×
20.11.2015
216.013.92cd

Результат интеллектуальной деятельности: СПОСОБ ОСАЖДЕНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА АЛЮМИНИЕВЫЕ СПЛАВЫ С ВЫСОКИМ СОДЕРЖАНИЕМ КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области осаждения износостойких комбинированных покрытий для защиты поверхностей алюминиевых сплавов от воздействия агрессивных сред и износа, в частности для защиты алюминиевых литейных сплавов с высоким содержанием кремния, и может быть использовано в авиационной промышленности, станко-, судо- и моторостроении. Осаждают износостойкое покрытие на алюминиевый сплав, в котором формируют промежуточный слой с последующим нанесением на него слоя карбида хрома путем химического осаждения из паровой фазы бисаренхроморганического соединения, при этом промежуточный слой формируют из никель-кобальтового сплава электрохимическим способом. Обеспечивается сплошность покрытия и его прочность сцепления с подложкой из алюминиевого сплава с высоким содержанием кремния, а также снижение времени, энерго- и трудоемкости процесса осаждения. 5 з.п. ф-лы, 2 табл., 9 пр.

Изобретение относится к области осаждения износостойких комбинированных покрытий с верхним карбидохромовым слоем для защиты поверхностей алюминиевых сплавов от воздействия агрессивных сред и износа, в частности для защиты алюминиевых литейных сплавов с высоким содержанием кремния - таких как АЛ25 и АЛ26, и может быть применимо в авиационной промышленности, станко-, судо- и моторостроении.

Получению качественных износостойких покрытий на изделиях из литейных алюминиевых сплавов препятствует наличие образующейся на воздухе при нормальных условиях оксидной пленки, а также высокое содержание кремния, значительно ухудшающего адгезию.

Известен способ получения износостойкого двухслойного хромового покрытия на деталях из алюминиевых сплавов, включающий двукратное осаждение контактного никеля с промежуточным и последующим его удалением, нанесение подслоя хрома при 10-25°C, после которого производят износостойкое хромирование с последующей термообработкой при 120-125°C (патент RU 2100489 C1, 27.12.1997).

Недостатком известного способа является необходимость применения процесса гальванического хромирования, относящегося к первому классу экологической опасности.

Известен способ нанесения металлического покрытия, заключающийся в том, что перед нанесением гальванических или иных покрытий на поверхность изделий, изготовленных из алюминия или его сплавов, поверхность предварительно обрабатывают, нанося на нее слой железа или другого металла путем включения покрываемого изделия и осаждаемого металла в цепь колебательного (разрядного) контура, работающего в области искрового разряда. На полученное предварительное покрытие наносят основной покрывающий слой металла обычными приемами, например металлизацией, гальваностегией и т.п. (патент SU 69315 A1, 30.09.1947).

Недостатком известного способа является высокий класс экологической опасности, обусловленный использованием солей Cr6+, а также невозможность получения подслоя железа на деталях сложной геометрической формы.

Известен способ нанесения химически стойкого беспористого защитного покрытия на поверхность алюминиевого фланца путем термораспада металлоорганических соединений хрома в вакууме при давлении 1-10 Па и температуре 400-450°C (патент RU 2433210 C2, 10.11.2011).

Недостатками известного способа являются высокие напряжение в системе матрица-покрытие и недостаточная адгезия.

Известен способ осаждения защитного двухслойного покрытия, состоящего из подслоя хрома и карбида хрома, на длинномерные металлические изделия. Данное покрытие получается путем пиролитического разложения паров хроморганической жидкости «Бархос» и наносится при поступательном движении изделия через две зоны осаждения: температура первой зоны - 340-360°C, второй - 540-560°C (патент RU 2169793 C1, 27.06.2001).

Недостатком известного способа является невозможность осаждения защитного покрытия на детали геометрической формы, отличной от труб и цилиндров, а также сложность технического исполнения.

Наиболее близким аналогом является способ получения на алюминии или его сплавах композиционного покрытия, содержащего промежуточный слой из оксидокерамики (Al2O3) толщиной 50-300 мкм, полученный методом микродугового оксидирования, и слой из пиролитического карбида хрома толщиной 5-50 мкм, нанесенный при пиролизе бисаренхроморганического соединения (патент RU 2175686 C1, 10.11.2001).

Недостатком способа-прототипа является невозможность получения качественной оксидной пленки на алюминиевых сплавах с высоким содержанием кремния, поскольку в процессе оксидирования подобных сплавов образуется большое количество частиц SiO2, препятствующих дальнейшему осаждению пиролитического карбидохромового покрытия (далее - ПКХП).

Задачей заявленного способа является обеспечение возможности применения алюминиевых сплавов с высоким содержанием кремния в нагруженных узлах трения.

Техническим результатом является обеспечение сплошности покрытия и его прочности сцепления с подложкой из алюминиевого сплава с высоким содержанием кремния, а также снижение времени, энерго- и трудоемкости процесса осаждения.

Технический результат достигается за счет того, что предложен способ осаждения износостойкого покрытия на алюминиевый сплав, в котором формируют промежуточный слой с последующим нанесением на него слоя карбида хрома путем химического осаждения из паровой фазы бисаренхроморганического соединения, при этом промежуточный слой формируют из никель-кобальтового сплава электрохимическим способом.

Для получения промежуточного слоя с высокой микротвердостью его формируют в электролите с pH 3,8-4,2 при температуре 50-55°C в течение 5-10 минут при импульсном режиме тока со скважностью 20-40%, плотностью 6-15 А/дм2 и при частоте импульсов тока 20-40 Гц.

Для повышения равномерности толщины промежуточный слой никель-кобальтового сплава можно формировать в сульфаминовокислом электролите. Это связано с тем, что данный вид электролита обладает высокой рассеивающей способностью.

Для получения ПКХП с высокой микротвердостью химическое осаждение карбида хрома проводят при температуре 450-480°C.

Химическое осаждение карбида хрома лучше проводить из паровой фазы бисаренхроморганического соединения при давлении ≤100 Па.

Химическое осаждение карбида хрома также можно проводить из паровой фазы бисаренхроморганического соединения в потоке инертного газа при давлении ≤100 Па. Поток инертного газа позволяет увеличить скорость осаждения ПКХП, а указанное давление предотвращает химическое загрязнение подложки.

Никель-кобальтовый сплав, нанесенный электрохимическим способом, в качестве материала промежуточного слоя был выбран, поскольку он обеспечивает сплошность и высокую прочность сцепления с подложкой из алюминиевого сплава с высоким содержанием кремния за счет того, что он обладает высокой микротвердостью и из-за отсутствия пор хорошими антикоррозионными свойствами. Для достижения соответствия свойств покрытия предъявляемым к нему требованиям по прочности сцепления, микротвердости, сплошности, пористости при использовании электрохимического способа нанесения данного сплава допустимо использовать различные электролиты и токовые режимы.

Значения микротвердости промежуточного слоя никель-кобальтового сплава значительно ближе к микротвердости алюминиевых сплавов, чем у карбидохромового покрытия, что способствует снижению переходных внутренних напряжений в покрытии и соответственно повышает сцепление с подложкой.

Микротвердость никель-кобальтового промежуточного электрохимического покрытия можно дополнительно повысить за счет его осаждения при импульсных режимах тока.

В соответствии с этим формирование промежуточного слоя никель-кобальтового сплава лучше проводить в электролите с pH 3,8-4,2 при температуре 50-55°C в течение 5-10 минут при импульсном режиме тока со скважностью 20-40%, плотностью 6-15 А/дм2 и при частоте импульсов тока 20-40 Гц. Данные режимы осаждения позволяют получить в подслое максимальную концентрацию кобальта (до 24 мас.%), доля которого в большей степени определяет микротвердость осаждаемого слоя.

Для деталей, работающих в узлах трения, рекомендованная микротвердость ПКХП составляет около 10-12 ГПа. Такую микротвердость можно достигнуть, если осаждение карбида хрома проводить при температуре 450-480°C.

При осаждении карбида хрома из паровой фазы бисаренхроморганического соединения в потоке инертного газа увеличивается скорость осаждения за счет повышения давления, однако это снижает химическую чистоту покрытия. Это связано с тем, что молекулы примесей, находящиеся на поверхности подложки, также начинают активно разлагаться, таким образом загрязняя подложку. Во избежание сильного загрязнения осаждение ПКХП лучше проводить при давлении ≤100 Па.

Примеры осуществления изобретения

Пример 1

Покрытие наносили на образец из алюминиевого сплава АЛ25 размером 50×25 мм.

Промежуточный слой сплава никель-кобальт наносили при стационарном токовом режиме с плотностью тока 6 А/дм2, температуре 50°C в сульфаминовокислом электролите следующего состава, г/л: никель сульфаминовокислый - 420, кобальт сульфаминовокислый - 24, никель хлористый - 4, борная кислота - 30, лаурилсульфат натрия - 0,01.

ПКХП осаждали при давлении паров бисаренхроморганического соединения 20 Па, температуре подложки (осаждения) 430°C.

Толщину никель-кобальтового подслоя и ПКХП измеряли методом вихревых токов и на ее основе вычисляли скорость осаждения каждого из слоев. Оценку пористости подслоя проводили на потенциостате/гальваностате посредством измерения разности потенциалов между электродом сравнения и образцом с нанесенным промежуточным слоем никель-кобальтового сплава. Микротвердость определяли вдавливанием алмазной пирамидки с последующим измерением диагонали отпечатка.

Свойства полученного промежуточного слоя никель-кобальтового сплава приведены в табл. 1.

Свойства полученного ПКХП приведены в табл. 2.

Скорость осаждения промежуточного слоя никель-кобальтового сплава составила 0,7 мкм/мин.

Пример 2

Покрытие наносили на образец из алюминиевого сплава АЛ26 размером 50×25 мм.

Промежуточный слой сплава никель-кобальт наносили при стационарном токовом режиме с плотностью тока 8 А/дм2, температуре 55°C в сульфаминовокислом электролите следующего состава, г/л: никель сульфаминовокислый - 450, кобальт сульфаминовокислый - 27, никель хлористый - 10, борная кислота - 30, лаурилсульфат натрия - 0,1.

ПКХП наносили при давлении 15 Па и температуре осаждения 470°C.

Скорость осаждения промежуточного слоя никель-кобальтового сплава составила 0,8 мкм/мин.

Пример 3

Покрытие наносили на образец из алюминиевого сплава АЛ25 размером 50×25 мм.

Промежуточный слой сплава никель-кобальт наносили при нестационарном токовом режиме с плотностью тока 10 А/дм2, скважности 30%, частоте импульсов 50 Гц, температуре 50°C в сульфаминовокислом электролите следующего состава, г/л: никель сульфаминовокислый - 420, кобальт сульфаминовокислый - 24, никель хлористый - 4, борная кислота - 30, лаурилсульфат натрия - 0,01.

ПКХП наносили при давлении 17 Па и температуре осаждения 460°C.

Скорость осаждения промежуточного слоя никель-кобальтового сплава составила 0,7 мкм/мин.

Пример 4

Покрытие наносили на образец из алюминиевого сплава АЛ25 размером 50×25 мм.

Промежуточный слой сплава никель-кобальт наносили при нестационарном токовом режиме с плотностью тока 13 А/дм2, скважности 20%, частоте импульсов 30 Гц, температуре 55°C в сульфаминовокислом электролите следующего состава, г/л: никель сульфаминовокислый - 450, кобальт сульфаминовокислый - 27, никель хлористый - 10, борная кислота - 30, лаурилсульфат натрия - 0,1.

ПКХП наносили при давлении 20 Па и температуре осаждения 440°C.

Скорость осаждения промежуточного слоя никель-кобальтового сплава составила 1 мкм/мин.

Пример 5

Покрытие наносили на образец из алюминиевого сплава АЛ26 размером 50×25 мм.

Промежуточный слой сплава никель-кобальт наносили при нестационарном токовом режиме с плотностью тока 15 А/дм2, скважности 20%, частоте импульсов 40 Гц, температуре 55°C в сульфаминовокислом электролите следующего состава, г/л: никель сульфаминовокислый - 420, кобальт сульфаминовокислый - 27, никель хлористый - 10, борная кислота - 30, лаурилсульфат натрия - 0,1.

ПКХП наносили при давлении 85 Па в потоке аргона и температуре осаждения 480°C.

Скорость осаждения промежуточного слоя никель-кобальтового сплава составила 0,6 мкм/мин.

Пример 6

Покрытие наносили на образец из алюминиевого сплава АЛ26 размером 50×25 мм.

Промежуточный слой сплава никель-кобальт наносили при нестационарном токовом режиме с плотностью тока 15 А/дм2, скважности 30%, частоте импульсов 30 Гц, температуре 55°C в сульфаминовокислом электролите следующего состава, г/л: никель сульфаминовокислый - 450, кобальт сульфаминовокислый - 27, никель хлористый - 10, борная кислота - 30, лаурилсульфат натрия - 0,1.

ПКХП наносили при давлении 15 Па и температуре осаждения 500°C.

Скорость осаждения промежуточного слоя никель-кобальтового сплава составила 0,9 мкм/мин.

Пример 7

Покрытие наносили на образец из алюминиевого сплава АЛ25 размером 50×25 мм.

Промежуточный слой сплава никель-кобальт наносили при стационарном токовом режиме с плотностью тока 2 А/дм2, температуре 35°C в сернокислом электролите следующего состава, г/л: никель сернокислый - 200, кобальт сернокислый - 24, натрий хлористый - 2, кислота борная - 35, калий надсернокислый - 1, натрий сернокислый - 40, натрий фтористый - 2.

ПКХП наносили при давлении 20 Па и температуре осаждения 460°C.

Скорость осаждения промежуточного слоя никель-кобальтового сплава составила 0,3 мкм/мин.

Пример 8

Покрытие наносили на образец из алюминиевого сплава АЛ25 размером 50×25 мм.

Промежуточный слой никеля наносили при нестационарном токовом режиме с плотностью тока 6 А/дм2, скважности 20%, частоте импульсов 30 Гц, температуре 40°C в сульфатном электролите следующего состава, г/л: сульфат никеля - 300, никель хлористый - 40, борная кислота - 30.

ПКХП наносили при давлении 15 Па и температуре осаждения 480°C.

Скорость осаждения промежуточного слоя никель-кобальтового сплава составила 0,6 мкм/мин.

Пример 9

Покрытие наносили на образец из алюминиевого сплава АЛ26 размером 50×25 мм.

Промежуточный слой никеля наносили при нестационарном токовом режиме с плотностью тока 15 А/дм2, скважности 30%, частоте импульсов 30 Гц, температуре 55°C в сульфаминовокислом электролите следующего состава, г/л: никель сульфаминовокислый - 290, никель хлористый - 13, борная кислота - 37, лаурилсульфат натрия - 0,1, сахарин - 0,7.

ПКХП наносили при давлении 15 Па и температуре осаждения 500°C.

Скорость осаждения промежуточного слоя никель-кобальтового сплава составила 0,8 мкм/мин.

Как видно из полученных данных, в отличие от прототипа, покрытие, полученное предложенным способом на алюминиевых сплавах с высоким содержанием кремния, обладает сплошностью и хорошей прочностью сцепления с подложкой, что обеспечивает износостойкость деталей при работе в узлах трения.

За счет высокой скорости осаждения промежуточного слоя, а также за счет малой толщины подслоя и ПКХП, предложенный способ позволяет снизить время процесса, что соответственно приводит к сокращению энерго- и трудозатрат.

Источник поступления информации: Роспатент

Showing 101-110 of 367 items.
20.01.2016
№216.013.a3ad

Способ получения изделий из алюминиевых сплавов

Изобретение относится к области металлургии, а именно к технологии получения изделий методом горячей деформации алюминиевых сплавов, преимущественно высокопрочных и жаропрочных, для использования главным образом в авиакосмической технике и транспортном машиностроении. Способ получения изделия...
Тип: Изобретение
Номер охранного документа: 0002573543
Дата охранного документа: 20.01.2016
27.02.2016
№216.014.c0c5

Сплав на основе алюминия

Изобретение относится к области цветной металлургии, в частности к термически неупрочняемым алюминиевым сплавам системы алюминий - магний, и может быть использовано для изготовления высоконагруженных элементов изделий. Сплав на основе алюминия содержит, мас.%: магний 5,0-5,8, скандий 0,15-0,28,...
Тип: Изобретение
Номер охранного документа: 0002576286
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c12c

Способ термической обработки изделий из высокопрочных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении. Способ...
Тип: Изобретение
Номер охранного документа: 0002576283
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c152

Холоднотвердеющая смесь для изготовления форм и стержней

Изобретение относится к литейному производству и может быть использовано при литье алюминиевых и магниевых сплавов. Холоднотвердеющая смесь содержит, мас.ч.: кремнезем - 100, карбамидная смола - 2,1-3,5, ортофосфорная кислота - 0,5-1,3, по меньшей мере, одно соединение бора - 0,1-0,3, и...
Тип: Изобретение
Номер охранного документа: 0002576289
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c1ff

Композиция для антикоррозионного покрытия

Изобретение относится к области полимерных композиций на основе модифицированных олигомеров для защиты конструкций из алюминиевых сплавов, стали и углепластика при температурах эксплуатации от -60°С до 150°С и может быть использовано в авиационной промышленности. Полимерная композиция для...
Тип: Изобретение
Номер охранного документа: 0002574512
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c32c

Способ изготовления деталей из полимерных композиционных материалов

Изобретение относится к области изготовления деталей и элементов конструкций из полимерных композиционных материалов (ПКМ) методом послойной выкладки и может быть использовано в автомобиле-, судостроении и в авиационной промышленности, в частности при изготовлении мотогондол двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002574269
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c393

Малодеформационная закалка алюминиевых сплавов

Изобретение относится к области термической обработки металлов и сплавов, а именно к закалке сложноконтурных деталей и полуфабрикатов из сплавов на основе алюминия, широко используемых в авиационной и ракетной технике и других изделиях машиностроения в качестве конструкционных основных...
Тип: Изобретение
Номер охранного документа: 0002574928
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c394

Способ получения упрочняющих многослойных покрытий

Изобретение относится к способу получения покрытия на поверхности металлического изделия и может быть использовано для обработки поверхностей лопаток компрессора газотурбинных двигателей и установок. Размещают изделие и токопроводящий материал в зоне обработки и создают вакуум. Подают...
Тип: Изобретение
Номер охранного документа: 0002574542
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c82a

Герметизирующая композиция для ленточного герметика

Изобретение относится к герметизирующим материалам на основе полисульфидного олигомера и может быть использовано в машиностроении, нефтеперерабатывающей, авиастроительной, судостроительной отраслях промышленности. Предложена композиция для ленточного герметика, включающая следующие компоненты,...
Тип: Изобретение
Номер охранного документа: 0002578157
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c83e

Магнитный материал для постоянных магнитов и изделие, выполненное из него

Группа изобретений относится к области порошковой металлургии, а именно к магнитным (магнитотвердым) материалам для постоянных магнитов на основе редкоземельных элементов и к изделиям, выполненным из таких материалов, и может быть использована в авиационной промышленности. Предложен магнитный...
Тип: Изобретение
Номер охранного документа: 0002578211
Дата охранного документа: 27.03.2016
Showing 101-110 of 336 items.
20.01.2016
№216.013.a3ad

Способ получения изделий из алюминиевых сплавов

Изобретение относится к области металлургии, а именно к технологии получения изделий методом горячей деформации алюминиевых сплавов, преимущественно высокопрочных и жаропрочных, для использования главным образом в авиакосмической технике и транспортном машиностроении. Способ получения изделия...
Тип: Изобретение
Номер охранного документа: 0002573543
Дата охранного документа: 20.01.2016
27.02.2016
№216.014.c0c5

Сплав на основе алюминия

Изобретение относится к области цветной металлургии, в частности к термически неупрочняемым алюминиевым сплавам системы алюминий - магний, и может быть использовано для изготовления высоконагруженных элементов изделий. Сплав на основе алюминия содержит, мас.%: магний 5,0-5,8, скандий 0,15-0,28,...
Тип: Изобретение
Номер охранного документа: 0002576286
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c12c

Способ термической обработки изделий из высокопрочных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении. Способ...
Тип: Изобретение
Номер охранного документа: 0002576283
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c152

Холоднотвердеющая смесь для изготовления форм и стержней

Изобретение относится к литейному производству и может быть использовано при литье алюминиевых и магниевых сплавов. Холоднотвердеющая смесь содержит, мас.ч.: кремнезем - 100, карбамидная смола - 2,1-3,5, ортофосфорная кислота - 0,5-1,3, по меньшей мере, одно соединение бора - 0,1-0,3, и...
Тип: Изобретение
Номер охранного документа: 0002576289
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c1ff

Композиция для антикоррозионного покрытия

Изобретение относится к области полимерных композиций на основе модифицированных олигомеров для защиты конструкций из алюминиевых сплавов, стали и углепластика при температурах эксплуатации от -60°С до 150°С и может быть использовано в авиационной промышленности. Полимерная композиция для...
Тип: Изобретение
Номер охранного документа: 0002574512
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c32c

Способ изготовления деталей из полимерных композиционных материалов

Изобретение относится к области изготовления деталей и элементов конструкций из полимерных композиционных материалов (ПКМ) методом послойной выкладки и может быть использовано в автомобиле-, судостроении и в авиационной промышленности, в частности при изготовлении мотогондол двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002574269
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c393

Малодеформационная закалка алюминиевых сплавов

Изобретение относится к области термической обработки металлов и сплавов, а именно к закалке сложноконтурных деталей и полуфабрикатов из сплавов на основе алюминия, широко используемых в авиационной и ракетной технике и других изделиях машиностроения в качестве конструкционных основных...
Тип: Изобретение
Номер охранного документа: 0002574928
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c394

Способ получения упрочняющих многослойных покрытий

Изобретение относится к способу получения покрытия на поверхности металлического изделия и может быть использовано для обработки поверхностей лопаток компрессора газотурбинных двигателей и установок. Размещают изделие и токопроводящий материал в зоне обработки и создают вакуум. Подают...
Тип: Изобретение
Номер охранного документа: 0002574542
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c82a

Герметизирующая композиция для ленточного герметика

Изобретение относится к герметизирующим материалам на основе полисульфидного олигомера и может быть использовано в машиностроении, нефтеперерабатывающей, авиастроительной, судостроительной отраслях промышленности. Предложена композиция для ленточного герметика, включающая следующие компоненты,...
Тип: Изобретение
Номер охранного документа: 0002578157
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c83e

Магнитный материал для постоянных магнитов и изделие, выполненное из него

Группа изобретений относится к области порошковой металлургии, а именно к магнитным (магнитотвердым) материалам для постоянных магнитов на основе редкоземельных элементов и к изделиям, выполненным из таких материалов, и может быть использована в авиационной промышленности. Предложен магнитный...
Тип: Изобретение
Номер охранного документа: 0002578211
Дата охранного документа: 27.03.2016
+ добавить свой РИД