×
20.11.2015
216.013.9326

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ НАНОРАЗМЕРНОГО ТВЕРДОГО СПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии. Способ изготовления наноразмерного твердого сплава включает приготовление смеси из наноразмерных порошков карбида вольфрама и кобальта, прессование ее в стальной пресс-форме и спекание в вакууме. Причем перед прессованием в смесь наноразмерных порошков вводят 2-15 об. % этанола, а прессование ведут при давлении 2000 кгс/см. Обеспечивается снижение давления прессования и повышение качества спеченных изделий. 8 ил., 3 пр.
Основные результаты: Способ изготовления наноразмерного твердого сплава, включающий приготовление смеси из наноразмерных порошков карбида вольфрама и кобальта, прессование ее в стальной пресс-форме и спекание в вакууме, отличающийся тем, что перед прессованием в смесь наноразмерных порошков вводят 2-15 об. % этанола, при этом прессование ведут при давлении 2000 кгс/см.

Предлагаемое изобретение относится к порошковой металлургии, в частности к способу прессования наноразмерного твердого сплава.

Уровень техники

Известен способ прессования смеси твердого сплава, включающий приготовление смеси карбида вольфрама с кобальтом, введение пластификатора, гранулирование смеси и последующие прессование (Технология и свойства спеченных твердых сплавов и изделий из них / Панов B.C., Чувилин A.M. - М.: «МИСИС», 2001. - стр. 109-114).

Известен способ получения металломатричного композита с наноразмерными компонентами (Патент RU №2485195 С1, МПК С22 С1/05 (2006.01), В22 ВЗ/00 (2006.01). Опубликовано 20.06.2013).

Известен способ мокрого прессования включающий приготовление смеси карбида вольфрама с кобальтом, пластифицирование, гранулирование и прессование в стальной пресс-форме (Патент RU №2275274 С1 «Способ прессования порошковых материалов и устройство для его осуществления», от 18.11.2004. МПК B22F 3/02 (2006.01). Опубликовано 27.04.2006. Бюллетень №12).

Наиболее близким техническим решением является способ получения твердого сплава из наноразмерных порошков карбида вольфрама и кобальта, включающий получение смеси, введение пластификатора, раствора парафина в гексане, гранулирование и последующее прессование в стальной пресс-форме (Влияние технологических параметров спекания на структуру и свойства твердого сплава ВК5 из СВС порошка карбида вольфрама / Ж. Изв. Вузов «Порошковая металлургия и функциональные покрытия». №3, 2013, с 21-27).

Недостатком наиболее близкого технического решения является низкое качество продукции и сложность технологической схемы из-за введения пластификатора, грануляции и последующей операции по удалению пластификатора, большая пористость после спекания, т.к. гранулы из наноразмерных порошков обладают большой прочностью и не разрушаются при прессовании.

Задачей предлагаемого изобретения является разработка способа прессования твердого сплава из наноразмерных порошков, с повышением качества продукции и упрощения технологической схемы производства, уменьшение давления прессования.

Достигаемым техническим результатом является:

- исключения некоторых технологических операций;

- снижение давления прессования;

- повышение качества спеченных изделий.

Технический результат достигается следующим образом.

В способе изготовления наноразмерного твердого сплава, включающем приготовление смеси из наноразмерных порошков карбида вольфрама и кобальта, прессование ее в стальной пресс-форме и спекание в вакууме, перед прессованием в смесь наноразмерных порошков вводят 2-15 об. % этанола, при этом прессование ведут при давлении 2000 кгс/см2.

Изобретение стало возможным, после того как авторы установили, что при использовании гранулированных смесей к гранулам предъявляют определенные требования: они не должны обладать повышенной прочностью и жесткостью [Технология и свойства спеченных твердых сплавов и изделий из них. Учебное пособие для вузов. - 2-е изд. доп.и перераб. / Панов B.C., Чувилин A.M., Фальковский В.А. -М.: «МИСИС», 2004. - стр. 125-126]. Гранулы, обладающие повышенной прочностью и жесткостью, не будут разрушаться при прессовании, и между ними останутся большие щелевые поры, которые не зарастут при спекании.

Известно, что между твердыми частицами размером меньше чем 0,1 мкм будут действовать силы межмолекулярного взаимодействия. Силы межмолекулярного взаимодействия представляют собой равнодействующую сил отталкивания и притяжения, компенсирующих друг друга, фиг. 1. Радиус действия межмолекулярных сил не превышает 10 нм (0,01 мкм) (Справочник по физике / Х. Кухлинг, М: «МИР», 1982. - 520 с.).

Поскольку размер частиц кобальта, фиг. 2, и карбида вольфрама, фиг. 3, соизмеримы с радиусом действия междумолекулярных сил, то не учитывать их в процессе прессования нельзя. Из фиг. 1 видно, что силы притяжения имеют преимущество. Именно этим и объясняется сложность процесса перемешивания наноразмерных компонентов.

Авторами установлено, что пластифицирование смеси, с размером частиц 1,0÷0,5 мкм, приводит к получению очень прочных и жестких гранул. В грануле диаметром ~300 мкм может содержаться до 10000 отдельных частиц, «склеенных» пленкой пластификатора. Для разрушения такой гранулы требуется очень большое давление, которое не достижимо при прессовании заготовки в стальной пресс-форме. Поэтому прессовать смеси, состоящие из таких частиц, следует без использования пластификатора.

Введение жидкости снижает внешнее трение порошка о стенки пресс-формы, а отсутствие гранул облегчает процесс уплотнения наноразмерных частиц.

Пример 1 (способ-прототип). Порошок кобальта (чистотой 99,97 масс. %) со средним размером частиц 1,25 мкм смешивали с WC в шаровой мельнице, футерованной твердосплавными пластинами, в изопропиловом спирте. Отношение твердосплавных шаров к материалу =6:1, в течение 120 часов. В полученную смесь вводили пластификатор 6,0% раствор парафина в гексане, из расчета 17,5 см3 на 100 г смеси. На фиг. 4 представлены объемы смеси и раствора пластификатора.

Пластифицированную шихту гранулировали.

Прессование проводили при давлении 4000 кгс/см2.

Отгонку связующего проводили при температуре 450°C в среде водорода в течение 60 минут.

Спекание проводили в вакууме 10-4 мм ртутного столбца при 1400°C, в течение 60 минут. Микроструктура спеченного образца представлена на фиг. 5. На фиг. 5 видна щелевая пора, которая является междугранульной порой, возникшей от неразрушенной пластифицированной гранулы.

На фиг. 6 - изображение поверхности излома. На фиг. 6 видны отдельные мелкие поры.

Пример 2 (предлагаемый способ). Порошок кобальта (чистотой 99,97 масс. %) со средним размером частиц 1,25 мкм смешивали с WC в шаровой мельнице, футерованной твердосплавными пластинами, в изопропиловом спирте. Отношение твердосплавных шаров к материалу =6:1, в течение 120 часов.

Сухую смесь засыпали в пресс-форму и водили смачивающую порошок жидкость - этиловый спирт, в количестве 2 об. %, от объема смеси.

Прессование проводили при давлении 2000 кгс/см.2 Давление прессования меньше, чем в способе-прототипе, т.к. жидкость уменьшает внешнее и внутреннее трение, при достижении относительной плотности, равной плотности образца в способе прототипе.

Спекание проводили в вакууме 10-4 мм ртутного столбца при 1400°C, в течение 60 минут. Микроструктура поверхность спеченного образца представлена на фиг. 7.

Пример 3 (предлагаемый способ). Порошок кобальта (чистотой 99,97 масс. %) со средним размером частиц 1,25 мкм смешивали с WC в шаровой мельнице, футерованной твердосплавными пластинами, в изопропиловом спирте. Отношение твердосплавных шаров к материалу =6:1, в течение 120 часов.

Сухую смесь засыпали в пресс-форму и вводили смачивающую порошок жидкость - этиловый спирт, в количестве 15 об. %, от объема смеси.

Прессование проводили при давлении 2000 кгс/см2. Давление прессования меньше, чем в способе - прототипе, т.к. жидкость уменьшает внешнее и внутреннее трение при достижении относительной плотности, равной плотности образца в способе-прототипе.

Спекание проводили в вакууме 10-4 мм ртутного столбца при 1450°C, в течение 60 минут. Микроструктура поверхности излома спеченного образца представлена на фиг. 8.

Способ изготовления наноразмерного твердого сплава, включающий приготовление смеси из наноразмерных порошков карбида вольфрама и кобальта, прессование ее в стальной пресс-форме и спекание в вакууме, отличающийся тем, что перед прессованием в смесь наноразмерных порошков вводят 2-15 об. % этанола, при этом прессование ведут при давлении 2000 кгс/см.
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОРАЗМЕРНОГО ТВЕРДОГО СПЛАВА
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОРАЗМЕРНОГО ТВЕРДОГО СПЛАВА
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОРАЗМЕРНОГО ТВЕРДОГО СПЛАВА
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОРАЗМЕРНОГО ТВЕРДОГО СПЛАВА
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОРАЗМЕРНОГО ТВЕРДОГО СПЛАВА
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОРАЗМЕРНОГО ТВЕРДОГО СПЛАВА
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОРАЗМЕРНОГО ТВЕРДОГО СПЛАВА
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОРАЗМЕРНОГО ТВЕРДОГО СПЛАВА
Источник поступления информации: Роспатент

Showing 161-170 of 238 items.
20.04.2015
№216.013.41d0

Алмазный гальванический инструмент с износостойким покрытием

Изобретение относится к алмазным инструментам, на поверхности корпуса которых методом электрохимического осаждения нанесен металлический связующий материал, содержащий алмазные зерна. Алмазный гальванический инструмент с износостойким покрытием содержит корпус с закрепленными на нем при помощи...
Тип: Изобретение
Номер охранного документа: 0002548346
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.476b

Пуансон для прошивки на прессе

Изобретение относится к обработке металлов давлением и может быть использовано при прошивке заготовок в контейнере на прессах. Пуансон для прошивки выполнен в виде тела вращения с двумя отверстиями. Пуансон имеет переменный наружный диаметр. Указанный диаметр на длине пуансона от его...
Тип: Изобретение
Номер охранного документа: 0002549787
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.47a3

Спектральный магнитоэллипсометр с устройством для магниторезистивных измерений

Изобретение относится к измерительной технике, представляет собой спектральный магнитоэллипсометр и предназначено для контроля производства в условиях сверхвысокого вакуума наноразмерных магнитных структур. Магнитоэллипсометр содержит источник излучения с монохроматором, плечо поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002549843
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.48fa

Способ обезвреживания циансодержащих растворов и пульп

Изобретение относится к способам очистки, обезвреживания цианид- и роданидсодержащих сточных вод и может быть использовано для обезвреживания жидкой фазы и пульпы хвостов цианидного выщелачивания благородных металлов из руд, концентратов и техногенных отходов. Способ заключается в перемешивании...
Тип: Изобретение
Номер охранного документа: 0002550189
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.49c6

Способ электролитно-плазменной обработки поверхности металлов

Изобретение относится к области гальванотехники и может быть использовано в различных областях техники, в частности в машиностроении, в электротехнической промышленности, в приборостроении и в декоративных целях при производстве товаров народного потребления. Способ характеризуется тем, что...
Тип: Изобретение
Номер охранного документа: 0002550393
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.49f1

Способ обработки поверхности металлов

Изобретение относится к области гальванотехники и может быть использовано в электротехнической промышленности, в приборостроении и для декоративных целей при производстве товаров народного потребления. Способ характеризуется тем, что анод из серебра и серебряных сплавов и металлический катод...
Тип: Изобретение
Номер охранного документа: 0002550436
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4ac9

Способ утилизации шламов металлургического производства

Изобретение относится к области экологии. Для утилизации шламов металлургического производства, содержащих тяжелые металлы, транспортируют и сортируют шлам с отделением некомпостируемых фракций и биохимическим обогащением оставшейся фракции с получением биоминерального удобрения. Твердые...
Тип: Изобретение
Номер охранного документа: 0002550652
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4c0b

Способ переработки молибденитовых концентратов

Изобретение относится к металлургии редких металлов, в частности молибдена, и может быть использовано для переработки молибденитовых концентратов. Способ включает обжиг концентрата с хлоридом натрия, улавливание в конденсаторе образующегося диоксихлорида молибдена с переработкой его на...
Тип: Изобретение
Номер охранного документа: 0002550981
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.4fa8

Всесезонная гибридная энергетическая вертикальная установка

Изобретение относится к области гелио- и ветроэнергетики. Всесезонная гибридная энергетическая вертикальная установка содержит установленный с возможностью вращения вертикальный вал в виде цилиндрической трубы, охватывающей неподвижную полую ось. Неподвижная полая ось закреплена на основании....
Тип: Изобретение
Номер охранного документа: 0002551913
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.507b

Датчик измерения механических напряжений

Изобретение относится к измерительной технике и представляет собой датчик механических напряжений. Датчик включает прямоугольную пластину из полимерного материала, на верхней поверхности которой сделано углубление, в котором помещается детектор, при этом внутри прямоугольной пластины вдоль...
Тип: Изобретение
Номер охранного документа: 0002552124
Дата охранного документа: 10.06.2015
Showing 161-170 of 251 items.
20.04.2015
№216.013.41cb

Способ переработки молибденитовых концентратов

Изобретение относится к металлургии редких металлов, в частности молибдена, и может быть использовано для переработки молибденитовых концентратов с получением соединений молибдена. Способ включает обжиг предварительно измельченной смеси концентрата с хлоридом натрия с улавливанием в...
Тип: Изобретение
Номер охранного документа: 0002548341
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.41cf

Способ получения ферритовых изделий

Изобретение относится к порошковой металлургии. Способ получения ферритовых изделий включает приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания облучением...
Тип: Изобретение
Номер охранного документа: 0002548345
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.41d0

Алмазный гальванический инструмент с износостойким покрытием

Изобретение относится к алмазным инструментам, на поверхности корпуса которых методом электрохимического осаждения нанесен металлический связующий материал, содержащий алмазные зерна. Алмазный гальванический инструмент с износостойким покрытием содержит корпус с закрепленными на нем при помощи...
Тип: Изобретение
Номер охранного документа: 0002548346
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.476b

Пуансон для прошивки на прессе

Изобретение относится к обработке металлов давлением и может быть использовано при прошивке заготовок в контейнере на прессах. Пуансон для прошивки выполнен в виде тела вращения с двумя отверстиями. Пуансон имеет переменный наружный диаметр. Указанный диаметр на длине пуансона от его...
Тип: Изобретение
Номер охранного документа: 0002549787
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.47a3

Спектральный магнитоэллипсометр с устройством для магниторезистивных измерений

Изобретение относится к измерительной технике, представляет собой спектральный магнитоэллипсометр и предназначено для контроля производства в условиях сверхвысокого вакуума наноразмерных магнитных структур. Магнитоэллипсометр содержит источник излучения с монохроматором, плечо поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002549843
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.48fa

Способ обезвреживания циансодержащих растворов и пульп

Изобретение относится к способам очистки, обезвреживания цианид- и роданидсодержащих сточных вод и может быть использовано для обезвреживания жидкой фазы и пульпы хвостов цианидного выщелачивания благородных металлов из руд, концентратов и техногенных отходов. Способ заключается в перемешивании...
Тип: Изобретение
Номер охранного документа: 0002550189
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.49c6

Способ электролитно-плазменной обработки поверхности металлов

Изобретение относится к области гальванотехники и может быть использовано в различных областях техники, в частности в машиностроении, в электротехнической промышленности, в приборостроении и в декоративных целях при производстве товаров народного потребления. Способ характеризуется тем, что...
Тип: Изобретение
Номер охранного документа: 0002550393
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.49f1

Способ обработки поверхности металлов

Изобретение относится к области гальванотехники и может быть использовано в электротехнической промышленности, в приборостроении и для декоративных целей при производстве товаров народного потребления. Способ характеризуется тем, что анод из серебра и серебряных сплавов и металлический катод...
Тип: Изобретение
Номер охранного документа: 0002550436
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4ac9

Способ утилизации шламов металлургического производства

Изобретение относится к области экологии. Для утилизации шламов металлургического производства, содержащих тяжелые металлы, транспортируют и сортируют шлам с отделением некомпостируемых фракций и биохимическим обогащением оставшейся фракции с получением биоминерального удобрения. Твердые...
Тип: Изобретение
Номер охранного документа: 0002550652
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4c0b

Способ переработки молибденитовых концентратов

Изобретение относится к металлургии редких металлов, в частности молибдена, и может быть использовано для переработки молибденитовых концентратов. Способ включает обжиг концентрата с хлоридом натрия, улавливание в конденсаторе образующегося диоксихлорида молибдена с переработкой его на...
Тип: Изобретение
Номер охранного документа: 0002550981
Дата охранного документа: 20.05.2015
+ добавить свой РИД