×
27.10.2015
216.013.8a20

Результат интеллектуальной деятельности: ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к схемам входных каскадов на КМОП-транзисторах. Технический результат: расширение диапазона активной работы дифференциального входного каскада. Исток первого входного транзистора соединен со стоком четвертого входного полевого транзистора через первый дополнительный резистор, исток второго входного транзистора соединен со стоком третьего входного полевого транзистора через второй дополнительный резистор и через дополнительную цепь смещения потенциалов связан с затвором второго выходного транзистора, который подключен ко второй шине источника питания через дополнительный токостабилизирующий двухполюсник. 13 ил.
Основные результаты: Дифференциальный входной каскад быстродействующего операционного усилителя для КМОП-техпроцессов, содержащий первый (1) и второй (2) входы, первый (3) и второй (4) входные полевые транзисторы, истоки которых объединены, а затворы связаны с соответствующими первым (1) и вторым (2) входами, объединенные истоки первого (3) и второго (4) входных полевых транзисторов подключены через цепь смещения потенциалов (5) к объединенным затворам первого (6) и второго (7) выходных транзисторов, объединенные затворы первого (6) и второго (7) выходных транзисторов связаны с первой (8) шиной источника питания через токостабилизирующий двухполюсник (9), третий (10) и четвертый (11) входные полевые транзисторы, объединенные истоки которых соединены со второй (12) шиной источника питания через второй (13) токостабилизирующий двухполюсник, затвор третьего (10) входного полевого транзистора подключен к первому (1) входу устройства, затвор четвертого (11) входного полевого транзистора соединен со вторым (2) входом устройства, сток третьего (10) входного полевого транзистора соединен с истоком первого (6) выходного транзистора, сток четвертого (11) входного полевого транзистора соединен с истоком второго (7) выходного транзистора, причем первый (14) токовый выход устройства, согласованный со второй (12) шиной источника питания, соединен со стоком первого (3) входного полевого транзистора, второй (15) токовый выход устройства, согласованный со второй (12) шиной источника питания, соединен со стоком второго (4) входного полевого транзистора, третий (16) токовый выход устройства, согласованный с первой (8) шиной источника питания, соединен со стоком первого (6) выходного транзистора, а четвертый (17) токовый выход устройства, согласованный с первой (8) шиной источника питания, соединен со стоком второго (7) выходного транзистора, отличающийся тем, что исток первого (3) входного транзистора соединен со стоком четвертого (11) входного полевого транзистора через первый (18) дополнительный резистор, исток второго (4) входного транзистора соединен со стоком третьего (10) входного полевого транзистора через второй (19) дополнительный резистор и через дополнительную цепь смещения потенциалов (20) связан с затвором второго (7) выходного транзистора, который подключен ко второй (12) шине источника питания через дополнительный токостабилизирующий двухполюсник (21).

Изобретение относится к области радиотехники и автоматики и может быть использовано в качестве устройства усиления аналоговых сигналов с широким динамическим диапазоном, в структуре быстродействующих аналоговых микросхем различного функционального назначения (например, быстродействующих операционных усилителях (ОУ), мультидифференциальных ОУ и т.п.).

Известны схемы комплементарных входных каскадов ОУ на КМОП-транзисторах [1-18]. Дифференциальные входные каскады данного класса стали основным усилительным элементом многих аналоговых интерфейсов.

Ближайшим прототипом (фиг. 1) заявляемого устройства является комплементарный дифференциальный входной каскад по патенту US 5.444.413, содержащий первый 1 и второй 2 входы, первый 3 и второй 4 входные полевые транзисторы, истоки которых объединены, а затворы связаны с соответствующими первым 1 и вторым 2 входами, объединенные истоки первого 3 и второго 4 входных полевых транзисторов подключены через цепь смещения потенциалов 5 к объединенным затворам первого 6 и второго 7 выходных транзисторов, объединенные затворы первого 6 и второго 7 выходных транзисторов связаны с первой 8 шиной источника питания через токостабилизирующий двухполюсник 9, третий 10 и четвертый 11 входные полевые транзисторы, объединенные истоки которых соединены со второй 12 шиной источника питания через второй 13 токостабилизирующий двухполюсник, затвор третьего 10 входного полевого транзистора подключен к первому 1 входу устройства, затвор четвертого 11 входного полевого транзистора соединен со вторым 2 входом устройства, сток третьего 10 входного полевого транзистора соединен с истоком первого 6 выходного транзистора, сток четвертого 11 входного полевого транзистора соединен с истоком второго 7 выходного транзистора, причем первый 14 токовый выход устройства, согласованный со второй 12 шиной источника питания, соединен со стоком первого 3 входного полевого транзистора, второй 15 токовый выход устройства, согласованный со второй 12 шиной источника питания, соединен со стоком второго 4 входного полевого транзистора, третий 16 токовый выход устройства, согласованный с первой 8 шиной источника питания, соединен со стоком первого 6 выходного транзистора, а четвертый 17 токовый выход устройства, согласованный с первой 8 шиной источника питания, соединен со стоком второго 7 выходного транзистора.

Существенный недостаток известного дифференциального входного каскада (ДК) состоит в том, что он имеет сравнительно узкий динамический диапазон (Uгр) линейного усиления дифференциальных сигналов (Uвх.max<Uгр≈100÷150 мВ) [19]. Как показано в монографиях авторов настоящей заявки [19-20], это обстоятельство является главной причиной невысокого быстродействия современных операционных усилителей, обусловленной нелинейным режимом работы их входного ДК. При этом для большинства ОУ с высокоимпедансным узлом и одним корректирующим конденсатором (Ск) максимальная скорость нарастания выходного напряжения определяется формулой [19-20]:

где fcp - частота единичного усиления (частота среза) скорректированного ОУ;

Uгр - напряжение ограничения проходной характеристики iвых=f(uвх) входного каскада (для классических ДК на биполярных транзисторах и полевых транзисторах в микрорежиме Uгр=50÷100 мВ).

Из (1) следует, что повышение υΒΜΧ можно осуществить двумя качественно разными путями [19-20]:

1. Увеличением диапазона активной работы входного ДК (т.е. напряжения Uгр) без изменения крутизны преобразования входного напряжения в выходные токи ДК.

2. Повышением fcp за счет улучшения частотных свойств транзисторов, что связано, прежде всего, с использованием более высокочастотных и дорогостоящих техпроцессов (SG25VD, SG25H1,SG25RH и др.).

Заявляемый входной каскад ОУ решает задачу повышения быстродействия за счет увеличения в несколько раз диапазона активной работы входного каскада (без изменения его крутизны), измеряемого напряжением ограничения (Uгр).

Кроме этого предлагаемый ДК достаточно эффективен в мультидифференциальных ОУ [21, 22], где от входных каскадов требуется достаточно широкий диапазон линейной работы.

Таким образом, основная задача предлагаемого изобретения состоит в расширении диапазона активной работы дифференциального входного каскада - получении граничных напряжений его проходной характеристики iвых=f(uвх) на уровне нескольких вольт.

Поставленная задача достигается тем, что в дифференциальном входном каскаде быстродействующего операционного усилителя для КМОП-техпроцессов (фиг. 1), содержащем первый 1 и второй 2 входы, первый 3 и второй 4 входные полевые транзисторы, истоки которых объединены, а затворы связаны с соответствующими первым 1 и вторым 2 входами, объединенные истоки первого 3 и второго 4 входных полевых транзисторов подключены через цепь смещения потенциалов 5 к объединенным затворам первого 6 и второго 7 выходных транзисторов, объединенные затворы первого 6 и второго 7 выходных транзисторов связаны с первой 8 шиной источника питания через токостабилизирующий двухполюсник 9, третий 10 и четвертый 11 входные полевые транзисторы, объединенные истоки которых соединены со второй 12 шиной источника питания через второй 13 токостабилизирующий двухполюсник, затвор третьего 10 входного полевого транзистора подключен к первому 1 входу устройства, затвор четвертого 11 входного полевого транзистора соединен со вторым 2 входом устройства, сток третьего 10 входного полевого транзистора соединен с истоком первого 6 выходного транзистора, сток четвертого 11 входного полевого транзистора соединен с истоком второго 7 выходного транзистора, причем первый 14 токовый выход устройства, согласованный со второй 12 шиной источника питания, соединен со стоком первого 3 входного полевого транзистора, второй 15 токовый выход устройства, согласованный со второй 12 шиной источника питания, соединен со стоком второго 4 входного полевого транзистора, третий 16 токовый выход устройства, согласованный с первой 8 шиной источника питания, соединен со стоком первого 6 выходного транзистора, а четвертый 17 токовый выход устройства, согласованный с первой 8 шиной источника питания, соединен со стоком второго 7 выходного транзистора, предусмотрены новые элементы и связи - исток первого 3 входного транзистора соединен со стоком четвертого 11 входного полевого транзистора через первый 18 дополнительный резистор, исток второго 4 входного транзистора соединен со стоком третьего 10 входного полевого транзистора через второй 19 дополнительный резистор и через дополнительную цепь смещения потенциалов 20 связан с затвором второго 7 выходного транзистора, который подключен ко второй 12 шине источника питания через дополнительный токостабилизирующий двухполюсник 21.

Схема усилителя-прототипа представлена на фиг. 1. На фиг. 2 показано заявляемое устройство в соответствии с формулой изобретения.

На фиг. 3 показана схема заявляемого дифференциального каскада с идеальными источниками цепи смещения потенциалов 5 и дополнительной цепи смещения потенциалов 20 в среде компьютерного моделирования PSpise на моделях интегральных транзисторов ФГУП НЛП «Пульсар».

На фиг. 4 показана зависимость выходных токов ДК-прототипа от изменения входного дифференциального напряжения при малом суммарном токе его общей истоковой цепи (I1=10 мкА). Из данного графика следует, что диапазон активной работы ДК-прототипа лежит в пределах 100-150 мВ и практически не отличается от диапазона активной работы классических дифференциальных каскадов на биполярных транзисторах [19, 20]. Данное обстоятельство является основной причиной невысокого быстродействия КМОП-операционных усилителей на основе известной схемы ДК.

На фиг. 5 приведена схема фиг. 3, в которой последовательно с первым 18 и вторым 19 дополнительными резисторами введены дополнительные нелинейные элементы (p-n переходы), расширяющие возможности исходной схемы при работе с большими входными сигналами.

На фиг. 6 представлена зависимость выходных токов ДК фиг. 5 при разных значениях напряжений цепи смещения потенциалов 5 и дополнительной цепи смещения потенциалов 20. Данный график показывает, что в схеме фиг. 5 возможно формирование зон нечувствительности на проходной характеристике, что расширяет возможности исходной схемы.

На фиг. 7 представлена схема заявляемого ДК фиг. 2, в котором источники напряжения цепи смещения потенциалов 5 и дополнительной цепи смещения потенциалов 20 выполнены, в частном случае, на полевых транзисторах с закороченными выводами затвора и стока.

На фиг. 8 приведены проходные характеристики съемы фиг. 7 в мелком, а на фиг. 9 - в крупном масштабах при разных значениях сопротивлений первого 18 и второго 19 дополнительных резисторов.

На фиг. 10 в качестве примера показана схема микромощного (I13=10 мкА) быстродействующего КМОП-операционного усилителя в среде Cadence на базе заявляемого ДК фиг. 2.

На фиг. 11 приведены амплитудно-частотные характеристики операционного усилителя фиг. 10 со 100% отрицательной обратной связью при различных значениях традиционной емкости коррекции Ck.

На фиг. 12 приведены графики переходных процессов в ОУ фиг. 10 при бесконечно больших сопротивлениях первого 18 и второго 19 дополнительных резисторов. В данном режиме схема фиг. 10 соответствует применению в ОУ схемы ДК-прототипа фиг. 1. Рассмотрение графиков фиг. 10 показывает, что максимальная скорость нарастания выходного напряжения ОУ на базе известного ДК составляет ϑвых=0,5 В/мкс.

На фиг. 13 приведены графики переходных процессов в ОУ фиг. 10 при сопротивлениях первого 18 и второго 19 дополнительных резисторов, равных 1 кОм. Рассмотрение графиков фиг. 10 показывает, что максимальная скорость нарастания выходного напряжения ОУ на базе заявляемого ДК при работе его транзисторов в микрорежиме (5÷10 мкА) составляет ϑвых=10 В/мкс.

Дифференциальный входной каскад быстродействующего операционного усилителя для КМОП-техпроцессов фиг. 2 содержит первый 1 и второй 2 входы, первый 3 и второй 4 входные полевые транзисторы, истоки которых объединены, а затворы связаны с соответствующими первым 1 и вторым 2 входами, объединенные истоки первого 3 и второго 4 входных полевых транзисторов подключены через цепь смещения потенциалов 5 к объединенным затворам первого 6 и второго 7 выходных транзисторов, объединенные затворы первого 6 и второго 7 выходных транзисторов связаны с первой 8 шиной источника питания через токостабилизирующий двухполюсник 9, третий 10 и четвертый 11 входные полевые транзисторы, объединенные истоки которых соединены со второй 12 шиной источника питания через второй 13 токостабилизирующий двухполюсник, затвор третьего 10 входного полевого транзистора подключен к первому 1 входу устройства, затвор четвертого 11 входного полевого транзистора соединен со вторым 2 входом устройства, сток третьего 10 входного полевого транзистора соединен с истоком первого 6 выходного транзистора, сток четвертого 11 входного полевого транзистора соединен с истоком второго 7 выходного транзистора, причем первый 14 токовый выход устройства, согласованный со второй 12 шиной источника питания, соединен со стоком первого 3 входного полевого транзистора, второй 15 токовый выход устройства, согласованный со второй 12 шиной источника питания, соединен со стоком второго 4 входного полевого транзистора, третий 16 токовый выход устройства, согласованный с первой 8 шиной источника питания, соединен со стоком первого 6 выходного транзистора, а четвертый 17 токовый выход устройства, согласованный с первой 8 шиной источника питания, соединен со стоком второго 7 выходного транзистора. Исток первого 3 входного транзистора соединен со стоком четвертого 11 входного полевого транзистора через первый 18 дополнительный резистор, исток второго 4 входного транзистора соединен со стоком третьего 10 входного полевого транзистора через второй 19 дополнительный резистор и через дополнительную цепь смещения потенциалов 20 связан с затвором второго 7 выходного транзистора, который подключен ко второй 12 шине источника питания через дополнительный токостабилизирующий двухполюсник 21.

Рассмотрим работу заявляемого устройства фиг.2. Статические токи всех транзисторов схемы (при uвх1-2=0, R18=R19=∞) определяются токами I9 и Ι21 токостабилизирующего двухполюсника 9 и дополнительного токостабилизирующего двухполюсника 21.

Если на вход Вх. 1 подается положительное напряжение uвх1-2, то оно с единичным коэффициентом передается в исток первого 3 входного полевого транзистора. При малых токах второго 13 токостабилизирующего двухполюсника (5÷10 мкА) третий 10 входной полевой транзистор «запирается» уже при uвх1-2=100÷150 мВ. Практически весь ток Ι13 перераспределяется далее в исток четвертого 11 входного полевого транзистора. Следует также заметить, что напряжение на истоках второго 4 входного полевого и второго 7 выходного полевого транзисторов (при дальнейшем увеличении uвх) не изменяется.

Рассмотрим далее работу схемы фиг. 2 при R18=R19=0,5÷2 кОм, а также дальнейшем (uвх1-2>150 мВ) увеличении амплитуды входного сигнала. Если в статическом режиме выбрать напряжение смещения Е0 цепи смещения потенциалов 5 и дополнительной цепи смещения потенциалов 20 таким образом, что статические токи через первый 18 и второй 19 дополнительные резисторы будут близки к нулю, то дальнейшее увеличение uвх1-2>100÷50 мВ будет «выделяться» на первом 18 и втором 19 дополнительных резисторах. Как следствие, в этом режиме начинает увеличиваться ток истока (стока) первого 3 входного полевого и второго 7 выходного транзисторов, а также выходной ток ДК (для первого 14 и второго 17 токовых выходов устройства). Графики фиг. 6, фиг. 8, фиг. 9 подтверждают, что предлагаемый ДК обеспечивает достаточно большие выходные токи (значительно превышающие статический ток I13=5÷10 мкА). Заметим, что данный режим характерен для транзисторных каскадов класса «АВ».

Таким образом, ДК фиг. 2 работает как каскад класса «АВ». Его максимальные выходные токи существенно превышают микроамперные статические токи транзисторов (3, 4, 6, 7). Наряду с более высоким значением Uгр это является существенным достоинством ДК, фиг. 2, позволяющим более чем на порядок (в 20 раз) повысить максимальную скорость нарастания выходного напряжения, например, в операционном усилителе или уменьшить время установления переходного процесса в компенсационном стабилизаторе напряжения с использованием ДК, фиг. 2.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент EP 0601560 fig.3.

2. Патент US №7.701.291 fig. 3.

3. Патентная заявка US 2006/0139098.

4. Патентная заявка US 2010/0327974 fig. 4.

5. Патент US №7.408.410.

6. Патентная заявка US 2009/0237163 fig. 2.

7. Патент US №7.595.695.

8. Патент WO 2007049390.

9. Патент US №7.567.124.

10. Патент US №7.741.911.

11. Патент US №4.377.789.

12. Патент US №6.794.940.

13. Патент US №6.538.512.

14. Патент US №6.590.980.

15. Патент US №7.265.621.

16. Патент US №7.259.626.

17. Патент US №7.209.006.

18. Патент US №6.842.073.

19. Нелинейная активная коррекция в прецизионных аналоговых микросхемах: монография / Н.Н.Прокопенко. - Ростов-на-Дону: Изд-во Северо-Кавказского научного центра высшей школы, 2000. - С.11, формула (1.5).

20. Прокопенко Н.Н. Архитектура и схемотехника быстродействующих операционных усилителей: монография / Н.Н. Прокопенко, А.С. Будяков. - Шахты: Изд-во ЮРГУЭС, 2006. - 231 с.

21. Прокопенко Н.Н. Основные параметры и уравнения базовых схем включения мультидифференциальных операционных усилителей с высокоимпедансным узлом / Н.Н. Прокопенко, Н.В. Бутырлагин, И.В. Пахомов // Проблемы разработки перспективных микро- и наноэлектронных систем - 2014. Сборник трудов. Часть 3 / Под общ. ред. академика РАН А.Л. Стемпковского. - М.: ИППМ РАН, 2014. - С. 111-116.

22. Прокопенко Н.Н. Основные свойства, параметры и базовые схемы включения мультидифференциальных операционных усилителей с высокоимпедансным узлом / Н.Н. Прокопенко, О.В. Дворников, П.С. Будяков // Электронная техника. Серия 2. Полупроводниковые приборы, выпуск 2 (233) 2014. - С. 53-64.

Дифференциальный входной каскад быстродействующего операционного усилителя для КМОП-техпроцессов, содержащий первый (1) и второй (2) входы, первый (3) и второй (4) входные полевые транзисторы, истоки которых объединены, а затворы связаны с соответствующими первым (1) и вторым (2) входами, объединенные истоки первого (3) и второго (4) входных полевых транзисторов подключены через цепь смещения потенциалов (5) к объединенным затворам первого (6) и второго (7) выходных транзисторов, объединенные затворы первого (6) и второго (7) выходных транзисторов связаны с первой (8) шиной источника питания через токостабилизирующий двухполюсник (9), третий (10) и четвертый (11) входные полевые транзисторы, объединенные истоки которых соединены со второй (12) шиной источника питания через второй (13) токостабилизирующий двухполюсник, затвор третьего (10) входного полевого транзистора подключен к первому (1) входу устройства, затвор четвертого (11) входного полевого транзистора соединен со вторым (2) входом устройства, сток третьего (10) входного полевого транзистора соединен с истоком первого (6) выходного транзистора, сток четвертого (11) входного полевого транзистора соединен с истоком второго (7) выходного транзистора, причем первый (14) токовый выход устройства, согласованный со второй (12) шиной источника питания, соединен со стоком первого (3) входного полевого транзистора, второй (15) токовый выход устройства, согласованный со второй (12) шиной источника питания, соединен со стоком второго (4) входного полевого транзистора, третий (16) токовый выход устройства, согласованный с первой (8) шиной источника питания, соединен со стоком первого (6) выходного транзистора, а четвертый (17) токовый выход устройства, согласованный с первой (8) шиной источника питания, соединен со стоком второго (7) выходного транзистора, отличающийся тем, что исток первого (3) входного транзистора соединен со стоком четвертого (11) входного полевого транзистора через первый (18) дополнительный резистор, исток второго (4) входного транзистора соединен со стоком третьего (10) входного полевого транзистора через второй (19) дополнительный резистор и через дополнительную цепь смещения потенциалов (20) связан с затвором второго (7) выходного транзистора, который подключен ко второй (12) шине источника питания через дополнительный токостабилизирующий двухполюсник (21).
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
ДИФФЕРЕНЦИАЛЬНЫЙ ВХОДНОЙ КАСКАД БЫСТРОДЕЙСТВУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ КМОП-ТЕХПРОЦЕССОВ
Источник поступления информации: Роспатент

Showing 101-110 of 245 items.
27.08.2014
№216.012.efc7

Широкополосный усилитель мощности

Изобретение относится к области радиотехники и связи. Техническим результатом является уменьшение уровня нелинейных искажений и шумов различного происхождения в цепи нагрузки ШНУ с неинвертирующим выходным каскадом. Широкополосный усилитель мощности содержит неинвертирующий выходной каскад (1),...
Тип: Изобретение
Номер охранного документа: 0002527202
Дата охранного документа: 27.08.2014
10.10.2014
№216.012.fb9d

Управляемый усилитель и аналоговый смеситель сигналов

Изобретение относится к области радиотехники и связи и может быть использовано в радиоприемных устройствах, фазовых детекторах и модуляторах, а также в системах умножения частоты. Достигаемый технический результат: получение на выходе не только амплитудных изменений выходного сигнала под...
Тип: Изобретение
Номер охранного документа: 0002530259
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fb9e

Температурно стабильный источник опорного напряжения на основе стабилитрона

Изобретение относится к области электротехники и может использоваться при проектировании стабилизаторов напряжения, аналого-цифровых и цифроаналоговых преобразователей и других элементов автоматики. Техническим результатом является повышение температурной стабильности выходного напряжения....
Тип: Изобретение
Номер охранного документа: 0002530260
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fba0

Быстродействующий аттенюатор для входных цепей аналого-цифровых интерфейсов

Изобретение относится к области электротехники, радиотехники, связи и может использоваться в структуре различных интерфейсов, измерительных приборах. Технический результат заключается в расширении диапазона рабочих частот устройства и повышении его быстродействия при работе с импульсными...
Тип: Изобретение
Номер охранного документа: 0002530262
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fba1

Быстродействующий истоковый повторитель напряжения

Изобретение относится к области радиотехники и связи и может использоваться в различных аналоговых устройствах на полевых и биполярных транзисторах в качестве выходного (буферного) усилителя. Техническим результатом является расширение диапазона рабочих частот ИПН при наличии емкости на выходе...
Тип: Изобретение
Номер охранного документа: 0002530263
Дата охранного документа: 10.10.2014
27.11.2014
№216.013.0be7

Быстродействующий датчик физических величин с потенциальным выходом

Изобретение относится к области информационно-измерительной техники и автоматики и может быть использовано в датчиках, обеспечивающих измерение различных физических величин. Датчик физических величин с потенциальным выходом содержит сенсор (1) с внутренней емкостью (2) и внутренним...
Тип: Изобретение
Номер охранного документа: 0002534455
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d0d

Трансрезистивный усилитель с парафазным выходом для преобразования сигналов лавинных фотодиодов

Изобретение относится к области радиотехники и связи и может использоваться в системах обработки оптической информации. Технический результат: расширение допустимого диапазона изменения сопротивления передачи R. Устройство содержит первый (1) и второй (2) токовые входы, первый (3) и второй (4)...
Тип: Изобретение
Номер охранного документа: 0002534758
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d0e

Устройство для дистанционного измерения высоких напряжений статического электричества и электропитания системы мониторинга автономного объекта

Предлагаемое изобретение относится к области электротехники и связано с практическим использованием микромощных возобновляемых источников энергии, в частности энергии электростатического заряда, возникающего на поверхности полимерных материалов, например специальной одежде и т.п. Технический...
Тип: Изобретение
Номер охранного документа: 0002534759
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0de3

Широкополосный неинвертирующий усилитель с малым уровнем нелинейных искажений и шумов

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства для прецизионного усиления по мощности аналоговых сигналов, в структурах неинвертирующих усилителей и выходных каскадов различного функционального назначения, в том числе ВЧ- и СВЧ-диапазонов....
Тип: Изобретение
Номер охранного документа: 0002534972
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0eb3

Дифференциальный аттенюатор с расширенным диапазоном рабочих частот

Изобретение относится к устройству дифференциального аттенюатора. Техническим результатом является повышение быстродействия устройства при работе с импульсными противофазными сигналами большой амплитуды. Устройство содержит первый (1) вход, первый (2) выход, первый (3) резистор, второй (4)...
Тип: Изобретение
Номер охранного документа: 0002535180
Дата охранного документа: 10.12.2014
Showing 101-110 of 262 items.
20.04.2016
№216.015.33ad

Оптико-электронное устройство для контроля качества моторного масла

Изобретение относится к технике измерений и может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла. Оптико-электронное устройство для контроля качества...
Тип: Изобретение
Номер охранного документа: 0002582296
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37d1

Мини-машина для скалывания наледи

Изобретение относится к коммунальному хозяйству, в частности к средствам удаления наледи в стесненных условиях придомовой территории. Мини-машина для скалывания наледи содержит раму (1) на колесах (2), соединенный с рамой (1) посредством пружины (3) рабочий орган клиновидного типа (4) и...
Тип: Изобретение
Номер охранного документа: 0002582369
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b0f

Устройство для предотвращения опрокидывания транспортного средства

Изобретение относится к транспортному машиностроению. Устройство для предотвращения опрокидывания транспортного средства расположено в верхней части кузова и содержит датчик углового положения транспортного средства, источник питания, соединенный с пиропатроном газогенератора, подключенного к...
Тип: Изобретение
Номер охранного документа: 0002583822
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b22

Крепь подземного сооружения

Изобретение относится к подземному строительству, в частности к конструкциям крепи заглубленных сооружений, и может быть использовано в стволах метрополитенов, угольных шахт и рудников, а также в вертикальных выработках подземной инфраструктуры городов. Задачей изобретения является создание...
Тип: Изобретение
Номер охранного документа: 0002583800
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3bea

Устройство анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами

Изобретение относится к технике измерений, может использоваться в автомобильной, сельскохозяйственной, авиационной, нефтеперерабатывающей и других отраслях промышленности, где необходимо проводить оперативный анализ качества моторного масла. Устройство анализа загрязненности моторного масла...
Тип: Изобретение
Номер охранного документа: 0002583344
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c9b

Биполярно-полевой операционный усилитель

Изобретение относится к радиоэлектронике и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат заключается в повышении стабильности статического режима операционного усилителя. Биполярно-полевой операционный усилитель содержит входной...
Тип: Изобретение
Номер охранного документа: 0002583760
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cc4

Способ анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами

Изобретение относится к технике измерений, где необходимо проводить оперативный анализ качества моторного масла. Способ анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами включает зондирование исследуемой дисперсной среды пучком маломощного лазерного и...
Тип: Изобретение
Номер охранного документа: 0002583351
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3fb2

Крепь заглубленного сооружения

Изобретение относится к подземному строительству, в частности к конструкциям крепи выработок, и может быть использовано в стволах шахт и рудников, а также в вертикальных выработках подземной инфраструктуры городов. Технический результат заключается в создании конструкции крепи, позволяющей...
Тип: Изобретение
Номер охранного документа: 0002584174
Дата охранного документа: 20.05.2016
20.06.2016
№216.015.48a6

Устройство для повышения прочности кузова транспортного средства при опрокидывании

Изобретение относится к области транспортного машиностроения. Устройство для повышения прочности кузова транспортного средства при опрокидывании содержит датчик углового положения транспортного средства, подключенный к источнику постоянного тока - аккумулятору. При наличии сигнала...
Тип: Изобретение
Номер охранного документа: 0002587775
Дата охранного документа: 20.06.2016
27.08.2016
№216.015.505c

Биполярно-полевой операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат заключается в расширении диапазона изменения выходного напряжения до уровней, близких к напряжениям на положительной и отрицательной шинах питания. Устройство содержит: входной дифференциальный каскад, общая истоковая цепь...
Тип: Изобретение
Номер охранного документа: 0002595927
Дата охранного документа: 27.08.2016
+ добавить свой РИД