микротвэлами (1) с защитными...
Тип: Изобретение
Номер охранного документа: 0002539352
Дата охранного документа: 20.01.2015
20.02.2015
№216.013.2a93

Способ определения погрешности внутриреакторных измерений температуры и устройство для его осуществления

Группа изобретений относится к атомной энергетике, а именно - к внутриреакторному контролю параметров ВВЭР, и может быть использовано при измерениях температуры теплоносителя в реакторах. Способ определения погрешности внутриреакторных измерений температуры заключается в нагреве чувствительного...
Тип: Изобретение
Номер охранного документа: 0002542356
Дата охранного документа: 20.02.2015
Showing 21-30 of 63 items.
20.08.2014
№216.012.ec07

Способ изготовления чувствительного элемента датчика концентрации кислорода или водорода

Изобретение относится к ядерной энергетике и может быть использовано в датчиках для измерения содержания кислорода или водорода в энергетических установках. Способ изготовления чувствительного элемента (ЧЭ) датчика кислорода или водорода включает изготовление пробки из твердого электролита и...
Тип: Изобретение
Номер охранного документа: 0002526231
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec68

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а более конкретно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов (твэлов). Устройство содержит оболочку с герметизирующими торцевыми крышками, внутри которой расположена, по крайней мере, одна капсула...
Тип: Изобретение
Номер охранного документа: 0002526328
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ee6d

Имитатор тепловыделяющего элемента ядерного реактора

Изобретение относится к области теплофизических исследований и может быть использовано при изучении поведения тепловыделяющих элементов (ТВЭЛ) ядерных реакторов экспериментальным моделированием тепловых и гидродинамических процессов при различных режимах работы реактора, в том числе аварийных....
Тип: Изобретение
Номер охранного документа: 0002526856
Дата охранного документа: 27.08.2014
27.10.2014
№216.013.02ad

Способ снаряжения сердечников твэлов стержневыми топливными элементами

Изобретение относится к изготовлению тепловыделяющих элементов ядерного реактора. Предложен способ снаряжения сердечников твэлов стержневыми топливными элементами, при котором из партии топливных элементов со средней длиной L случайным образом набирают столбы с количеством элементов n. Если...
Тип: Изобретение
Номер охранного документа: 0002532083
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.0722

Устройство для осаждения покрытий в псевдоожиженном слое

Изобретение относится к области получения пироуглеродных и карбидных покрытий в псевдоожиженном слое (ПС) частиц полифракционного состава, изменяющегося в процессе осаждения покрытий, и может быть использовано в атомной и электронной технике. Устройство для осаждения покрытий в ПС содержит...
Тип: Изобретение
Номер охранного документа: 0002533227
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07d1

Способ пассивации стальной поверхности

Изобретение относится к области поверхностной обработки материалов и может быть использовано для повышения коррозионной стойкости сталей в окислительных (кислород, воздух, водяной пар) средах. Способ включает нанесение на поверхность защитной пленки при повышенной температуре, при этом перед...
Тип: Изобретение
Номер охранного документа: 0002533402
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0ab0

Способ выращивания профилированных кристаллов тугоплавких соединений

Изобретение относится к области выращивания из расплава профилированных кристаллов тугоплавких соединений методом Степанова, например лейкосапфира, рубина, алюмоиттриевого граната, которые могут быть использованы в приборостроении, машиностроении, термометрии, химической промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002534144
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.1319

Способ извлечения урана из фосфорнокислых растворов

Изобретение относится к области гидрометаллургии, в частности к способу извлечения урана из отработанных фосфорнокислых растворов. Способ заключается в том, что в исходный раствор предварительно вводят окислитель, который выбирают из ряда: KMnO, KCrO, HNO, HO, KClO. Затем проводят осаждение...
Тип: Изобретение
Номер охранного документа: 0002536312
Дата охранного документа: 20.12.2014
20.01.2015
№216.013.1ee7

Способ получения тепловыделяющего элемента высокотемпературного ядерного реактора

Изобретение относится к технологии изготовления тепловыделяющих элементов для высокотемпературных ядерных реакторов. Способ включает изготовление матрицы на основе пластин(2) из углеродных материалов, в которых выполнены посадочные места с заложенными в них микротвэлами (1) с защитными...
Тип: Изобретение
Номер охранного документа: 0002539352
Дата охранного документа: 20.01.2015
20.02.2015
№216.013.2a93

Способ определения погрешности внутриреакторных измерений температуры и устройство для его осуществления

Группа изобретений относится к атомной энергетике, а именно - к внутриреакторному контролю параметров ВВЭР, и может быть использовано при измерениях температуры теплоносителя в реакторах. Способ определения погрешности внутриреакторных измерений температуры заключается в нагреве чувствительного...
Тип: Изобретение
Номер охранного документа: 0002542356
Дата охранного документа: 20.02.2015
+ добавить свой РИД