×
20.11.2015
216.013.9101

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ ГАЗОСБОРНОГО ШЛЕЙФА В АСУ ТП УСТАНОВОК КОМПЛЕКСНОЙ ПОДГОТОВКИ ГАЗА ГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ КРАЙНЕГО СЕВЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области добычи природного газа и, в частности, к определению коэффициента фактического гидравлического сопротивления газосборного шлейфа. Автоматизированная система управления технологическими процессами газового промысла в реальном масштабе времени контролирует значение коэффициента эффективности эксплуатации газопромыслового шлейфа Е по паспортным параметрам шлейфа, данным по его эксплуатации и контролируемым технологическим параметрам. Если значение коэффициента Е вышло за допустимые границы, то констатируют: нормальный режим работы скважин и шлейфа нарушены (в шлейфе кроме газа присутствует выше допустимой нормы иной фактор: газовый гидрат, пластовая вода, механические примеси). Способ позволяет оперативно выявлять потенциальную возможность отказа газосборного шлейфа.
Основные результаты: Способ определения коэффициента гидравлического сопротивления газосборного шлейфа в автоматизированной системе управления технологическими процессами (АСУ ТП) установок комплексной подготовки газа газоконденсатных месторождений Крайнего Севера, включающий учет паспортных параметров шлейфа и данные по его эксплуатации, в том числе теоретический коэффициент гидравлического сопротивления газосборного шлейфа λ, отличающийся тем, что средствами АСУ ТП и телеметрии кустов газовых скважин измеряют с заданным шагом квантования базовые параметры работы газосборного шлейфа, включающие: давление p и p, температуру газа t и t в начале и в конце газосборного шлейфа соответственно; объемный расход газа в нормальных условиях Q, который транспортируется по газосборному шлейфу, значения которых автоматически вводят в базу данных (БД) АСУ ТП, а также в БД вводят паспортные характеристики газосборного шлейфа, и вычислительный комплекс АСУ ТП определяет по автоматически вводимым и введенным в БД параметрам фактическое значение коэффициента гидравлического сопротивления газосборного шлейфа в реальном масштабе времени, используя для этого алгоритм, описываемый соотношением где d - внутренний диаметр газопровода;p, p - давление газа в начале и конце газосборного шлейфа соответственно;Q - объемный расход газа в нормальных условиях, который транспортируется по газосборному шлейфу;Δ - относительная плотность газа в нормальных условиях;t - средняя температура газа в газосборном шлейфе;z - коэффициент сверхсжимаемости газа в рабочих условиях;l - длина газопровода,а затем АСУ ТП, используя вычисленное значение λ, определяет коэффициент эффективности эксплуатации газопромыслового шлейфа, используя алгоритм, описываемый соотношением и заносит полученные величины λ и Е в свою БД, а также одновременно выводит значение E на пульт оператора, после чего по величине E, индивидуальной для каждого газосборного шлейфа, судят о загрязненности конкретного газопромыслового шлейфа и о коэффициенте эффективности его эксплуатации - загрязненности его внутренней поверхности.

Изобретение относится к области добычи природного газа, в частности к определению фактического коэффициента гидравлического сопротивления газосборного шлейфа λф в автоматизированных системах управления технологическими процессами (АСУ ТП) установок комплексной подготовки газа (УКПГ) газоконденсатных месторождений Крайнего Севера.

Известен способ определения коэффициента гидравлического сопротивления газосборного шлейфа по паспортным параметрам шлейфа и данным по его эксплуатации (см. Бекиров Т.М., Шаталов А.Т. Сбор и подготовка к транспорту природных газов. - М.: Недра, 1986. - 261 с.).

Существенным недостатком указанного способа является крайняя низкая точность определения значения коэффициента гидравлического сопротивления газосборного шлейфа, и без учета того факта, что с течением времени значение указанного коэффициента изменяется.

В указанном способе значение коэффициента гидравлического сопротивления газосборного шлейфа определяют аналитическим путем (без учета влияния дополнительных местных сопротивлений, создаваемых подкладными кольцами, кранами и переходами) по формуле (см. стр. 48, формула (III.9), Бекиров Т.М., Шаталов А.Т. Сбор и подготовка к транспорту природных газов. - М.: Недра, 1986. - 261 с.):

где Re - критерий Рейнольдса;

Kш - шероховатость стен газосборного шлейфа;

dвн - внутренний диаметр газопровода.

Изменение шероховатости внутренних стен газосборного шлейфа в период эксплуатации в значительной степени зависит от качества транспортируемого газа. Наличие в нем воды, механических примесей и т.д. со временем резко увеличивает шероховатость газосборного шлейфа, которую в реальном масштабе времени во время эксплуатации определить невозможно.

Наиболее близким по технической сущности к заявляемому изобретению является способ определения коэффициента гидравлического сопротивления газосборного шлейфа, который заключается в том, что коэффициент гидравлического сопротивления газосборного шлейфа определяют с учетом паспортных параметров шлейфа и данных по его эксплуатации (см. Новоселов В.Ф., Гольянов А.И., Муфтахов Е.М. Типовые расчеты при проектировании и эксплуатации газопроводов. Учеб. пособие для вузов. - М.: Недра, 1982. 136 с.).

В указанном способе значение коэффициента гидравлического сопротивления газосборного шлейфа определяют с учетом влияния дополнительных местных сопротивлений, создаваемых подкладными кольцами, кранами и переходами. С этой целью используют паспортные данные газосборного шлейфа и аналитическим путем определяют значение коэффициента гидравлического сопротивления трения λтр. по формуле (см. стр. 25, формула (45), Новоселов В.Ф., Гольянов А.И., Муфтахов Е.М. Типовые расчеты при проектировании и эксплуатации газопроводов. Учеб. пособие для вузов. - М.: Недра, 1982. 136 с.):

где Re - критерий Рейнольдса;

k - эквивалентная шероховатость внутренней поверхности газосборного шлейфа;

D - внутренний диаметр газосборного шлейфа.

Для газосборных шлейфов, эксплуатируемых на Крайнем Севере, как правило, выполняется неравенство , и поэтому гидравлическое сопротивление λтр. определяют из соотношения (см. стр. 25, формула (47), Новоселов В.Ф., Гольянов А.И., Муфтахов Е.М. Типовые расчеты при проектировании и эксплуатации газопроводов. Учеб. пособие для вузов. -М.: Недра, 1982. 136 с.):

Для магистральных газопроводов без подкладных колец дополнительные местные сопротивления (краны, переходы) обычно не превышают 2-5% от потерь на трение. Поэтому для технических расчетов коэффициент гидравлического сопротивления определяют из соотношения (см. стр. 27, формула (52), Новоселов В.Ф., Гольянов А.И., Муфтахов Е.М. Типовые расчеты при проектировании и эксплуатации газопроводов. Учебное пособие для вузов. - М.: Недра, 1982. 136 с.):

λ=(1,02÷1,05)λтр.

Существенным недостатком указанного способа является крайняя низкая точность определения значения коэффициента гидравлического сопротивления газосборного шлейфа, так как во время эксплуатации с течением времени значение указанного коэффициента изменяется и определить его значения в реальном масштабе времени невозможно. Именно поэтому фактические значения λф коэффициента гидравлического сопротивления газосборного шлейфа не совпадают с расчетными (теоретическими) значениями λ. Это связано еще и с тем, что в сыром газе имеются влага, мехпримеси и пр. Они во время эксплуатации газосборного шлейфа, оседая на его стенках, вызывают постепенное возрастание его шероховатости. В результате значения λф невозможно определить для шлейфа известными способами и тем более в реальном масштабе времени. Возрастание шероховатости, в свою очередь, приводит к увеличению фактического значения коэффициента гидравлического сопротивления λф газосборного шлейфа. Сильное влияние на значение фактического коэффициента гидравлического сопротивления λф газосборного шлейфа также оказывают скопления в пониженных точках трассы конденсата и влаги, а также образование гидратов в шлейфе, количество которых в газосборном шлейфе в реальном масштабе времени оперативно и точно оценить невозможно.

Целью заявляемого технического решения является устранение указанных недостатков, повышение точности определения фактического значения коэффициента гидравлического сопротивления газосборного шлейфа и контроль его динамики в реальном масштабе времени.

Поставленная задача решается и технический результат достигается за счет того, что коэффициент фактического гидравлического сопротивления газосборного шлейфа λф определяют с учетом паспортных параметров шлейфа и данных по его эксплуатации, в том числе теоретического коэффициента гидравлического сопротивления газосборного шлейфа λ. Также используют контролируемые параметры работы газопромыслового шлейфа:

- давления pн и pк, температуры газа tн и tк, в начале и в конце газосборного шлейфа (на входе установки комплексной подготовки газа) соответственно;

- объемный расход газа в нормальных условиях, который транспортируется по газосборному шлейфу - Q.

Эти параметры измеряют в реальном масштабе времени с заданным шагом квантования посредством технических средств автоматизированной системы управления технологическими процессами (АСУ ТП) установки комплексной подготовки газа (УКПГ) (pк и tк) и с помощью средств телеметрии кустов газовых скважин (pн, tн и Q). Все указанные контролируемые параметры используют для определения фактического значения коэффициента гидравлического сопротивления газосборного шлейфа, определяемого из соотношения:

где dвн - внутренний диаметр газопровода;

pн, pк - давление газа в начале и конце газосборного шлейфа соответственно;

Q - объемный расход газа в нормальных условиях, который транспортируется по газосборному шлейфу;

Δ - относительная плотность газа в нормальных условиях;

tср - средняя температура в газосборном шлейфе;

z - коэффициент сверхсжимаемости газа в рабочих условиях;

l - длина газопровода.

Приведенная формула для определения λф получена из известного соотношения (см. стр. 46, формула (III.7), Бекиров Т.М., Шаталов А.Т. Сбор и подготовка к транспорту природных газов. - М.: Недра, 1986. - 261 с.):

Вычисления производят с использованием текущих значений давлений pк, pн, tн, tк и Q.

Порядок определения значений λ, Δ, tср, z можно найти в соответствующей литературе (например, см. Бекиров Т.М., Шаталов А.Т. Сбор и подготовка к транспорту природных газов. - М: Недра, 1986. - 261 с.).

После того как будет определено значение λф, его сравнивают с максимально допустимым для λф значением - λдоп, и если будет выявлено что λфдоп, то устанавливают факт - нормальный режим работы скважин и/или газосборного шлейфа нарушен, т.к. в газосборном шлейфе кроме газа присутствует выше допустимой нормы иной фактор (газовый гидрат, пластовая вода, механические примеси и т.д.), и принимают соответствующие превентивные меры по предупреждению потенциальных аварийных и других нештатных ситуаций в работе кустов скважин и газосборного шлейфа.

Дополнительно определяют коэффициент эффективности функционирования газопромыслового шлейфа, который вычисляют из выражения:

Полученные величины λф и Е АСУ ТП заносит в свою базу данных и выводит значение E на пульт оператора. После этого по величине E, индивидуальной для каждого газосборного шлейфа и зависящей от его технических параметров (длины, диаметра и т.д.), судят о загрязненности газопромыслового шлейфа. Способ реализуют следующим образом.

Используя средства АСУ ТП УКПГ и телеметрии кустов газовых скважин, в реальном масштабе времени производят с заданным шагом квантования измерение:

- давления pн и pк и температуры газа tн и tк в начале и конце (на входе УКПГ) газосборного шлейфа соответственно;

- объемный расход газа в нормальных условиях Q, который транспортируется по газосборному шлейфу, и заносят их в базу данных АСУ ТП.

Используя измеренные значения pн, pк, tн, tк и Q, определяют в реальном масштабе времени фактические значения коэффициента гидравлического сопротивления газосборного шлейфа из соотношения:

где dвн - внутренний диаметр газопровода;

pн, pк - давление газа в начале и конце газосборного шлейфа соответственно;

Q - объемный расход газа в нормальных условиях, который транспортируется по газосборному шлейфу;

Δ - относительная плотность газа в нормальных условиях;

tср - средняя температура газа в газосборном шлейфе;

z - коэффициент сверхсжимаемости газа в рабочих условиях;

l - длина газопровода.

Приведенная формула для определения λф получена из известного соотношения (см. стр. 46, формула (III.7), Бекиров Т.М., Шаталов А.Т. Сбор и подготовка к транспорту природных газов. - М.: Недра, 1986. - 261 с.):

Вычисления производят с использованием текущих значений давлений pн, pк, tн, tк и Q.

Порядок определения значений λ, Δ, tср, z можно найти в соответствующей литературе (например, см. Бекиров Т.М., Шаталов А.Т. Сбор и подготовка к транспорту природных газов. - М.: Недра, 1986. - 261 с.).

Относительную плотность газа в нормальных условиях Δ определяют из выражения:

где ρг и ρв - плотность газа и воздуха соответственно;

Mг - молекулярная масса газа.

Среднюю температуру газа в газосборном шлейфе определяют как среднеарифметическое значение температур tн и tк по формуле

Коэффициент сверхсжимаемости газа z в рабочих условиях определяют из выражения (см. стр. 140, Трубопроводный транспорт нефти и газа: Учеб. для вузов / Р.А. Алиев, В.Д. Белоусов, А.Г. Немудров и др. 2-е изд., перераб. и доп. - М.: Недра, 1988. - 368 с.: ил.):

где pпр, tпр - приведенное давление и приведенная температура газа, алгоритм определения которых представлен следующими выражениями:

где pср. - среднее давление газа в газосборном шлейфе;

pкр., tкр. - критическое давление и критическая температура газа в газосборном шлейфе, значения которых берут из нормативной справочной литературы.

Значение pср. определяют из выражения:

Значения внутреннего диаметра газопровода dвн и длины газопровода l определяют из проектной документации.

На следующем шаге определяют коэффициент эффективности функционирования газопромыслового шлейфа из следующего выражения:

Использование величины λф для представления оператору неудобно, т.к. эта величина сильно меняется от шлейфа к шлейфу и визуально может быть воспринята неадекватно. Для оператора существенно удобнее работать с безразмерными относительными величинами, поскольку они практически не зависят от номера шлейфа, и поэтому гораздо легче увидеть проблему в безразмерных относительных показаниях.

Полученные величины λф и Е АСУ ТП заносит в свою базу данных, а значение параметра E выводится на пульт оператора. На следующем шаге по величине E, индивидуальной для каждого газосборного шлейфа, судят о его загрязненности. Низкие значения E указывают на необходимость очистки газосборного шлейфа.

Таким образом, определение значения фактического коэффициента гидравлического сопротивления газосборного шлейфа в реальном масштабе времени позволяет в оперативном режиме диагностировать состояние шлейфа. Заранее известно (из опыта эксплуатации конкретного месторождения), что при нормальном режиме работы куста газовых скважин значение фактического коэффициента гидравлического сопротивления газосборного шлейфа λф и коэффициента эффективности функционирования газопромыслового шлейфа E не должно превышать определенную для них границу (значения E и λф для каждого газопромыслового шлейфа являются индивидуальными). Если в ходе эксплуатации газосборного шлейфа выяснится, что значение фактического коэффициента эффективности газопромыслового шлейфа E пересекло указанную границу, можно твердо констатировать, что нормальный режим работы скважин и шлейфа нарушены, т.к. в шлейфе кроме газа присутствует выше допустимой нормы иной фактор (газовый гидрат, пластовая вода, механические примеси и т.д.).

Если последующий анализ ситуации в газосборном шлейфе покажет, что в нем присутствует гидратный фактор (на выходе газосборного шлейфа снижается температура газа), тогда в газосборный шлейф подают ингибитор (на Крайнем Севере в качестве ингибитора используют метанол). При скоплении конденсата, воды и мехпримесей в газосборном шлейфе для их удаления снижают давления на его выходе в рамках технологических ограничений. Если это не приводит к нужному эффекту, тогда продувают газосборный шлейф. На практике возможны ситуации, когда даже продувка газосборного шлейфа не позволяет его очистить. В таких случаях прибегают к очистке газосборного шлейфа специальными скребками (см. стр. 147, Трубопроводный транспорт нефти и газа: Учеб. для вузов / Р.А. Алиев, В.Д. Белоусов, А.Г. Немудров и др. 2-е изд., перераб. и доп. - М.: Недра, 1988. - 368 с.: ил.).

Благодаря реализации заявляемого способа появляется возможность в оперативном режиме оценить режим работы газосборного шлейфа и, соответственно, своевременно принять меры по парированию (устранению) предаварийных и других нештатных ситуаций в работе газопромыслового шлейфа.

Заявляемое изобретение отработано и реализовано на газовых промыслах ООО «Газпром добыча Ямбург».

Применение данного способа позволяет оперативно выявлять потенциальную возможность отказа газосборного шлейфа и тем самым повысить эффективность принимаемых управленческих решений и улучшить условия работы обслуживающего персонала на УКПГ, а также снизить численность персонала, занятого обслуживанием промысла.

Способ определения коэффициента гидравлического сопротивления газосборного шлейфа в автоматизированной системе управления технологическими процессами (АСУ ТП) установок комплексной подготовки газа газоконденсатных месторождений Крайнего Севера, включающий учет паспортных параметров шлейфа и данные по его эксплуатации, в том числе теоретический коэффициент гидравлического сопротивления газосборного шлейфа λ, отличающийся тем, что средствами АСУ ТП и телеметрии кустов газовых скважин измеряют с заданным шагом квантования базовые параметры работы газосборного шлейфа, включающие: давление p и p, температуру газа t и t в начале и в конце газосборного шлейфа соответственно; объемный расход газа в нормальных условиях Q, который транспортируется по газосборному шлейфу, значения которых автоматически вводят в базу данных (БД) АСУ ТП, а также в БД вводят паспортные характеристики газосборного шлейфа, и вычислительный комплекс АСУ ТП определяет по автоматически вводимым и введенным в БД параметрам фактическое значение коэффициента гидравлического сопротивления газосборного шлейфа в реальном масштабе времени, используя для этого алгоритм, описываемый соотношением где d - внутренний диаметр газопровода;p, p - давление газа в начале и конце газосборного шлейфа соответственно;Q - объемный расход газа в нормальных условиях, который транспортируется по газосборному шлейфу;Δ - относительная плотность газа в нормальных условиях;t - средняя температура газа в газосборном шлейфе;z - коэффициент сверхсжимаемости газа в рабочих условиях;l - длина газопровода,а затем АСУ ТП, используя вычисленное значение λ, определяет коэффициент эффективности эксплуатации газопромыслового шлейфа, используя алгоритм, описываемый соотношением и заносит полученные величины λ и Е в свою БД, а также одновременно выводит значение E на пульт оператора, после чего по величине E, индивидуальной для каждого газосборного шлейфа, судят о загрязненности конкретного газопромыслового шлейфа и о коэффициенте эффективности его эксплуатации - загрязненности его внутренней поверхности.
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ ГАЗОСБОРНОГО ШЛЕЙФА В АСУ ТП УСТАНОВОК КОМПЛЕКСНОЙ ПОДГОТОВКИ ГАЗА ГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ КРАЙНЕГО СЕВЕРА
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ ГАЗОСБОРНОГО ШЛЕЙФА В АСУ ТП УСТАНОВОК КОМПЛЕКСНОЙ ПОДГОТОВКИ ГАЗА ГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ КРАЙНЕГО СЕВЕРА
Источник поступления информации: Роспатент

Showing 31-38 of 38 items.
20.01.2018
№218.016.19fe

Центрифуга для очистки газа

Изобретение относится к центробежным устройствам для очистки газа от твердых частиц и мелкодисперсных капель жидкости и может быть использовано в системах компримирования, очистки и осушки газа, применяемых в нефтяной, химической и газовой отраслях промышленности. Центрифуга для очистки газа...
Тип: Изобретение
Номер охранного документа: 0002636502
Дата охранного документа: 23.11.2017
20.01.2018
№218.016.1a7d

Устройство для ввода жидких реагентов в трубопровод

Изобретение относится к устройствам для ввода жидких реагентов в трубопровод. Устройство состоит из полого цилиндрического кожуха с двумя фланцами и боковым приливом в виде присоединительного фланца, расположенного радиально по отношению к центральной оси кожуха. Внутри кожуха соосно размещены...
Тип: Изобретение
Номер охранного документа: 0002636356
Дата охранного документа: 22.11.2017
20.01.2018
№218.016.1b86

Устройство для паровой каталитической конверсии природного газа в синтез-газ

Изобретение относится к технологическому оборудованию для производства синтез-газа путем паровой каталитической конверсии природного газа. Устройство состоит из корпуса с горловиной, снаружи которого коаксиально размещен кожух с крышкой и с днищем в виде обечайки с фланцем для присоединения к...
Тип: Изобретение
Номер охранного документа: 0002636726
Дата охранного документа: 27.11.2017
13.02.2018
№218.016.24b3

Реагент для удаления конденсационной жидкости с примесью пластовой из газовых скважин

Изобретение относится к области добычи газа, а именно к химическим реагентам для удаления жидкости из скважин газовых месторождений, в продукции которых содержится конденсационная жидкость с примесью пластовой. Технический результат - обеспечение эффективного удаления конденсационной жидкости с...
Тип: Изобретение
Номер охранного документа: 0002642680
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2d6c

Способ автоматического управления технологическими процессами куста газовых и газоконденсатных скважин

Изобретение относится к области добычи природного газа и газового конденсата, в частности к управлению технологическими процессами куста скважин при добыче газа и газового конденсата. Используя результаты гидродинамических исследований и промысловых данных по всем скважинам, осуществляют...
Тип: Изобретение
Номер охранного документа: 0002643884
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.2ebf

Способ рационального распределения отбора газа по скважинам на кусте нефтегазоконденсатных месторождений крайнего севера

Изобретение относится к области добычи природного газа. Автоматизированная система управления технологическими процессами (АСУ ТП) газового промысла в реальном масштабе времени контролирует устьевое давление Р, устьевую температуру Т, расход газа каждой скважины Q, а также давления газа Р в...
Тип: Изобретение
Номер охранного документа: 0002644433
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.316e

Способ автоматического прослушивания газовых и газоконденсатных скважин на месторождениях крайнего севера

Изобретение относится к газовой промышленности и может быть использовано для исследования проницаемости пластов газовых и газоконденсатных месторождений Крайнего Севера, оценки газогидродинамической взаимосвязи между отдельными скважинами. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002645055
Дата охранного документа: 15.02.2018
27.12.2018
№218.016.ac64

Способ приготовления универсального бифункционального катализатора для превращения синтез-газа и углеводородов в бензиновые фракции

Изобретение относится к области каталитического синтеза бензиновых фракций из синтез-газа и процессов превращения углеводородов в среде синтез-газа, в частности к способам приготовления универсального бифункционального катализатора (БФК) для упомянутых процессов, и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002676086
Дата охранного документа: 26.12.2018
Showing 61-70 of 90 items.
19.06.2019
№219.017.8400

Способ сейсмического мониторинга образования техногенных залежей углеводородов при разведке и разработке месторождений углеводородов на акваториях

Изобретение относится к области геофизики и может быть использовано для контроля, оптимизации и повышения безопасности разработки месторождений углеводородов на акваториях Арктики и других морей. Предложен способ оперативного мониторинга образования техногенных залежей углеводородов в процессе...
Тип: Изобретение
Номер охранного документа: 0002691630
Дата охранного документа: 17.06.2019
22.06.2019
№219.017.8e42

Способ оценки фазового состояния углеводородных флюидов в поровом пространстве коллекторов нефтегазоконденсатных месторождений комплексом нейронных методов

Использование: для геофизических исследований нейтронными методами обсаженных нефтегазоконденсатных скважин (НГКС), а именно для оценки фазового состояния легких углеводородов в поровом пространстве коллекторов. Сущность изобретения заключается в том, что применяют нейтрон-нейтронный каротаж по...
Тип: Изобретение
Номер охранного документа: 0002692088
Дата охранного документа: 21.06.2019
22.06.2019
№219.017.8ea5

Способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод, с применением аппарата воздушного охлаждения, на установках низкотемпературной сепарации газа в районах крайнего севера

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ включает очистку поступающей газоконденсатной смеси, поступающей из добывающих скважин, от механических примесей и разделение газоконденсатной смеси на НГК, газ и водный раствор...
Тип: Изобретение
Номер охранного документа: 0002692164
Дата охранного документа: 21.06.2019
27.06.2019
№219.017.990e

Способ предотвращения миграции нефти в подземные воды из загрязненных тундровых почв

Изобретение относится к геоэкологии и, в частности, к охране окружающей среды на Крайнем Севере в районах добычи нефти. Способ предотвращения миграции нефти в подземные воды из загрязненных тундровых почв включает отбор на загрязненном участке усредненного образца почвы для определения в ней...
Тип: Изобретение
Номер охранного документа: 0002692616
Дата охранного документа: 25.06.2019
03.07.2019
№219.017.a3e8

Способ определения минерализации пластовой жидкости в обсаженных нефтегазовых скважинах на основе стационарных нейтронных методов

Изобретение относится к нефтегазодобывающей промышленности, к методам нейтронного каротажа для определения минерализации скважинной жидкости по химическим элементам с аномальным поглощением нейтронов, с целью определения геологических параметров разрезов обсаженных нефтегазовых скважин....
Тип: Изобретение
Номер охранного документа: 0002693102
Дата охранного документа: 01.07.2019
15.08.2019
№219.017.bff4

Способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод, с применением турбодетандерного агрегата, на установках низкотемпературной сепарации газа в районах крайнего севера

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ предусматривает очистку поступающей газоконденсатной смеси, поступающей из добывающих скважин, от механических примесей в сепараторе первой ступени сепарации. На установке осуществляют...
Тип: Изобретение
Номер охранного документа: 0002697208
Дата охранного документа: 13.08.2019
02.10.2019
№219.017.cbee

Способ идентификации источника и времени загрязнения окружающей среды и биологических субстратов человека пестицидом ддт в регионах крайнего севера

Изобретение относится к экологии и может быть использовано для идентификации источника и времени загрязнения окружающей среды дихлордифенилтрихлорэтаном (ДДТ) в регионах Крайнего Севера. Для этого отбирают репрезентативные пробы почвы, воды, крови или грудного молока человека. Пробы анализируют...
Тип: Изобретение
Номер охранного документа: 0002701554
Дата охранного документа: 30.09.2019
02.10.2019
№219.017.cdd8

Способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод, на установках низкотемпературной сепарации газа в районах крайнего севера

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту, в частности к автоматическому поддержанию на установке низкотемпературной сепарации газа плотности нестабильного газового конденсата (НГК), подаваемого в магистральный конденсатопровод (МКП) в...
Тип: Изобретение
Номер охранного документа: 0002700310
Дата охранного документа: 16.09.2019
17.10.2019
№219.017.d724

Способ контроля герметичности муфтовых соединений эксплуатационной колонны и выявления за ней интервалов скоплений газа в действующих газовых скважинах стационарными нейтронными методами

Изобретение относится к газодобывающей отрасли и может быть использовано для контроля герметичности муфтовых соединений эксплуатационных колонн (ЭК) в действующих газовых скважинах, а также для выявления интервалов скоплений газа за ЭК с использованием многозондового нейтронного каротажа....
Тип: Изобретение
Номер охранного документа: 0002703051
Дата охранного документа: 15.10.2019
18.12.2019
№219.017.ee24

Способ оптимизации процесса отмывки ингибитора из нестабильного газового конденсата на установках низкотемпературной сепарации газа

Способ предназначен для оптимизации процесса отмывки ингибитора из нестабильного газового конденсата (НТК) на установках низкотемпературной сепарации (НТС) газа, реализуемый автоматизированной системой управления технологическими процессами (АСУ ТП). Способ включает автоматическое управление...
Тип: Изобретение
Номер охранного документа: 0002709119
Дата охранного документа: 16.12.2019
+ добавить свой РИД