×
27.10.2015
216.013.87d8

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА

Вид РИД

Изобретение

№ охранного документа
0002566379
Дата охранного документа
27.10.2015
Аннотация: Заявляемое изобретение относится к навигационной технике, а именно к способу навигации космического аппарата (КА). Способ основан на измерении отклонения истинного и измеренного положения звезды, наблюдаемой сквозь земную атмосферу. Отклонение связано с атмосферной рефракцией. Для этого с помощью звездного прибора проводят одновременно измерения угловых расстояний между видимым положением известной звезды, лучи которой подвергаются рефракции в атмосфере, и положением каждой из не менее чем двух звезд, находящихся над атмосферой, лучи которых проходят выше атмосферы и не подвергаются рефракции. По измеренным расстояниям определяют величину угла атмосферной рефракции в момент измерения. Технический результат - определение величины атмосферной рефракции для использования ее в системе автономной навигации КА с целью уточнения параметров орбиты. 5 ил.
Основные результаты: Способ определения величины угла атмосферной рефракции в условиях космического полета, отличающийся тем, что одновременно измеряют угловые расстояния между одной звездой, наблюдаемой сквозь атмосферу, и каждой из не менее чем двух звезд, находящихся над атмосферой, а по измеренным расстояниям определяют величину угла атмосферной рефракции в момент измерения по формуле: ,гдеρ - угол атмосферной рефракции,α - известное угловое расстояние между первой и второй звездами, находящимися выше атмосферы планеты, относительно которых проводят угловые измерения относительно третьей звезды, заходящей за горизонт планеты,µ - известное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты без учета атмосферной рефракции,λ - известное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты без учета атмосферной рефракции,µ′ - измеренное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты (т.е. с учетом атмосферной рефракции),λ′ - измеренное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты (т.е. с учетом атмосферной рефракции).

Способ определения величины атмосферной рефракции (ρ) в условиях космического полета для определения параметров орбиты космического аппарата предназначен для применения в системах управления движением (СУД) и автономной навигации (АН) космического аппарата (КА).

Во время полета КА при значительных удалениях от Земли, например при перелетах с околоземной орбиты на лунную орбиту, необходимо уточнение параметров орбиты, для чего средствами автономной системы навигации КА предусматриваются измерения различных навигационных параметров.

Наиболее известным навигационным параметром, который измеряется для уточнения параметров орбиты КА, является угловое расстояние в заданный момент времени между известной (опознанной) звездой и видимым горизонтом планеты. Для измерения этого навигационного параметра применяется хорошо известный способ с использованием секстанта, как это делалось при полетах КА «Apollon» к Луне. Описание способа измерения этого навигационного параметра приведено в книге «Навигация, наведение и стабилизация в космосе», изд. «Машиностроение», Москва, 1970, стр. 235, посвященной КА Apollon.

Однако указанный способ измерения этого навигационного параметра имеет ряд недостатков:

- неопределенность положения линии видимого горизонта относительно поверхности планеты;

- необходимость определенной ориентации измерительной плоскости секстанта относительно линии видимого горизонта.

В качестве аналога способа можно привести предложенный американским ученым Kenneth Р. способ измерять навигационный параметр (для уточнения параметров орбиты КА) в виде угла между истинным направлением на звезду и видимым направлением на звезду, лучи света которой подверглись рефракции (отклонению) в атмосфере Земли (патент №3439427, USA).

Однако предложенный в патенте USA №3439427 способ измерения в условиях комического полета такого навигационного параметра требует:

- сложного прецизионного оборудования (гироскопов),

- предварительного наведения оси измерительного инструмента (телескопа) на звезду до ее погружения в атмосферу,

стабилизации этой оси в инерциальном пространстве либо с помощью гиростабилизированной платформы, на которой установлен телескоп, либо стабилизации целиком КА,

- отслеживания трека звезды с фиксацией времени измерений,

- вычисления угла рефракции по величине трека,

- повторения измерений, не менее чем для 6 звезд, для определения положения КА на орбите классическими способами определения орбиты по 6-ти параметрам.

К недостаткам данного способа можно отнести значительную погрешность, относительно большое время измерений, а также необходимость наличия большого приборного состава для реализации этого способа.

Прототипа заявленного способа не найдено.

Задачей изобретения является обеспечение возможности определения параметров орбиты с высокой точностью и быстродействием при одновременной простоте аппаратурного состава.

Для решения поставленной задачи определяется навигационный параметр - величина угла рефракции звезды, заходящей за атмосферу планеты, для чего одновременно проводят измерения угловых расстояний между видимым положением известной звезды, лучи которой подвергаются рефракции в атмосфере и двумя другими известными звездами, лучи которых проходят выше атмосферы и не подвергаются рефракции. Для этих измерений может использоваться, например, звездный датчик. Взаимное положение этих трех звезд, поверхность планеты и толща атмосферы в угловом поле звездного прибора показаны на Фиг. 1. С помощью прибора одновременно (в момент времени, когда одна из звезд наблюдается сквозь атмосферу) измеряются угловые расстояния между 1-й и 3-й звездами - µ′, между 2-й и 3-й звездами - λ′.

Угловое расстояние между 1-й и 2-й звездами - α, а также истинные (т.е. без учета атмосферной рефракции) угловые расстояния между 1-й и 3-й звездами - µ и между 2-й и 3-й звездами - λ - константы (вычисляются по координатам этих трех звезд, приведенным в звездном каталоге).

Значение угла атмосферной рефракции ρ вычисляем по формуле, приведенной ниже:

где

α - известное угловое расстояние между первой и второй звездами, находящимися выше атмосферы Земли, относительно которых проводят угловые измерения относительно третьей звезды, заходящей за горизонт Земли,

µ - известное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы Земли и третьей звездой, заходящей за атмосферу Земли без учета атмосферной рефракции,

λ - известное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы Земли и третьей звездой, заходящей за атмосферу Земли без учета атмосферной рефракции,

µ′ - измеренное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы Земли и третьей звездой, заходящей за атмосферу Земли (т.е. с учетом атмосферной рефракции),

λ′ - измеренное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы Земли и третьей звездой, заходящей за атмосферу Земли (т.е. с учетом атмосферной рефракции);

В качестве примера покажем определение угла рефракции по данным измерений с КА звездным прибором угловых расстояний между тремя звездами из созвездия Южный Крест, одна из которых заходит за атмосферу Земли. Геоцентрические координаты звезд (эпоха J2000):

1-я звезда: β Южного Креста α1=191°55′48′′, δ1=-59°41′19′′,

2-я звезда: γ Южного Креста α2=187°47′28′′, δ2=-57°06′47′′,

3-я звезда: α Южного Креста α3=186°38′58′′, δ3=-63°05′56′′,

3-я звезда заходит за атмосферу Земли.

Истинные угловые расстояния между звездами (без учета атмосферной рефракции) составляют:

между 1-й и 2-й звездами угол α=3,6571°,

между 1-й и 3-й звездами угол µ=4,24237°,

между 2-й и 3-й звездами угол λ=6,01256°.

Измеренные угловые расстояния между заходящей за атмосферу 3-й звездой и звездами над атмосферой составили:

между 1-й и 3-й звездами угол µ′=4,378°,

между 2-й и 3-й звездами угол λ′=6,169°.

Подставив вычисленные и измеренные значения в формулу, получим значение угла рефракции ρ=9,39486′≈2,73 мрад.

Взаимное положение КА и хода луча от звезды (лини ed, db, bc, cKA) показаны на Фиг. 2. Высота Н соответствует отрезку ab, лежащему на линии, совпадающей с радиусом Земли, а точка b соответствует максимальному погружению луча от звезды, наблюдаемой из точки КА. Зависимость угла рефракции ρ от высоты Н является известной (табличные значения для разных значений длин волн оптического излучения, географических широт и времен года). Пример графика зависимости угла рефракции ρ от высоты Н для длины волны 0,850 мкм и средних широт показан на Фиг. 3. По этому графику вычисленное выше в примере значение угла рефракции ρ≈2,73 мрад соответствует высоте луча от звезды над поверхностью Земли H≈13 км.

Положение точки КА на орбите в геоцентрической системе координат определяется углом θ между векторами КА - центр планеты и КА - первая звезда, показанным на фиг. 2, и углом η между векторами КА - центр планеты и КА - вторая звезда. Углы θ и η в проекции сферических треугольников на плоскость показаны на фиг. 4, а также на фиг. 5 в плоскостях 1 зв. - КА-О и 2 зв. - КА-О. Вычисление углов θ и η производится по формулам:

и

,

где

θ - угол между направлением на первую звезду, находящуюся выше атмосферы, и направлением местной вертикали для КА,

η - угол между направлением на вторую звезду, находящуюся выше атмосферы, и направлением местной вертикали для КА,

R - радиус планеты,

H0 - высота орбиты КА,

h - высота рефрагированного луча от третьей звезды, для угла рефракции ρ.

Для примера рассчитаем углы θ и η по приведенным выше формулам для следующих исходных данных: R=6371 км, H0=300 км, ρ=0,006 рад, h=30 км, µ=4,6°, µ′=4,59°, λ=6,6°, λ′=6,58°. После подстановки исходных данных в приведенные выше формулы получим:

θ≈73,656° и η≈73,962°.

Аналогичные измерения в другой момент времени и в другом направлении (по азимуту), как описано выше, позволяют определить второе положение точки КА на орбите, а следовательно, и уточнить параметры орбиты.

Таким образом, поставленная задача решена. На фигурах 1-5 изображено:

1 зв. - 1-я известная звезда, наблюдаемая над атмосферой планеты,

2 зв. - 2-я известная звезда, наблюдаемая над атмосферой планеты,

3 зв. - 3-я известная звезда, наблюдаемая сквозь атмосферу планеты (истинное положение без рефракции),

3′ зв. - 3-я известная звезда, наблюдаемая сквозь атмосферу планеты (видимое положение с учетом рефракции),

А - атмосфера планеты,

П - твердая поверхность планеты,

α - угловое расстояние между 1-й и 2-й известными звездами, наблюдаемыми над атмосферой планеты,

λ - угловое расстояние между 2-й звездой и истинным положением 3-й звезды,

λ′ - угловое расстояние между 2-й звездой и видимым положением 3-й звезды,

µ - угловое расстояние между 1-й звездой и истинным положением 3-й звезды,

µ′ - угловое расстояние между 1-й звездой и видимым положением 3-й звезды,

ρ - угол рефракции луча от 3-й звезды в момент измерений,

R - радиус планеты,

Но - высота орбиты,

КА - космический аппарат,

h - максимальная высота рефрагированного луча над поверхностью планеты,

θ - угол между направлениями КА - 1-я звезда и КА - О (центр планеты),

η - угол между направлениями КА - 2-я звезда и КА - О (центр планеты).

Преимуществами описываемого способа по сравнению с аналогом являются:

1. Уменьшение погрешности.

Длительность измерений влияет на погрешность способа. Например, если время измерений составляет ~1 мс (что достаточно для современного звездного прибора), то за это время КА сместится по орбите на ~7,5 м, при орбитальной скорости 7,5 км/с. Это смещение и составит ошибку определения положения для одиночного цикла измерений. При последующих измерениях эта ошибка может быть учтена и минимизирована. В случае упомянутого выше аналога, где измеряется трек звезды, длительность измерения определяется длиной трека звезды на чувствительном элементе измерительного инструмента, ось которого стабилизирована. Так, при погружении луча звезды в атмосферу на глубину ~20 км (от поверхности до луча) угловой размера трека рефрагированной звезды ~5′. При угловой скорости захода звезд (в плоскости орбиты) ~4′/с, и если считать, что выше 50 км угол рефракции практически ~0, то время измерения составит:

Тизм.=arctg[(50 км - 20 км) / 2300 км]/(4′/c)≈10 с,

что соответствует смещению КА по орбите на ~75 км. Т.е. погрешность заявленного способа (7,5 м) значительно меньше погрешности аналога (75 км). Всего же, для полного определения положения КА на орбите для способа, принятого в качестве аналога, нужно не менее 6 измерений, что соответственно приводит к увеличению ошибки и сложности ее учета.

2. Уменьшение времени измерений.

Длительность процесса измерений, включающего не менее 6 измерений, для способа, рассматриваемого в качестве аналога, составляет не менее 60 с, что в несколько раз превышает необходимое время для заявленного способа ~1 мс.

3. Простота аппаратурного состава.

Для заявленного способа может быть использован современный звездный датчик, в памяти которого хранится звездный каталог с координатами звезд, и имеющий процессор для обработки результатов измерений. Положение КА определяется по результатам измерений в вычислительном комплексе КА.

Для способа, указанного в качестве аналога, необходимы следующие компоненты:

- измерительный инструмент - телескоп в кардановом подвесе,

- система наведения телескопа на заданную звезду,

- система стабилизации для удержания направления оси телескопа на звезду в процессе измерения трека звезды (из-за рефракции) на чувствительном элементе телескопа,

- процессор для обработки результатов измерений и вычисления положения КА

- система управления для сопряжения и согласованной работы всех составляющих компонентов.

Как видим, в случае аналога, приборный состав для решения поставленной задачи превышает приборный состав для заявленного способа по номенклатуре (количественному составу компонентов), а следовательно, по объему, массе, габаритам, энергопотреблению, т.е. тем параметрам, которые имеют большое значение для космических аппаратов.

Литература

1. «Навигация, наведение и стабилизация в космосе», изд. «Машиностроение», Москва, 1970,

2. Патент №3439427, USA.

Способ определения величины угла атмосферной рефракции в условиях космического полета, отличающийся тем, что одновременно измеряют угловые расстояния между одной звездой, наблюдаемой сквозь атмосферу, и каждой из не менее чем двух звезд, находящихся над атмосферой, а по измеренным расстояниям определяют величину угла атмосферной рефракции в момент измерения по формуле: ,гдеρ - угол атмосферной рефракции,α - известное угловое расстояние между первой и второй звездами, находящимися выше атмосферы планеты, относительно которых проводят угловые измерения относительно третьей звезды, заходящей за горизонт планеты,µ - известное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты без учета атмосферной рефракции,λ - известное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты без учета атмосферной рефракции,µ′ - измеренное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты (т.е. с учетом атмосферной рефракции),λ′ - измеренное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты (т.е. с учетом атмосферной рефракции).
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
Источник поступления информации: Роспатент

Showing 71-80 of 370 items.
10.07.2014
№216.012.da6c

Быстроразъемный агрегат (варианты)

Изобретение относится к области ракетной техники, в частности к устройствам, обеспечивающим подачу рабочих тел высокого давления к ракетным блокам на стартовых устройствах и разделение пневмомагистралей перед стартом или разделение межблочных пневмомагистралей при разделении блоков космических...
Тип: Изобретение
Номер охранного документа: 0002521694
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc24

Центробежное рабочее колесо

Изобретение может быть использовано при изготовлении и эксплуатации малорасходных насосов изделий ракетно-космической техники. Изобретение направлено на расширение области использования. Центробежное рабочее колесо содержит монолитные ступицу, ведущий диск, покрывной диск и n лопаток. По...
Тип: Изобретение
Номер охранного документа: 0002522134
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.df93

Коммутатор напряжения с защитой от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов. Технический результат заключается в снижении массы и габаритов...
Тип: Изобретение
Номер охранного документа: 0002523021
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df95

Способ получения электроэнергии из водорода с использованием топливных элементов и система энергопитания для его реализации

Изобретение относится к энергоустановкам c твердополимерными топливными элементами (ТЭ), в которых получают электроэнергию за счет электрохимической реакции газообразного водорода с двуокисью углерода, и электрохимической реакции окиси углерода с кислородом воздуха. Предложена также система...
Тип: Изобретение
Номер охранного документа: 0002523023
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df96

Коммутатор напряжения с защитой от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов. Технический результат заключается в снижении массы и габаритов...
Тип: Изобретение
Номер охранного документа: 0002523024
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e38f

Способ определения географических координат области наблюдения перемещаемой относительно космического аппарата аппаратуры наблюдения, система для его осуществления и устройство размещения излучателей на аппаратуре наблюдения

Изобретение относится к космической технике. Способ определения географических координат области наблюдения перемещаемой относительно КА аппаратуры наблюдения включает навигационные измерения движения КА, определение положения центра масс и ориентации КА, определение пространственного положения...
Тип: Изобретение
Номер охранного документа: 0002524045
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e49d

Двигатель с замкнутым дрейфом электронов

Изобретение относится к области электроракетных двигателей. Двигатель с замкнутым дрейфом электронов содержит разрядную камеру с анодом-газораспределителем. Анод соединен трубопроводом с системой подачи рабочего тела. Двигатель также содержит магнитную систему с магнитными полюсами. Система...
Тип: Изобретение
Номер охранного документа: 0002524315
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e5c0

Электрохимический водяной насос

Изобретение относится к насосной технике и может применяться при создании систем водоснабжения и силовых гидравлических установок, в том числе малогабаритных гидросистем высокого давления для космических аппаратов (КА). Электрохимический водяной насос включает твердополимерные электролизные...
Тип: Изобретение
Номер охранного документа: 0002524606
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e8a5

Бортовая электролизная установка космического аппарата

Изобретение относится к оборудованию космических аппаратов (КА) и, в частности, к их энергодвигательным системам. Электролизная установка КА включает в себя твердополимерный электролизер, подключенный к системе электропитания КА, и систему водоснабжения. Последняя содержит циркуляционный насос,...
Тип: Изобретение
Номер охранного документа: 0002525350
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.e93a

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации термокомпрессоров. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль подачи газа потребителю, имеющую...
Тип: Изобретение
Номер охранного документа: 0002525514
Дата охранного документа: 20.08.2014
Showing 71-80 of 293 items.
27.05.2014
№216.012.c81b

Рабочее колесо осевого вентилятора (варианты)

Заявленное рабочее колесо осевого вентилятора может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники. Рабочее колесо содержит ступицу с основаниями, снабженными пазами шириной S. В указанных пазах установлены хвостовики листовых лопаток толщиной s,...
Тип: Изобретение
Номер охранного документа: 0002516993
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c9f5

Шаровой клапан

Изобретение относится к области машиностроения, в частности к ракетно-космической технике, и предназначено в качестве запорного клапана с ручным приводом для обеспечения работоспособности в условиях биологически вредных сред, при криогенных температурах и при невесомости. Шаровой клапан состоит...
Тип: Изобретение
Номер охранного документа: 0002517467
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cd46

Разъемное соединение

Изобретение относится к устройствам разделения криогенных заправочных магистралей. Разъемное соединение состоит из стационарного и отделяемого штуцеров с двойным уплотнением между ними, поджатие которого осуществляется устройством для затяжки посредством тарельчатых пружин. Оба уплотнения между...
Тип: Изобретение
Номер охранного документа: 0002518321
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdd8

Ионная двигательная установка космических аппаратов

Изобретение относится к двигательным системам космических аппаратов. Предлагаемая ионная двигательная установка (ДУ) включает в себя источник рабочего тела, выполненный в виде системы хранения и подачи изотопа алюминия 27 с источником паров (ИП) данного изотопа. ДУ также содержит связанные с...
Тип: Изобретение
Номер охранного документа: 0002518467
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d125

Способ имитации внешних тепловых потоков для наземной отработки теплового режима космического аппарата

Изобретение относится к тепловакуумным испытаниям космического аппарата (КА), а также может найти применение в тех областях техники, где предъявляются повышенные требования к излучательным и отражательным характеристикам изделий. Согласно изобретению до помещения КА в термовакуумную камеру...
Тип: Изобретение
Номер охранного документа: 0002519312
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d979

Посадочное устройство космического корабля

Изобретение относится к космической технике, а именно к посадочным устройствам космического корабля (КК). Посадочное устройство КК содержит опорную тарель, откидную раму, два подкоса, кронштейн, датчик угла поворота рамы, цилиндрические шарниры с замковыми элементами, четыре посадочные опоры,...
Тип: Изобретение
Номер охранного документа: 0002521451
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da6c

Быстроразъемный агрегат (варианты)

Изобретение относится к области ракетной техники, в частности к устройствам, обеспечивающим подачу рабочих тел высокого давления к ракетным блокам на стартовых устройствах и разделение пневмомагистралей перед стартом или разделение межблочных пневмомагистралей при разделении блоков космических...
Тип: Изобретение
Номер охранного документа: 0002521694
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc24

Центробежное рабочее колесо

Изобретение может быть использовано при изготовлении и эксплуатации малорасходных насосов изделий ракетно-космической техники. Изобретение направлено на расширение области использования. Центробежное рабочее колесо содержит монолитные ступицу, ведущий диск, покрывной диск и n лопаток. По...
Тип: Изобретение
Номер охранного документа: 0002522134
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.df93

Коммутатор напряжения с защитой от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов. Технический результат заключается в снижении массы и габаритов...
Тип: Изобретение
Номер охранного документа: 0002523021
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df95

Способ получения электроэнергии из водорода с использованием топливных элементов и система энергопитания для его реализации

Изобретение относится к энергоустановкам c твердополимерными топливными элементами (ТЭ), в которых получают электроэнергию за счет электрохимической реакции газообразного водорода с двуокисью углерода, и электрохимической реакции окиси углерода с кислородом воздуха. Предложена также система...
Тип: Изобретение
Номер охранного документа: 0002523023
Дата охранного документа: 20.07.2014
+ добавить свой РИД