×
20.11.2015
216.013.92b2

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРОТОНОВ В ПРОТОН-ПРОВОДЯЩИХ ОКСИДНЫХ МАТЕРИАЛАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода. Способ определения концентрации протонов в протон-проводящих оксидах заключается в том, что образец оксида помещают в реактор, соединенный с газовым контуром, сушат при нагреве до температуры 900÷1000°C. Затем меняют газовую фазу на атмосферу, содержащую водород, регистрируют изменение во времени значения параметра оксида, напрямую связанного с изменением количества протонов в оксиде, достигая состояния равновесия оксида с газовой фазой, и на основании полученного равновесного значения параметра оксида производят расчет концентрации протонов в протон-проводящем оксиде как количества вещества водорода в оксиде, отнесенного к одному молю оксида. При этом в качестве параметра оксида, напрямую связанного с изменением количества протонов в протон-проводящем оксиде, используют значение давления водорода над оксидом в замкнутом газовом контуре постоянного объема, для этого образец помещают в реактор, вакуумплотно соединенный с газовым контуром, изолированным от атмосферы. Далее откачивают газовый контур с реактором на высокий вакуум и сушат образец, выдерживая его при температуре осушки до установления остаточного давления не более 10 Па. Затем перекрывают вакуумплотное соединение реактора с газовым контуром, напускают в контур водород высокой чистоты до заданного давления, открывают вакуумплотное соединение реактора с газовым контуром и после мгновенного установления общего давления водорода в системе «реактор-газовый контур» регистрируют изменение значения давления водорода над образцом во времени, достигая состояния равновесия оксида с газовой фазой, и на основании разницы давления водорода, установившегося сразу после открытия вакуумплотного соединения, и полученного равновесного значения давления водорода над образцом производят расчет концентрации протонов в протон-проводящем оксиде. Техническим результатом является повышение степени осушки исследуемых образцов, повышение точности измерения концентрации протонов в атмосфере сухого водорода, а также сокращение расхода водорода. 2 ил.
Основные результаты: Способ определения концентрации протонов в протон-проводящих оксидах, в котором образец исследуемого оксида помещают в реактор, соединенный с газовым контуром, сушат при нагреве до температуры 900÷1000°C, затем меняют газовую фазу на атмосферу, содержащую водород, регистрируют изменение во времени значения параметра оксида, напрямую связанного с изменением количества протонов в оксиде, достигая состояния равновесия оксида с газовой фазой, и на основании полученного равновесного значения параметра оксида производят расчет концентрации протонов в протон-проводящем оксиде как количества вещества водорода в оксиде, отнесенного к одному молю оксида, отличающийся тем, что в качестве параметра оксида, напрямую связанного с изменением количества протонов в протон-проводящем оксиде, используют значение давления водорода над оксидом в замкнутом газовом контуре постоянного объема, для этого образец помещают в реактор, вакуумплотно соединенный с газовым контуром, изолированным от атмосферы, откачивают газовый контур с реактором на высокий вакуум и сушат образец, выдерживая его при температуре осушки до установления остаточного давления не более 10 Па, затем перекрывают вакуумплотное соединение реактора с газовым контуром, напускают в контур водород высокой чистоты до заданного давления, открывают вакуумплотное соединение реактора с газовым контуром и после мгновенного установления общего давления водорода в системе «реактор-газовый контур» регистрируют изменение значения давления водорода над образцом во времени, достигая состояния равновесия оксида с газовой фазой, и на основании разницы давления водорода, установившегося сразу после открытия вакуумплотного соединения, и полученного равновесного значения давления водорода над образцом производят расчет концентрации протонов в протон-проводящем оксиде.

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода.

Известен способ определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере «вода-водород», то есть в атмосфере влажного водорода, включающий использование метода термогравиметрического анализа с генератором водяного пара (Kreuer, K.D. Proton-Conducting Oxides. Annual Review of Material Research (2003) 33: 333-359) [1]. Согласно этому способу, исследуемый образец оксидного протон-проводящего материала помещают в реактор, соединенный с газовым контуром термоанализатора, сообщающимся с атмосферой, до начала эксперимента по растворимости водорода образец исследуемого материала сушат, продувая воздух или кислород над образцом через трубку с каким-либо из адсорбентов водяного пара, например цеолитами, пентоксидом фосфора и др. Температура осушки составляет 900÷1000°C. После осушки посредством регуляторов расхода газов проточную систему «реактор-газовый контур» продувают газовой смесью, содержащей водород и водяные пары, создаваемые парогенератором. Задавая скорость движения газов с помощью регуляторов расхода газов, можно добиться получения смеси с необходимым соотношением концентраций водорода и паров воды.

В результате происходит растворение водорода в оксиде, что влечет за собой увеличение массы образца. С помощью весов регистрируют изменение массы образца во времени, дожидаясь состояния равновесия, а затем производят расчет концентрации протонов в оксиде, численно равной количеству вещества протонов в одном моле оксида. Использование в качестве осушителей адсорбентов водяного пара, таких как цеолиты, пентоксид фосфора и других, позволяет получить остаточное давление водяных паров не менее нескольких единиц, а то и десятков паскалей, что бывает крайне недостаточно для полной осушки образцов, особенно для тех, в которых растворимость водорода довольно низкая. Не досушенные таким образом образцы могут содержать растворенный водород, что может привести к существенному «занижению» результатов измерений.

Кроме того, проточная система «реактор-газовый контур» требует большого расхода газов для длительной продувки водородсодержащей смеси при организации эксперимента.

Описанный способ с использованием метода термогравиметрического анализа позволяет определять концентрацию протонов в атмосфере влажного водорода, однако не дает возможности провести измерения в атмосфере сухого водорода, т.е. не содержащего пары воды, поскольку технически невозможно в достаточной степени высушить газовый контур, термоанализатор, а также газовые магистрали. Таким образом, всегда остается слабо контролируемое количество воды, точное количество которой определить практически невозможно.

Задача настоящего изобретения заключается в создании возможности измерения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода при повышении точности измерения концентрации протонов за счет глубокой степени осушки образца, а также в снижении расхода водорода.

Для решения поставленной задачи в способе определения концентрации протонов в протон-проводящих оксидных материалах образец исследуемого оксида помещают в реактор, соединенный с газовым контуром, сушат при нагреве до температуры 900÷1000°C, затем меняют газовую фазу на атмосферу, содержащую водород, регистрируют изменение во времени значения параметра оксида, напрямую связанного с изменением количества протонов в оксиде, достигая состояния равновесия оксида с газовой фазой, и на основании полученного равновесного значения параметра оксида производят расчет концентрации протонов в протон-проводящем оксиде как количества вещества водорода в оксиде, отнесенного к одному молю оксида, отличающийся тем, что в качестве параметра оксида, напрямую связанного с изменением количества протонов в протон-проводящем оксиде, используют значение давления водорода над оксидом в замкнутом газовом контуре постоянного объема, для этого образец помещают в реактор, вакуумплотно соединенный с газовым контуром, изолированным от атмосферы, откачивают газовый контур с реактором на высокий вакуум и сушат образец, выдерживая его при температуре осушки до установления остаточного давления не более 10 Па, затем перекрывают вакуумплотное соединение реактора с газовым контуром, напускают в контур водород высокой чистоты до заданного давления, открывают вакуумплотное соединение реактора с газовым контуром и после мгновенного установления общего давления водорода в системе «реактор-газовый контур» регистрируют изменение значения давления водорода над образцом во времени, достигая состояния равновесия оксида с газовой фазой, и на основании разницы давления водорода, установившегося сразу после открытия вакуумплотного соединения, и полученного равновесного значения давления водорода над образцом производят расчет концентрации протонов в протон-проводящем оксиде.

В отличие от способа по прототипу с применением метода термогравиметрического анализа, где в качестве параметра, напрямую указывающего на изменение концентрации протонов в протон-проводящем оксиде, используется изменение массы образца во времени, добиваясь состояния равновесия образца с газовой фазой, в заявленном способе в качестве такого параметра используется величина давления водорода над образцом в замкнутом газовом контуре постоянного объема. Метод релаксации давления водорода заключается в том, что вначале проводят глубокую осушку образца протон-проводящего оксида, для этого образец нагревают до температуры 900÷1100°C и выдерживают при постоянной откачке на высокий вакуум, оставляя открытым вакуумплотное соединение, добиваясь установления остаточного давления не более 10-7 Па. Затем вакуумплотное соединение перекрывают и в оставшуюся часть контура напускают водород высокой чистоты до заданного давления, после чего вакуумплотное соединение открывают. Величина давления, которую задают для проведения измерений, может быть любой в диапазоне от 10-1 до 105 Па.

В результате после мгновенного установления общего давления водорода в системе «реактор-газовый контур» происходит медленное растворение водорода в протон-проводящем оксиде, при этом водород проникает в образец оксида, а давление водорода уменьшается.

Таким образом, с помощью метода релаксации давления водорода регистрируют изменение во времени значения давления водорода, напрямую связанного с изменением количества протонов в оксиде, так как образец находится в замкнутом газовом контуре постоянного объема. Однако, в отличие от метода термогравиметрического анализа, где используют проточную систему для продувки водородсодержащей газовой смеси, метод релаксации давления водорода реализуют с использованием реактора, вакуумплотно соединенного с газовым контуром, изолированным от атмосферы, в котором можно создать высокий вакуум и любое давление водорода в диапазоне от 10-1 до 105 Па. Откачка газового контура с реактором на высокий вакуум при открытом вакуумплотном соединении реактора с газовым контуром позволяет произвести осушку образца протон-проводящего оксида при температуре 900÷1100°C до остаточного давления 10 Па, что существенно ниже по сравнению с сушкой в проточной системе в атмосфере воздуха над адсорбентами водяного пара, такими как цеолиты, пентоксид фосфора и др. Это предотвращает искажение результатов измерений, обусловливаемое недостаточной осушкой образцов, что важно особенно для образцов с низкой растворимостью водорода.

Вакуумплотно перекрывая сообщение реактора с газовым контуром и напуская в контур водород высокой чистоты, задают необходимое давление водорода над образцом после открытия вакуумплотного соединения.

Использование водорода высокой чистоты вместо водородсодержащей смеси, применяемой в термогравиметрическом методе анализа, позволяет проводить измерение в атмосфере сухого водорода. В методе релаксации давления парциальное давление водорода равно абсолютному, поэтому в заявленном способе применим датчик общего давления, работающий с абсолютными давлениями при комнатной температуре. Это позволяет регистрировать изменения давления водорода в атмосфере сухого водорода. Использование для реализации метода релаксации замкнутого газового контура, изолированного от атмосферы с возможностью его откачивания на высокий вакуум, позволяет экономно расходовать водород.

Таким образом, новый технический результат, достигаемый заявленным способом, заключается в повышении степени осушки исследуемых образцов, повышении точности измерения концентрации протонов в атмосфере сухого водорода, сокращении расхода водорода.

Изобретение иллюстрируется чертежами, где на фиг.1 приведена принципиальная схема экспериментальной установки для реализации способа; на фиг.2 приведена кривая зависимости давления от времени, иллюстрирующая метод релаксации давления.

Экспериментальная установка состоит из двух частей: газовый контур 1, который посредством вакуумного крана 2 вакуумплотно соединен с кварцевым реактором 3. В реактор 3 помещают образец 4. Реактор помещен в печь (не показана). Газовый контур 1 имеет трехступенчатую систему откачки. Откачку на форвакуум осуществляют с помощью диафрагменного насоса 5, остаточное давление при этом составляет порядка 10-1 Па. Вторую ступень откачки осуществляют с помощью турбомолекулярного насоса 6, остаточное давление при этом составляет порядка 10-5 Па. Третью ступень откачки осуществляют с помощью высоковакуумного магниторазрядного насоса 7, при этом достигается остаточное давление порядка 10-8 Па. Установка содержит датчики давления Баярда-Альперта Пирани 8, систему напуска водорода 9, баллон с кислородом высокой чистоты 10.

Давление газа в контуре 1 измеряли с помощью датчиков Баярда-Альперта Пирани 8, откалиброванных на диапазон давлений от 10-8 до 105 Па. Напуск водорода в контур 1 осуществляли с помощью системы напуска 9 из баллона 10. Для вакуумплотного соединения реактора с газовым контуром использовали вакуумные краны типа All-Metal UHV Valves с натеканием по гелию не более чем 10-4 Па·см3/с. Работу печи реактора 3 обеспечивали с помощью терморегулятора Термодат-19Е5. Тип использованной термопары - ТПП.

В ходе эксперимента использовали водород высокой чистоты. После размещения исследуемого образца в реакторе при комнатной температуре проводили откачку газового контура на высокий вакуум.

До начала эксперимента по реализации метода релаксации давления водорода проводили глубокую осушку образца протон-проводящего оксида. Для этого образец нагревали до температуры 900°C и выдерживали в течение трех-четырех суток при постоянной откачке на высокий вакуум, оставляя открытым вакуумплотное соединение, добиваясь остаточного давления не более 10-7 Па. Затем вакуумплотное соединение перекрывали и в оставшуюся часть контура напускали водород высокой чистоты до нужного давления. После этого вакуумплотное соединение открывали и регистрировали изменение во времени значения давления водорода (фиг. 2), добиваясь состояния равновесия образца оксида с газовой фазой. Критерием установившегося состояния равновесия служило значение стандартного отклонения давления для 1000 последних записанных точек от их среднего значения, которое не превышало 1 Па. На основании разницы давления водорода, установившегося сразу после открытия вакуумплотного соединения, и полученного равновесного значения давления водорода над образцом, производят расчет концентрации протонов в протон-проводящем оксиде, как количества вещества водорода в оксиде, отнесенного к одному молю оксида.

Момент открытия реактора считается началом эксперимента с применением метода релаксации давления водорода.

Заявленный способ позволяет расширить диапазон средств для измерения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода, повысить точность измерения концентрации протонов за счет глубокой степени осушки образца, сократить расход водорода.

Способ определения концентрации протонов в протон-проводящих оксидах, в котором образец исследуемого оксида помещают в реактор, соединенный с газовым контуром, сушат при нагреве до температуры 900÷1000°C, затем меняют газовую фазу на атмосферу, содержащую водород, регистрируют изменение во времени значения параметра оксида, напрямую связанного с изменением количества протонов в оксиде, достигая состояния равновесия оксида с газовой фазой, и на основании полученного равновесного значения параметра оксида производят расчет концентрации протонов в протон-проводящем оксиде как количества вещества водорода в оксиде, отнесенного к одному молю оксида, отличающийся тем, что в качестве параметра оксида, напрямую связанного с изменением количества протонов в протон-проводящем оксиде, используют значение давления водорода над оксидом в замкнутом газовом контуре постоянного объема, для этого образец помещают в реактор, вакуумплотно соединенный с газовым контуром, изолированным от атмосферы, откачивают газовый контур с реактором на высокий вакуум и сушат образец, выдерживая его при температуре осушки до установления остаточного давления не более 10 Па, затем перекрывают вакуумплотное соединение реактора с газовым контуром, напускают в контур водород высокой чистоты до заданного давления, открывают вакуумплотное соединение реактора с газовым контуром и после мгновенного установления общего давления водорода в системе «реактор-газовый контур» регистрируют изменение значения давления водорода над образцом во времени, достигая состояния равновесия оксида с газовой фазой, и на основании разницы давления водорода, установившегося сразу после открытия вакуумплотного соединения, и полученного равновесного значения давления водорода над образцом производят расчет концентрации протонов в протон-проводящем оксиде.
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРОТОНОВ В ПРОТОН-ПРОВОДЯЩИХ ОКСИДНЫХ МАТЕРИАЛАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРОТОНОВ В ПРОТОН-ПРОВОДЯЩИХ ОКСИДНЫХ МАТЕРИАЛАХ
Источник поступления информации: Роспатент

Showing 21-30 of 96 items.
20.08.2014
№216.012.ebfc

Чувствительный элемент электрохимического датчика водорода в газовых смесях

Чувствительный элемент электрохимического датчика водорода в газовых смесях. Может быть использован для измерения концентрации водорода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика водорода в газовых смесях, выполненный в виде таблетки из твердого электролита,...
Тип: Изобретение
Номер охранного документа: 0002526220
Дата охранного документа: 20.08.2014
27.10.2014
№216.013.02e5

Способ измерения кислорода в газовых средах

Использование: для измерения концентрации кислорода в газовых смесях различного состава. Сущность изобретения заключается в том, что используют ячейку с полостью, образованную кислородопроводящим твердым электролитом, на противоположных поверхностях электролита расположены электроды, включая...
Тип: Изобретение
Номер охранного документа: 0002532139
Дата охранного документа: 27.10.2014
10.01.2015
№216.013.1832

Состав шихты для изготовления оксидно-металлического инертного анода

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих,...
Тип: Изобретение
Номер охранного документа: 0002537622
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1833

Способ синтеза микро- и нанокомпозиционных алюминий-углеродных материалов

Изобретение относится к способу получения алюминий-углеродных композиционных материалов, которые могут найти применение в авиационной, космической и электротехнической промышленности, а также в производстве шарикоподшипников нового поколения. Способ характеризуется тем, что алюминий или...
Тип: Изобретение
Номер охранного документа: 0002537623
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1868

Способ электрохимического получения алюминий-титановой лигатуры для коррозионностойких алюминиевых сплавов

Изобретение относится к электрохимическому получению лигатурных алюминий-титановых сплавов и может быть использовано для получения коррозионно-стойких алюминиевых сплавов. Способ включает химическое активирование поверхности титана в расплавленных фторидах щелочных металлов и/или калиевом...
Тип: Изобретение
Номер охранного документа: 0002537676
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a0b

Электрохимический генератор с твердым электролитом

Изобретение относится к устройству электрохимического генератора с твердым электролитом, преимущественно для генераторов малой и средней мощности до 15÷20 кВт. Указанный генератор содержит заключенные в корпус с теплоизолирующими стенками, рабочую камеру с батареей топливных элементов, камеру...
Тип: Изобретение
Номер охранного документа: 0002538095
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1fd8

Электрохимический способ получения порошка гексаборида кальция

Изобретение относится к электрохимическому способу получения порошка гексаборида кальция, включающему электролиз солевого расплава, содержащего кальций- и борсодержащие компоненты. Способ характеризуется тем, что используют солевой расплав, содержащий хлорид кальция с добавками оксида кальция и...
Тип: Изобретение
Номер охранного документа: 0002539593
Дата охранного документа: 20.01.2015
10.02.2015
№216.013.2325

Способ измерения кислородосодержания и влажности газа

Изобретение относится к аналитической технике и может быть использовано для измерения кислородосодержания и влажности газов. Способ измерения кислородосодержания и влажности газа. В поток анализируемого газа помещают электрохимическую ячейку с полостью, образованную двумя дисками из...
Тип: Изобретение
Номер охранного документа: 0002540450
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2c14

Способ изготовления пористых катодных материалов на основе манганита лантана-стронция

Изобретение относится к области электротехники, а именно к способу изготовления пористых катодных материалов на основе манганита лантана-стронция, и может быть использовано для изготовления твердооксидных топливных элементов (ТОТЭ), работающих при высоких температурах. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002542752
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2d53

Способ изготовления электродов электрохимических устройств с твердым электролитом

Изобретение относится к области электротехники, а именно к способу изготовления электродов электрохимических устройств с твердым электролитом. Снижение поляризационного сопротивления электрода, а также улучшение протекания электродных реакций газообмена является техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002543071
Дата охранного документа: 27.02.2015
Showing 21-30 of 63 items.
20.08.2014
№216.012.ebfc

Чувствительный элемент электрохимического датчика водорода в газовых смесях

Чувствительный элемент электрохимического датчика водорода в газовых смесях. Может быть использован для измерения концентрации водорода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика водорода в газовых смесях, выполненный в виде таблетки из твердого электролита,...
Тип: Изобретение
Номер охранного документа: 0002526220
Дата охранного документа: 20.08.2014
27.10.2014
№216.013.02e5

Способ измерения кислорода в газовых средах

Использование: для измерения концентрации кислорода в газовых смесях различного состава. Сущность изобретения заключается в том, что используют ячейку с полостью, образованную кислородопроводящим твердым электролитом, на противоположных поверхностях электролита расположены электроды, включая...
Тип: Изобретение
Номер охранного документа: 0002532139
Дата охранного документа: 27.10.2014
10.01.2015
№216.013.1832

Состав шихты для изготовления оксидно-металлического инертного анода

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих,...
Тип: Изобретение
Номер охранного документа: 0002537622
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1833

Способ синтеза микро- и нанокомпозиционных алюминий-углеродных материалов

Изобретение относится к способу получения алюминий-углеродных композиционных материалов, которые могут найти применение в авиационной, космической и электротехнической промышленности, а также в производстве шарикоподшипников нового поколения. Способ характеризуется тем, что алюминий или...
Тип: Изобретение
Номер охранного документа: 0002537623
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1868

Способ электрохимического получения алюминий-титановой лигатуры для коррозионностойких алюминиевых сплавов

Изобретение относится к электрохимическому получению лигатурных алюминий-титановых сплавов и может быть использовано для получения коррозионно-стойких алюминиевых сплавов. Способ включает химическое активирование поверхности титана в расплавленных фторидах щелочных металлов и/или калиевом...
Тип: Изобретение
Номер охранного документа: 0002537676
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a0b

Электрохимический генератор с твердым электролитом

Изобретение относится к устройству электрохимического генератора с твердым электролитом, преимущественно для генераторов малой и средней мощности до 15÷20 кВт. Указанный генератор содержит заключенные в корпус с теплоизолирующими стенками, рабочую камеру с батареей топливных элементов, камеру...
Тип: Изобретение
Номер охранного документа: 0002538095
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1fd8

Электрохимический способ получения порошка гексаборида кальция

Изобретение относится к электрохимическому способу получения порошка гексаборида кальция, включающему электролиз солевого расплава, содержащего кальций- и борсодержащие компоненты. Способ характеризуется тем, что используют солевой расплав, содержащий хлорид кальция с добавками оксида кальция и...
Тип: Изобретение
Номер охранного документа: 0002539593
Дата охранного документа: 20.01.2015
10.02.2015
№216.013.2325

Способ измерения кислородосодержания и влажности газа

Изобретение относится к аналитической технике и может быть использовано для измерения кислородосодержания и влажности газов. Способ измерения кислородосодержания и влажности газа. В поток анализируемого газа помещают электрохимическую ячейку с полостью, образованную двумя дисками из...
Тип: Изобретение
Номер охранного документа: 0002540450
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2c14

Способ изготовления пористых катодных материалов на основе манганита лантана-стронция

Изобретение относится к области электротехники, а именно к способу изготовления пористых катодных материалов на основе манганита лантана-стронция, и может быть использовано для изготовления твердооксидных топливных элементов (ТОТЭ), работающих при высоких температурах. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002542752
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2d53

Способ изготовления электродов электрохимических устройств с твердым электролитом

Изобретение относится к области электротехники, а именно к способу изготовления электродов электрохимических устройств с твердым электролитом. Снижение поляризационного сопротивления электрода, а также улучшение протекания электродных реакций газообмена является техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002543071
Дата охранного документа: 27.02.2015
+ добавить свой РИД