×
20.11.2015
216.013.8fc7

Результат интеллектуальной деятельности: СПОСОБ ИСПЫТАНИЯ ПОЛЫХ ИЗДЕЛИЙ НА ТЕРМИЧЕСКУЮ СТОЙКОСТЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быт использовано при испытаниях изделий на термическую стойкость. Заявлен способ испытаний полых изделий на термостойкость, заключающийся в нагреве изделия изнутри и охлаждении снаружи. Согласно изобретению внутрь изделия помещают нагреватель из теплоемкого материала, а изделие с нагревателем помещают в заполненную инертным газом капсулу из жаростойкого материала. Капсулу с изделием герметизируют, после чего полученную сборку нагревают до температуры не более допустимой температуры капсулы и осуществляют выдержку при указанной температуре до состояния выравнивания температуры всех составляющих изделия. Затем сборку охлаждают до заданной температуры с заданной скоростью, изделие извлекают из капсулы, а о термостойкости изделия судят по наличию в нем дефектов сверх допустимых величин. Технический результат - повышение достоверности получаемых результатов. 2 з.п. ф-лы, 2 ил.

1. Область техники, к которой относится изобретение

Настоящее изобретение относится к испытательной технике, а именно к способам испытания изделий на термическую стойкость.

2. Уровень техники

Из существующего уровня техники известен способ испытания материалов на термостойкость (патент РФ №2117274 С1, МПК6 G01N 3/60, G01N 3/56 опубл. 10.08.1998), заключающийся в том, что поверхность испытываемого образца материала подвергают циклическому тепловому воздействию, включающему нагрев поверхности и последующее охлаждение, производя при этом контроль поверхности испытываемого образца материала. О термостойкости образца судят по количеству циклов теплосмен до появления трещин в испытываемом образце материала, периодически снимая слой материала толщиной, соответствующей интенсивности изнашивания материала в процессе эксплуатации.

Недостатком данного способа является то, что он не предназначен для испытания материалов, окисляющихся в атмосфере воздуха, таких как тугоплавкие металлы (вольфрам, молибден, ниобий и др.), а также металлокерамических изделий на их основе.

Известен способ испытания на термическую стойкость тонких керамических изделий, включающий резкий нагрев и охлаждение изделий, о термостойкости которых судят по появлению трещин на теле изделий под влиянием резкой смены температур (Практикум по технологии керамики и огнеупоров, М.: Литература по строительству, 1972, стр. 266-273). В данном случае критерием термической стойкости является максимальная разность между температурой тела изделия до охлаждения и температурой охлаждающей среды, которая приводит к разрушению изделия. Испытания проводят в среде атмосферного воздуха.

Недостатком данного способа является то, что он также не предназначен для испытаний материалов, окисляющихся в атмосфере воздуха, таких как тугоплавкие металлы (вольфрам, молибден, ниобий и др.), а также металлокерамических изделий на их основе.

Наиболее близким к предлагаемому способу испытания полых изделий на термическую стойкость, принятому за прототип, является способ испытания полых цилиндров, нагреваемых изнутри стержневым нагревателем на воздухе, в инертной среде или в вакууме (А.Г. Ланин, И.И. Федик. Термопрочность материалов. Подольск, НИИ НПО «Луч», 2005. - 312 с.: ил., с. 68-71). Сущность данного способа заключается в определении разрушающего температурного перепада при нагреве образцов в виде полых цилиндров изнутри и охлаждении снаружи. При осуществлении данного способа испытываемый образец помещают в вакуумную камеру. Таким образом, способ позволяет испытывать на термостойкость полые изделия из тугоплавких металлов (вольфрам, молибден, ниобий и др.), а также металлокерамические изделия, в состав которых входят эти тугоплавкие металлы. Нагрев полого цилиндрического образца осуществляют нагревателем, установленным внутри образца. Для охлаждения снаружи образца устанавливают холодильник или дополнительный нагреватель, с помощью которого можно регулировать температуру внешней поверхности образца. Температурный перепад, возникающий в стенке цилиндра, измеряют с помощью термопар, которые устанавливают в теле образца вблизи внутренней и внешней поверхностей. Критерием термической стойкости считают максимальный термический перепад между внутренней и внешней поверхностями полого цилиндра в момент его разрушения.

Недостатком известного способа является сложность его аппаратной реализации, поскольку данный способ испытания на термическую стойкость полых образцов требует наличия специальной вакуумной установки с системами нагрева, охлаждения и напуска газа. Сам процесс проведения испытания достаточно трудоемкий и длительный. Он малопригоден при осуществлении операций экспрессного контроля большого количества изделий. Кроме того, в известном способе при нагреве изделия изнутри передача тепла осуществляется излучением с поверхности нагревателя, конвекцией и теплопроводностью через газовую полость. При этом не исключен перенос материала нагревателя на поверхность изделия, что нежелательно в случае зависимости свойств поверхности изделия от ее чистоты.

3. Раскрытие изобретения

Задачей, на решение которой направлено заявляемое изобретение, является упрощение способа испытания на термическую стойкость полых изделий, в состав которых входят материалы, нестойкие при нагреве в атмосфере воздуха, например тугоплавкие металлы - вольфрам, молибден, ниобий и другие, а также упрощение испытания металлокерамических изделий на основе указанных материалов.

Данная задача решается в способе испытания полых изделий на термостойкость, заключающемся в нагреве изделия изнутри при помощи помещенного внутрь него нагревателя и охлаждении изделия снаружи, в котором согласно изобретению нагреватель выполняют из теплоемкого материала, изделие с нагревателем помещают в капсулу из жаростойкого материала, которую заполняют инертным газом и герметизируют, полученную сборку нагревают до температуры не более допустимой температуры капсулы, осуществляют выдержку при указанной температуре до состояния выравнивания температуры всех составляющих изделия, после чего сборку охлаждают до заданной температуры с заданной скоростью, изделие извлекают из капсулы, а о термостойкости изделия судят по наличию в нем дефектов сверх допустимых величин.

В соответствии с данным способом, поместив в капсулу из жаростойкого материала несколько изделий, возможно одновременное проведение их испытаний на термостойкость. В этом случае нагрев изделий можно осуществлять при помощи общего для всех изделий нагревателя.

В качестве материала нагревателя могут быть использованы тугоплавкие материалы, такие как молибден, вольфрам, ниобий и т.д., обладающие высокой теплоемкостью и за счет этого способные относительно длительное время сохранять температурный перепад на испытываемом образце.

В качестве теплопередающей среды газа-заполнителя может быть использован гелий, обладающий высокой теплопроводностью.

Сущность заявленного изобретения поясняется чертежами.

На фиг. 1 представлена схема устройства для реализации способа испытания полых изделий на термическую стойкость нагревом изнутри.

На фиг. 2 приведен чертеж сборки для испытания на термическую стойкость многослойного полого цилиндрического изделия.

Исследуемый образец предварительно подвергают неразрушающим методам контроля на наличие дефектов. Затем согласно изобретению проводят подготовку к испытанию: внутрь исследуемого полого образца 1 (см. фиг. 1) помещают нагреватель 2, выполненный из теплоемкого материала. Испытываемый образец 1 с нагревателем 2 устанавливают в капсулу 3 из жаростойкого материала, теплоизоляцию образца 1 обеспечивают дистанционаторами 4. Капсулу 3 заполняют инертным газом и проводят ее герметизацию. Полученную сборку устанавливают в печь 5 и нагревают до заданной температуры. Нагретую сборку извлекают из печи и охлаждают до заданной температуры с заданной скоростью. После этого образец 1 извлекают из капсулы 3 и подвергают исследованиям. Количество циклов испытаний задается в каждом конкретном случае. Оценку термостойкости осуществляют по количеству теплосмен до появления трещин термического растрескивания.

4. Сведения, подтверждающие возможность реализации изобретения

Проводили испытание на термическую стойкость многослойного полого изделия 1 (см. фиг. 1), состоящего из вольфрамового слоя 6, ниобиевой подложки 7, керамической трубы 8, несущей оболочки 9 и наружного керамического слоя 10 (см. фиг. 2). Ниобиевая подложка, керамическая труба, несущая оболочка соединены между собой термокомпрессионной сваркой. Во внутренней полости изделия располагали нагреватель 2 в виде прутка из молибдена с зазором 0,1 мм. Затем изделие с размещенным внутри него нагревателем помещали в капсулу 3, выполненную из жаростойкой стали. Капсулу заполняли гелием в процессе приварки гелиево-дуговой сваркой двух крышек 11 и 12. Между молибденовым прутком и капсулой размещали керамические теплоизолирующие дистанционаторы 4. Таким образом, была сформирована сборка для испытания на термическую стойкость многослойного металлокерамического полого цилиндрического изделия.

Сборку помещали в рабочее пространство электрической муфельной печи, предварительно разогретой до температуры 1000°C. Температуру печи повышали до расчетной и при этой температуре выдерживали в течение 20 минут, необходимых для выравнивания температуры всех элементов образца. После нагревания сборку вынимали из печи и охлаждали в емкости с водой, температура которой составляла 30°C. В процессе охлаждения сборки изделие разогревалось изнутри теплоемким прутком из молибдена, который служил нагревателем. После теплосмены остывший образец извлекали из капсулы. После извлечения изделия из капсулы его осматривали, определяли методами неразрушающего контроля наличие несплошностей, отслоений и прочих дефектов, которые возникли в процессе теплосмен. Критерием термостойкости служило количество теплосмен, приводящих к образованию отслоений, несплошностей, трещин или других дефектов.

Таким образом, удалось провести испытание многослойного полого изделия, выполненного из материалов, окисляющихся в атмосфере воздуха, без использования специального вакуумного оборудования, что в конечном счете позволило снизить не только затраты, но и время на проведение испытания.


СПОСОБ ИСПЫТАНИЯ ПОЛЫХ ИЗДЕЛИЙ НА ТЕРМИЧЕСКУЮ СТОЙКОСТЬ
СПОСОБ ИСПЫТАНИЯ ПОЛЫХ ИЗДЕЛИЙ НА ТЕРМИЧЕСКУЮ СТОЙКОСТЬ
Источник поступления информации: Роспатент

Showing 51-60 of 79 items.
25.08.2017
№217.015.bd8a

Регулятор расхода сыпучего материала

Изобретение относится к оборудованию для технологических процессов, где требуется непрерывная регулируемая с высокой точностью подача сыпучего мелкодисперсного материала, и может быть использовано в порошковой металлургии, в химической и атомной промышленности, в частности в производстве...
Тип: Изобретение
Номер охранного документа: 0002616351
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bdba

Способ очистки жидкости, содержащей радионуклиды, и устройство для его осуществления

Группа изобретений относится к атомной и радиохимической промышленности. Способ очистки жидкости, загрязненной радионуклидами, включает размещение в загрязненной жидкости как минимум по одному элементу из разных пористых материалов - гидрофильному и гидрофобному, один конец которых частично...
Тип: Изобретение
Номер охранного документа: 0002616447
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.be99

Способ приготовления смеси мелкодисперсных частиц

Изобретение относится к порошковой металлургии, в частности к способам приготовления смеси порошков для последующего изготовления из смеси изделий, и может быть использовано в машиностроении, атомной и химической промышленности. Описан способ приготовления смеси из частиц различного...
Тип: Изобретение
Номер охранного документа: 0002616712
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.d1d8

Способ получения мелкодисперсного металлического порошка

Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой...
Тип: Изобретение
Номер охранного документа: 0002621748
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.e1db

Способ получения тетрафторида урана

Изобретение относится к атомной промышленности и химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ заключается в том, что смешивают диоксид урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002625871
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e209

Высокотемпературный источник поверхностной ионизации

Изобретение относится к вакуумной технике и может быть использовано для получения пучков ионов при разделении изотопов или масс-спектрометрии. Высокотемпературный источник поверхностной ионизации из монокристаллического материала с объемно-центрированной кубической решеткой снабжен...
Тип: Изобретение
Номер охранного документа: 0002625728
Дата охранного документа: 18.07.2017
19.01.2018
№218.016.048c

Способ переработки гексафторида урана

Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида. Способ включает гидролиз...
Тип: Изобретение
Номер охранного документа: 0002630801
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0965

Гибкий бетавольтаический элемент

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги,...
Тип: Изобретение
Номер охранного документа: 0002631861
Дата охранного документа: 27.09.2017
20.01.2018
№218.016.156d

Термоэмиссионный тепловыделяющий элемент

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК). Предложена конструкция твэла, включающего герметичную оболочку, выполненную из упрочненного...
Тип: Изобретение
Номер охранного документа: 0002634848
Дата охранного документа: 07.11.2017
04.04.2018
№218.016.376a

Способ переработки отходов ядерного производства

Изобретение относится к области ядерной энергетики. Способ переработки отходов ядерного производства включает электрохимическое растворение твэлов в растворе азотной кислоты в электролизере при постоянном поддержании концентрации азотной кислоты в диапазоне 5,0÷6,0 М. Корпус электролизера...
Тип: Изобретение
Номер охранного документа: 0002646535
Дата охранного документа: 06.03.2018
Showing 51-60 of 66 items.
25.08.2017
№217.015.bd8a

Регулятор расхода сыпучего материала

Изобретение относится к оборудованию для технологических процессов, где требуется непрерывная регулируемая с высокой точностью подача сыпучего мелкодисперсного материала, и может быть использовано в порошковой металлургии, в химической и атомной промышленности, в частности в производстве...
Тип: Изобретение
Номер охранного документа: 0002616351
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bdba

Способ очистки жидкости, содержащей радионуклиды, и устройство для его осуществления

Группа изобретений относится к атомной и радиохимической промышленности. Способ очистки жидкости, загрязненной радионуклидами, включает размещение в загрязненной жидкости как минимум по одному элементу из разных пористых материалов - гидрофильному и гидрофобному, один конец которых частично...
Тип: Изобретение
Номер охранного документа: 0002616447
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.be99

Способ приготовления смеси мелкодисперсных частиц

Изобретение относится к порошковой металлургии, в частности к способам приготовления смеси порошков для последующего изготовления из смеси изделий, и может быть использовано в машиностроении, атомной и химической промышленности. Описан способ приготовления смеси из частиц различного...
Тип: Изобретение
Номер охранного документа: 0002616712
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.d1d8

Способ получения мелкодисперсного металлического порошка

Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой...
Тип: Изобретение
Номер охранного документа: 0002621748
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.e1db

Способ получения тетрафторида урана

Изобретение относится к атомной промышленности и химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ заключается в том, что смешивают диоксид урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002625871
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e209

Высокотемпературный источник поверхностной ионизации

Изобретение относится к вакуумной технике и может быть использовано для получения пучков ионов при разделении изотопов или масс-спектрометрии. Высокотемпературный источник поверхностной ионизации из монокристаллического материала с объемно-центрированной кубической решеткой снабжен...
Тип: Изобретение
Номер охранного документа: 0002625728
Дата охранного документа: 18.07.2017
19.01.2018
№218.016.048c

Способ переработки гексафторида урана

Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида. Способ включает гидролиз...
Тип: Изобретение
Номер охранного документа: 0002630801
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0965

Гибкий бетавольтаический элемент

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги,...
Тип: Изобретение
Номер охранного документа: 0002631861
Дата охранного документа: 27.09.2017
20.01.2018
№218.016.156d

Термоэмиссионный тепловыделяющий элемент

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК). Предложена конструкция твэла, включающего герметичную оболочку, выполненную из упрочненного...
Тип: Изобретение
Номер охранного документа: 0002634848
Дата охранного документа: 07.11.2017
04.04.2018
№218.016.376a

Способ переработки отходов ядерного производства

Изобретение относится к области ядерной энергетики. Способ переработки отходов ядерного производства включает электрохимическое растворение твэлов в растворе азотной кислоты в электролизере при постоянном поддержании концентрации азотной кислоты в диапазоне 5,0÷6,0 М. Корпус электролизера...
Тип: Изобретение
Номер охранного документа: 0002646535
Дата охранного документа: 06.03.2018
+ добавить свой РИД