×
20.11.2015
216.013.8f6a

Результат интеллектуальной деятельности: СПОСОБ ИДЕНТИФИКАЦИИ КОМПОНЕНТОВ БЕНЗИНА И ОПРЕДЕЛЕНИЯ ЕГО СОСТАВА В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительным системам и устройствам и может быть использовано для идентификации компонентов бензина и определения его состава. Техническим результатом является обеспечение идентификации в режиме реального времени с оперативным внесением поправок в технологический процесс. Способ заключается в том, что идентификацию компонентов производят по минимуму целевой функции и активному состоянию нейронов искусственной нейронной сети идентификации, изменяя при этом коэффициенты синаптических связей, расчет значений активации нейронов определяют в соответствии с функцией активации, при этом концентрацию компонентов бензина производят по минимуму целевой функции и активному состоянию нейрона искусственной нейронной сети состава, изменяя коэффициенты синаптических связей, а расчет значения активации нейрона состава производят в соответствии с функцией активации, и при активном состоянии нейрона состава принимают значения концентрации компонентов в смеси численно равным значениям коэффициентов синаптических связей. 5 табл., 5 ил.
Основные результаты: Способ идентификации компонентов бензина и определения его состава в режиме реального времени, включающий создание базы данных спектральных коэффициентов поглощения тестовых компонентов, измерение спектральных коэффициентов поглощения тестовых компонентов и бензина в технологических линиях, отличающийся тем, что сигналы о спектральных коэффициентах поглощения тестовых компонентов и бензина суммируются нейронами идентификации, число которых равно или больше числа компонентов в бензине, и нейроном состава, с соответствующими синаптическими коэффициентами, величины и знаки которых, а также значения активации нейронов устанавливаются по образцам тестовых компонентов и бензинов с использованием алгоритма обратного распространения ошибки, в котором минимизируются целевые функции идентификации U и состава В: причем идентификацию j-компонентов производят по минимумам целевых функций U и активному состоянию нейронов искусственной нейронной сети идентификации, изменяя при этом коэффициенты синаптических связей ω, а значения активации нейронов определяют в соответствии с функцией активацииT=e,при этом концентрацию компонентов в бензине определяют по минимуму целевой функции состава и активному состоянию нейрона искусственной нейронной сети состава, изменяя коэффициенты синаптических связей ω, а значения активации нейрона состава вычисляют в соответствии с функцией активацииR=е,и при активном состоянии нейрона состава принимают значения концентрации компонентов в смеси c численно равным значениям коэффициентов синаптических связей ω,где k(λ) - спектральные коэффициенты поглощения тестовых компонентов, находящихся в базе данных;k(λ) - измеренные спектральные коэффициенты поглощения компонентов в технологических линиях;k(λ) - измеренные спектральные коэффициенты поглощения бензина в технологических линиях;λ - длины волн, на которых измеряются спектральные коэффициенты поглощения;T - функции активации искусственной нейронной сети идентификации;j - число компонентов в бензине;R - функция активации искусственной нейронной сети состава;α, β - коэффициенты, учитывающие наклон функций активации;ε - погрешность измерения спектральных коэффициентов поглощения.

Изобретение относится к измерительным устройствам и системам для определения состава и октанового числа бензинов и может использоваться, например, для контроля и поддержания требуемой концентрации и значения детонационной стойкости компонентов при производстве товарного бензина путем смешения компонентов.

Известно изобретение «СПОСОБ ОПРЕДЕЛЕНИЯ ОКТАНОВОГО ЧИСЛА БЕНЗИНОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ» [1].

Способ определения октанового числа бензинов, включающий зондирование оптическим излучением кюветы с бензином; измерение интенсивности прошедшего оптического излучения на выходе кюветы; определение коэффициента поглощения, отличающийся тем, что кювету зондируют оптическим пучком излучения дальнего ультрафиолетового или фиолетового диапазона с длиной волны 370≤λ≤420 нм; измеряют интенсивность прошедшего излучения при зондировании пустой кюветы и кюветы, наполненной анализируемым бензином, и определяют оптическую плотность из следующего соотношения:

где Dλ - оптическая плотность кюветы с анализируемым бензином; D - оптическая плотность пустой кюветы; (I0)λ - интенсивность входного излучения (при отсутствии кюветы) на длине волны λ; (Ii)- интенсивность излучения на длине волны длины λ, прошедшего пустую кювету; (Ii)λ - интенсивность излучения на длине волны длины λ, прошедшего кювету, наполненную анализируемым бензином; (k0i1)λ - спектральный коэффициент поглощения бензина на длине волны λ; L - толщина зондируемой кюветы,

при этом октановое число определяют по калибровочной кривой, связывающей значения оптической плотности бензина с соответствующим значением октанового числа бензина.

Недостатком указанного аналога является то, что калибровочная кривая, связывающая значения оптической плотности или спектральных коэффициентов поглощения бензина с соответствующим значением октанового числа бензина, будет еще определяться компонентным составом бензина, который может быть не известен.

Известно изобретение «АВТОМАТИЗИРОВАННЫЙ СПОСОБ СПЕКТРОФОТОМЕТРИЧЕСКОГО АНАЛИЗА ВЕЩЕСТВ» [2].

Автоматизированный способ спектрофотометрического анализа веществ, включающий измерение оптической плотности, по меньшей мере, двух образцов с известным значением определяемого показателя вещества непрерывно по шкале длин волн в видимом, инфракрасном или ультрафиолетовом диапазоне спектра; формирование банка данных по полученным спектрам; регистрацию спектра исследуемого вещества, отличающийся тем, что выбирают набор информативных длин волн по максимальным отклонениям одного спектра от другого, строя функциональную зависимость определяемого показателя от величины оптической плотности в наборе информативных длин волн, и по указанной зависимости находят величину искомого показателя.

Недостатком этого аналога является то, что для обеспечения указанного способа необходимо выбирать набор информативных длин волн по максимальным отклонениям одного спектра от другого и строить функциональную зависимость состава от величины оптической плотности. Набор информативных длин волн для различных компонентов, в общем случае, будет различным. То есть для выбора набора информативных длин волн необходимо априорное знание о том, какие компоненты входят в состав анализируемой смеси.

Наиболее близким по назначению и по технической сущности к предлагаемому техническому решению и выбранным вследствие этого в качестве прототипа является «СПОСОБ ОПРЕДЕЛЕНИЯ ОКТАНОВОГО ЧИСЛА БЕНЗИНОВ» [3]. Указанный способ определения октанового числа бензинов, включающий измерение спектров поглощения в ближней инфракрасной области, характеризуется тем, что последовательно измеряют в ближней инфракрасной области коэффициенты поглощения трех чистых углеводородов из ряда изооктан, n-гептан, толуол или бензол, по коэффициентам поглощения трех чистых углеводородов составляют модельный спектр вида:

Km=K1C1+K2C2+K3C3,

где K1, K2, K3 - коэффициенты поглощения n-гептана, изооктана, толуола (или бензола);

С1, C2, C3 - концентрации n-гептана, изооктана, толуола (или бензола) соответственно;

измеряют коэффициенты поглощения паспортизованных бензинов разных марок с использованием идентичных кювет и на тех же длинах волн, определяют коэффициенты С1, С2, С3 паспортизованных бензинов путем сравнения спектра поглощения каждого паспортизованного бензина с модельным, который программно видоизменяют методом перебора комбинаций значений С1, С2, C3 достижения минимального отклонения модельного спектра от спектра паспортизованного бензина; определяют градуировочную зависимость октановых чисел паспортизованных бензинов от концентрации С3 толуола (или бензола) в их модельном спектре и используют эту зависимость для определения октанового числа любого анализируемого бензина в следующей последовательности для каждого бензина: измеряют коэффициенты поглощения анализируемого бензина с использованием идентичных кювет и на тех же длинах волн; определяют коэффициенты С1, C2, С3 анализируемого бензина путем сравнения его спектра поглощения с модельным, который программно видоизменяют методом перебора комбинаций значений С1, С2, C3 до достижения минимального отклонения модельного спектра от спектра анализируемого бензина, и по концентрации толуола (или бензола) C3 модельного спектра анализируемого бензина определяют октановое число анализируемого бензина по указанной градуировочной зависимости.

Недостатком прототипа является необходимость априорного знания компонентов, входящих в состав бензина, что не всегда возможно на практике.

Задачей предлагаемого изобретения является обеспечение достоверности идентификации компонентов, входящих в состав товарного бензина, повышение точности определения состава и октанового числа бензинов.

Технический результат от использования предлагаемого изобретения заключается в обеспечении процесса идентификации компонентов бензина и определения его состава в режиме реального времени с оперативным внесением поправок в технологический процесс.

Технический результат достигается тем, что в способе идентификации компонентов бензина и определения его состава в режиме реального времени, включающем создание базы данных спектральных коэффициентов поглощения тестовых компонентов, измерение спектральных коэффициентов поглощения тестовых компонентов и бензина в технологических линиях, сигналы о спектральных коэффициентах поглощения тестовых компонентов и бензина суммируются нейронами идентификации, число которых равно числу компонентов в бензине и нейронов состава, с соответствующими синаптическими коэффициентами, величины и знаки которых, а также значения активации нейронов устанавливаются по образцам тестовых компонентов и бензинов с использованием методов обучения нейронных сетей, например, алгоритма обратного распространения ошибки, в котором минимизируются целевые функции идентификации Uj и состава В:

причем идентификацию j-компонентов производят по минимумам целевых функций Uj и активному состоянию нейронов искусственной нейронной сети идентификации, изменяя при этом коэффициенты синаптических связей ωij, а значения активации нейронов определяют в соответствии с функцией активации, например:

при этом концентрацию компонентов в бензине определяют по минимуму целевой функции состава и активному состоянию нейрона искусственной нейронной сети состава, изменяя коэффициенты синаптических связей ωij, а значения активации нейрона состава вычисляют в соответствии с функцией активации, например:

R=е-Bαε,

и при активном состоянии нейрона состава принимают значения концентрации компонентов в смеси cj численно равным значениям коэффициентов синаптических связей ωij,

где kjэтi) - спектральные коэффициенты поглощения тестовых компонентов находящихся в базе данных;

kji) - измеренные спектральные коэффициенты поглощения компонентов в технологических линиях;

kсмi) - измеренные спектральные коэффициенты поглощения бензина в технологических линиях;

λi - длины волн, на которых измеряются спектральные коэффициенты поглощения;

Tj - функции активации искусственной нейронной сети идентификации;

j - число компонентов в бензине;

R - функция активации искусственной нейронной сети состава;

α, β - коэффициенты, учитывающие наклон функций активации;

ε - погрешность измерения спектральных коэффициентов поглощения.

В качестве примера реализации предлагаемого способа может быть рассмотрена многоканальная спектрометрическая информационно-измерительная система оценки состава и детонационной стойкости товарного топлива.

На фиг.1 приведена многоканальная спектрометрическая информационно-измерительная система оценки состава и детонационной стойкости товарного топлива, где:

1 - резервуары компонентов бензина (1, 2, 3, …, j),

2 - технологические трубопроводы,

3 - проточные кюветы,

4 - волоконно-оптический кабель,

5 - смесители №1 и №2,

6 - резервуар с бензином (Бензин 1 и Бензин 2),

7 - оптический мультиплексор,

7а - источник света,

8 - спектрометр,

9 - персональный компьютер (ПК).

На фиг.2 приведена искусственная нейронная сеть, используемая при идентификации компонентов бензиновой смеси.

На фиг.3 приведена искусственная нейронная сеть, используемая при вычислении состава и детонационной стойкости бензина.

На фиг.4 приведен график функции активации нейрона искусственной нейронной сети идентификации компонентов.

На фиг.5 приведен график функции активации нейрона искусственной нейронной сети вычисления состава и детонационной стойкости бензина.

Многоканальная спектрометрическая система содержит ИК-спектрометр, соединенный с промышленными проточными кюветами посредством волоконно-оптического кабеля через оптический мультиплексор. По команде от ПК излучение от ИК-излучателя через оптический мультиплексор направляется по волоконно-оптическому кабелю первого канала в промышленную проточную кювету, расположенную рядом с технологическим трубопроводом, по которому из резервуара подается первый компонент. Производится измерение спектральных коэффициентов пропускания ИК-спектрометром и последовательный ввод их значений в ПК по USB-интерфейсу с последующим расчетом на их основе спектральных коэффициентов поглощения первого компонента [5]. Результаты расчетов запоминаются в ПК, после чего по интерфейсу RS-232 ПК дает команду оптическому мультиплексору на переключение излучения от ИК-излучателя (источника света) к волоконно-оптическому кабелю второго канала, соответствующего точке отбора второго компонента. Производится измерение спектральных коэффициентов пропускания, расчет на их основе спектральных коэффициентов поглощения второго компонента и сохранение в памяти ПК. Эти действия повторяются, пока не будут измерены спектральные коэффициенты пропускания всех компонентов, а также товарных бензинов, полученных в результате смешения компонентов в смесителях и по технологическим трубопроводам поступающих в резервуар с готовым бензином. По вычисленным значениям спектральных коэффициентов поглощения компонентов kji) и спектральных коэффициентов поглощения тестовых компонентов kjэтi) в соответствии с целевой функцией искусственной нейронной сети производится идентификация компонентов. Когда идентификация компонентов завершена, определяют состав cj в соответствии с целевой функцией искусственной нейронной сети с последующим расчетом октанового числа и формированием управляющих воздействий для управления расходами компонентов товарного бензина.

Задача обеспечения достоверности идентификации компонентов, входящих в состав товарного бензина, повышения точности определения состава и октанового числа бензинов решается применением предлагаемого способа, когда по измеренным значениям спектральных коэффициентов поглощения kji) компонентов, входящих в состав бензина, и спектральных коэффициентов поглощения kсмi) бензина производят идентификацию компонентов бензина j, вычисляя значения синаптических коэффициентов ωij. Величины и знаки синаптических связей ωij каждого из нейронов устанавливаются при калибровке по образцам тестовых компонентов и бензинов с известными спектральными коэффициентами поглощения kji) с использованием методов облучения нейронных сетей, например, алгоритма обратного распространения ошибки в котором минимизируются целевые функции Uj, B.

Способ осуществляется следующим образом.

1) Измеряются спектральные коэффициенты поглощения компонентов, входящих в состав бензина kj i) в технологической линии.

В примере рассматривается четыре компонента: n-гептан, изооктан, толуол, бензол (таблица 1) [4]:

Таблица 1
Спектральные коэффициенты поглощения компонентов
Длина волны, нм n-гептан изооктан толуол Бензол
1080 0,004 0,001 0,002 0,03
1090 0 0 0 0
1100 0 0 0 0
1110 0,011 0,015 0,0125 0,042
1120 0,014 0,02 0,1 0,2
1130 0,049 0,05 0,325 0,5625
1140 0,075 0,125 1,15 1,9
1150 0,3 0,3625 1,2 1,2
1160 0,345 0,4375 0,45 0,2875
1170 0,5125 0,6 0,3375 0,1625
1180 0,75 0,8875 0,413 0,075
1190 1,6 1,65 0,6 0,0625
1200 1,45 1,35 0,45 0,0132
1210 1,78 0,7102 0,161 0,0126
1220 1,2 0,55 0,629 0,0116
1230 0,55 0,3 0,0612 0,0112

2) Изменяя коэффициенты синаптической связи ωij, минимизируется целевая функция Uj,:

с использованием алгоритма обратного распространения ошибки,

где λi - длина волны; kji) - спектральный коэффициент поглощения j-ого компонента на i-ой длине волны; kjэтi) - коэффициент поглощения j-го тестового компонента на i-й длине волны; ωij - коэффициент синаптической связи j-го компонента на i-й длине волны.

3) Компонент идентифицирован, когда нейрон активирован, а функция активации

имеет значение 0,999≤T≤1 (фиг.4),

где β - коэффициент, учитывающий наклон функции активации; ε=0,01 - погрешность измерения спектральных коэффициентов поглощения.

4) Измеряются спектральные коэффициенты поглощения бензина kсмi) в технологической линии (таблица 2):

Таблица 2
Значения спектральных коэффициентов поглощения бензина 1, 2, 3, 4.
Длина волны, нм k поглощения Смеси 1 (А-80) k поглощения Смеси 2 (АИ-92) k поглощения Смеси 3 (АИ-95) k поглощения Смеси 4 (АИ-98)
1080 0,0016607 0,0013427 0,0040409 0,003972
1090 0 0 0 0
1100 0 0 0 0
1110 0,0140072 0,0145354 0,0173987 0,017635
1120 0,0226395 0,0250554 0,0374736 0,037863
ИЗО 0,0636829 0,0697286 0,1015837 0,100703
1140 0,1668361 0,1913762 0,3023259 0,302703
1150 0,3930848 0,4151751 0,439582 0,442058
1160 0,4232332 0,4293248 0,4180944 0,422167
1170 0,5670818 0,5759268 0,5522126 0,554859
1180 0,8361118 0,8463342 0,7999697 0,802912
1190 1,5828313 1,582134 1,496415 1,498348
1200 1,3259162 1,299941 1,2308942 1,223276
1210 0,8949754 0,7642968 0,6992196 0,678423
1220 0,6827157 0,6121177 0,5366323 0,520776
1230 0,3373029 0,3029228 0,2884309 0,280779

5) Изменяя коэффициенты синаптической связи ωj, минимизируется целевая функция В :

где kсмi) - спектральный коэффициент поглощения бензина на i-й длине волны.

6) Состав установлен, когда нейрон активирован, а функция активации

R=е-Baε

имеет значение 0.999≤R≤1 (фиг.5),

где α - коэффициент, учитывающий наклон функции активации; ε=0,01 - погрешность измерения спектральных коэффициентов поглощения.

При этом концентрации компонентов в бензине cj численно равны значениям коэффициентов синаптических связей ωj.

Таблица 3
Вычисленные и тестовые значения концентраций компонентов бензинов
Бензин 1 Бензин 2 Бензин 3 Бензин 4
Тестовое значение концентрации n-гептана, % 20,00% 9,00% 6,00% 3,00%
Тестовое значение концентрации изооктана, % 75,00% 84,00% 84,00% 87,00%
Тестовое значение концентрации толуола, % 5,00% 7,00% 0,00% 0,00%
Тестовое значение концентрации бензола, % 0,00% 0,00% 10,00% 10,00%
Вычисленное значение концентрации н-гептана, % 19,8262% 8,8744% 5,7846% 3,1063%
Вычисленное значение концентрации изооктана, % 75,2469% 84,1866% 84,2998% 86,8967%
Вычисленное значение кцентрации толуола, % 4,9269% 6,9390% 0,2698% 0,0000%
Вычисленное значение концентрации бензола, % 0,0000% 0,0000% 9,6458% 9,9971%
Погрешность вычисления концентрации н-гептана, % 0,173822499 0,125621022 0,215435268 0,106268190
Погрешность вычисления концентрации изооктана , % 0,246894713 0,186634822 0,299846913 0,103345864
Погрешность вычисления концентрации толуола, % 0,073072213 0,061013800 0,269794846 0,000000000
Погрешность вычисления концентрации бензола, % 0,000000000 0,000000000 0,354206491 0,002922326

Погрешность вычисления состава бензина определялась по формуле:

Δcj=(сэj-cj)·100,

где сэj - тестовое значение концентрации j-го компонента бензина, cj - вычисленное значение концентрации j-го компонента бензина.

7) По вычисленным значениям концентраций компонентов бензина cj находят октановое число товарного бензина по формуле:

где cj - концентрация j-го компонента бензина; Qj - октановое число j-го компонента бензина; b - суммарное отклонение октановых чисел от аддитивности, обусловленное межмолекулярными взаимодействиями между компонентами:

где bj - интенсивность межмолекулярных взаимодействий j-го компонента, cj - концентрация j-го компонента.

Интенсивность межмолекулярного взаимодействия углеводородов

Компонент bj
n-гептан 0,1
изооктан 0,12
толуол 0,78
бензол 1,08

Таблица 4
Октановые числа смесей
Октановые числа
Смесь 1 Смесь 2 Смесь 3 Смесь 4
Суммарное отклонение, bj 0,00149 0,001644 0,002148 0,002154
ИОЧ 80,9488 92,2167 95,5139 98,1955
МОЧ 80,2788 91,2730 95,3422 98,0555

Данное техническое решение промышленно реализуемо на нефтеперерабатывающих предприятиях.

Источники информации

1. Патент на изобретение RU 2331058 «СПОСОБ ОПРЕДЕЛЕНИЯ ОКТАНОВОГО ЧИСЛА БЕНЗИНОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ», МПК G01N 21/35, приоритет от 02.04.2007.

2. Патент на изобретение RU 2284506 «АВТОМАТИЗИРОВАННЫЙ СПОСОБ СПЕКТРОФОТОМЕТРИЧЕСКОГО АНАЛИЗА ВЕЩЕСТВ», МПК G01N 21/31, приоритет от 05.09.2002.

3. Патент на изобретение RU 2310830 «СПОСОБ ОПРЕДЕЛЕНИЯ ОКТАНОВОГО ЧИСЛА БЕНЗИНОВ», МПК G01N 21/35, приоритет от 17.08.2006.

4. Веснин В.Л., Мурадов В.Г. «Характерные особенности спектров поглощения бинарных смесей углеводородов в области длин волн 1090-1240 нм на примере изооктана, n-гептана, толуола, бензола», Известия Самарского научного центра Российской академии наук, т.11, №3, 2009, с. 29-32..

5. Шмидт В. «Оптическая спектроскопия для химиков и биологов». - М.: Изд-во «Техносфера», 2007.

Способ идентификации компонентов бензина и определения его состава в режиме реального времени, включающий создание базы данных спектральных коэффициентов поглощения тестовых компонентов, измерение спектральных коэффициентов поглощения тестовых компонентов и бензина в технологических линиях, отличающийся тем, что сигналы о спектральных коэффициентах поглощения тестовых компонентов и бензина суммируются нейронами идентификации, число которых равно или больше числа компонентов в бензине, и нейроном состава, с соответствующими синаптическими коэффициентами, величины и знаки которых, а также значения активации нейронов устанавливаются по образцам тестовых компонентов и бензинов с использованием алгоритма обратного распространения ошибки, в котором минимизируются целевые функции идентификации U и состава В: причем идентификацию j-компонентов производят по минимумам целевых функций U и активному состоянию нейронов искусственной нейронной сети идентификации, изменяя при этом коэффициенты синаптических связей ω, а значения активации нейронов определяют в соответствии с функцией активацииT=e,при этом концентрацию компонентов в бензине определяют по минимуму целевой функции состава и активному состоянию нейрона искусственной нейронной сети состава, изменяя коэффициенты синаптических связей ω, а значения активации нейрона состава вычисляют в соответствии с функцией активацииR=е,и при активном состоянии нейрона состава принимают значения концентрации компонентов в смеси c численно равным значениям коэффициентов синаптических связей ω,где k(λ) - спектральные коэффициенты поглощения тестовых компонентов, находящихся в базе данных;k(λ) - измеренные спектральные коэффициенты поглощения компонентов в технологических линиях;k(λ) - измеренные спектральные коэффициенты поглощения бензина в технологических линиях;λ - длины волн, на которых измеряются спектральные коэффициенты поглощения;T - функции активации искусственной нейронной сети идентификации;j - число компонентов в бензине;R - функция активации искусственной нейронной сети состава;α, β - коэффициенты, учитывающие наклон функций активации;ε - погрешность измерения спектральных коэффициентов поглощения.
СПОСОБ ИДЕНТИФИКАЦИИ КОМПОНЕНТОВ БЕНЗИНА И ОПРЕДЕЛЕНИЯ ЕГО СОСТАВА В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ
СПОСОБ ИДЕНТИФИКАЦИИ КОМПОНЕНТОВ БЕНЗИНА И ОПРЕДЕЛЕНИЯ ЕГО СОСТАВА В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ
СПОСОБ ИДЕНТИФИКАЦИИ КОМПОНЕНТОВ БЕНЗИНА И ОПРЕДЕЛЕНИЯ ЕГО СОСТАВА В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ
СПОСОБ ИДЕНТИФИКАЦИИ КОМПОНЕНТОВ БЕНЗИНА И ОПРЕДЕЛЕНИЯ ЕГО СОСТАВА В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ
СПОСОБ ИДЕНТИФИКАЦИИ КОМПОНЕНТОВ БЕНЗИНА И ОПРЕДЕЛЕНИЯ ЕГО СОСТАВА В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ
Источник поступления информации: Роспатент

Showing 11-20 of 73 items.
10.11.2014
№216.013.0406

Способ изготовления газового сенсора с наноструктурой и газовый сенсор на его основе

Изобретение относится к изготовлению газовых сенсоров, предназначенных для детектирования различных газов. Предложен способ изготовления газового сенсора, в котором образуют гетероструктуру из различных материалов, в ней формируют газочувствительный слой, после чего ее закрепляют в корпусе...
Тип: Изобретение
Номер охранного документа: 0002532428
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0797

Устройство для электрохимического исследования коррозии металлов

Устройство для электрохимического исследования коррозии металлов относится к области исследования коррозионного поведения материалов в различных средах с помощью построения коррозионных диаграмм, что позволяет оценить характер воздействия отдельных факторов на скорость коррозии, а также выявить...
Тип: Изобретение
Номер охранного документа: 0002533344
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0854

Способ контролируемого роста квантовых точек из коллоидного золота

Изобретение относится к области прецизионной наноэлектроники. Способ контролируемого роста квантовых точек (КТ) из коллоидного золота в системе совмещенного АСМ/СТМ заключается в выращивании КТ при отрицательном приложенном напряжении между иглой кантилевера совмещенного АСМ/СТМ и проводящей...
Тип: Изобретение
Номер охранного документа: 0002533533
Дата охранного документа: 20.11.2014
20.12.2014
№216.013.1158

Смеситель-электрокоалесцентор

Изобретение относится к смесителям-электрокоалесценторам и может использоваться для получения водонефтяных эмульсий на установках электрообессоливания нефти. Смеситель-электрокоалесцентор представляет собой вертикальный заземленный корпус, выполненный в виде трубы Вентури, соосно которому...
Тип: Изобретение
Номер охранного документа: 0002535863
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1238

Сейсмический локатор наземных объектов

Заявленное изобретение относится к области технических средств охраны и может быть использовано для определения азимута на обнаруженный объект и расстояния до него по сейсмическому сигналу при охране протяженных участков местности, территорий и подступов к различным объектам. Устройство...
Тип: Изобретение
Номер охранного документа: 0002536087
Дата охранного документа: 20.12.2014
20.01.2015
№216.013.2018

Способ изготовления наноструктурированного чувствительного элемента датчика вакуума и датчик вакуума

Изобретение относится к измерительной технике и может использоваться при изготовлении датчиков вакуума для измерения давления разреженного газа в вакуумных установках различного назначения. Предложен способ изготовления наноструктурированного чувствительного элемента датчика вакуума,...
Тип: Изобретение
Номер охранного документа: 0002539657
Дата охранного документа: 20.01.2015
10.04.2015
№216.013.3b16

Способ маскирования аналоговых речевых сигналов

Изобретение относится к средствам маскирования аналоговый речевых сигналов и может быть использован в системах связи силовых ведомств. Технический результат заключается в сокращении времени выполнения преобразования. Аналоговый речевой сигнал дискретизируется со стандартной частотой 8000 Гц....
Тип: Изобретение
Номер охранного документа: 0002546614
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ccb

Способ получения наноструктурированного слоя на поверхности металлов в условиях звукокапиллярного эффекта

Изобретение относится к способу получения наноструктурированного слоя на поверхности металлов в условиях звукокапиллярного эффекта. На первом этапе осуществляют горизонтальное перемещение детали со скоростью υ=(10÷100) мм/мин с обработкой алмазным кругом с заданной зернистостью...
Тип: Изобретение
Номер охранного документа: 0002547051
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.465f

Способ и устройство для сжатия и восстановления сигналов

Изобретение относится к области цифровой обработки сигналов. Технический результат заключается в увеличении коэффициента сжатия сигнала. В способе сжатия и восстановления сигналов, основанном на представлении сигналов линейной комбинацией экспонент, включающем дискретизацию сигнала, накопление...
Тип: Изобретение
Номер охранного документа: 0002549519
Дата охранного документа: 27.04.2015
10.06.2015
№216.013.500a

Устройство формирования цветового образца в заданном направлении цветового пространства

Изобретение относится к медицинской технике. Устройство формирования цветового образца в заданном направлении цветового пространства содержит оптические каналы с блоками формирования эталонного и тестового цветовых стимулов, узел совмещения цветовых стимулов в поле зрения испытуемого, также...
Тип: Изобретение
Номер охранного документа: 0002552011
Дата охранного документа: 10.06.2015
Showing 11-20 of 98 items.
10.11.2013
№216.012.7f72

Устройство для диагностики состояния биологических объектов

Изобретение относится к медицинской технике. Устройство содержит источник стабилизированного тока, схему управления, кнопки "Пуск" и "Опрос", ключ, измеритель временных интервалов, три пороговых элемента, устройство записи и считывания информации, блок памяти, формирователь энергетических...
Тип: Изобретение
Номер охранного документа: 0002498299
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8d7c

Способ ремонта асфальтобетонных покрытий

Изобретение относится к области дорожного строительства и может быть использовано при реконструкции и ремонте дорог. Технический результат: получение более ровной поверхности, увеличение прочности и долговечности ремонтируемого участка дороги, снижение стоимости и трудоемкости работ по ремонту...
Тип: Изобретение
Номер охранного документа: 0002501903
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e4c

Кодоуправляемые стрелочные часы

Изобретение относится к области часовой промышленности и направлено на упрощение конструкции часов и повышение надежности их функционирования, что обеспечивается за счет того, что кодоуправляемые стрелочные часы содержат хранитель времени, цифровой компаратор, последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002502111
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.9021

Устройство для вибрационной обработки деталей

Изобретение относится к области машиностроения и может быть использовано при отделочно-зачистной вибрационной обработке деталей. Устройство содержит корпус с днищем округлой формы, основание с вибратором и пружинной подвеской и цилиндрический рабочий барабан, свободно размещенный в корпусе....
Тип: Изобретение
Номер охранного документа: 0002502590
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.91a7

Способ определения концентрации и среднего размера наночастиц в золе

Заявляемый способ может найти применение при создании и производстве наноструктурированных пленок из пленкообразующих золей для газочувствительных сенсоров. Способ заключается в том, что изготавливают эталонные образцы с заданной начальной концентрацией наночастиц. Записывают инфракрасные...
Тип: Изобретение
Номер охранного документа: 0002502980
Дата охранного документа: 27.12.2013
10.03.2014
№216.012.aa89

Устройство обнаружения движущихся наземных транспортных средств по акустическим сигналам

Устройство содержит микрофон (1), предварительный усилитель (2), аналого-цифровой преобразователь (3), формирователь временного окна (4), блок (7) спектрального представления сигнала, фильтр верхних частот (5), блок (6) оценки изменения уровня сигнала внутри временного окна, блок (8)...
Тип: Изобретение
Номер охранного документа: 0002509372
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.afb3

Вакуумный конденсатор переменной емкости

Изобретение относится к области электронной техники и может быть использовано при модернизации выпускаемых и разработке новых типов вакуумных конденсаторов. Вакуумный конденсатор переменной емкости содержит вакуумированный корпус, состоящий из цилиндрической диэлектрической оболочки,...
Тип: Изобретение
Номер охранного документа: 0002510694
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c80e

Способ определения литогенности желчи

Изобретение относится к медицине и может быть использовано для определения оптимальных сроков дренирования желчных протоков у больных с патологией билиарного тракта различной этиологии. Описан способ определения литогенности желчи, заключающийся в определении ее физико-химических свойств, при...
Тип: Изобретение
Номер охранного документа: 0002516973
Дата охранного документа: 20.05.2014
27.06.2014
№216.012.d74c

Способ получения пористых отливок

Изобретение относится к литейному производству. Водорастворимый наполнитель нагревают в печи и засыпают в нагретую металлическую форму. После заливки металла в форму осуществляется пропитка наполнителя расплавом под действием центробежных сил. Частота вращения формы определяется по формуле ,...
Тип: Изобретение
Номер охранного документа: 0002520894
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8e1

Способ и устройство для демодуляции канального кода

Группа изобретений относится к вычислительной технике и связи и может быть использована в локальных вычислительных сетях и внешних запоминающих устройствах. Техническим результатом является повышение достоверности приема. Устройство содержит блок синхронизации, блок выработки тактовых...
Тип: Изобретение
Номер охранного документа: 0002521299
Дата охранного документа: 27.06.2014
+ добавить свой РИД