×
27.10.2015
216.013.87d8

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА

Вид РИД

Изобретение

№ охранного документа
0002566379
Дата охранного документа
27.10.2015
Аннотация: Заявляемое изобретение относится к навигационной технике, а именно к способу навигации космического аппарата (КА). Способ основан на измерении отклонения истинного и измеренного положения звезды, наблюдаемой сквозь земную атмосферу. Отклонение связано с атмосферной рефракцией. Для этого с помощью звездного прибора проводят одновременно измерения угловых расстояний между видимым положением известной звезды, лучи которой подвергаются рефракции в атмосфере, и положением каждой из не менее чем двух звезд, находящихся над атмосферой, лучи которых проходят выше атмосферы и не подвергаются рефракции. По измеренным расстояниям определяют величину угла атмосферной рефракции в момент измерения. Технический результат - определение величины атмосферной рефракции для использования ее в системе автономной навигации КА с целью уточнения параметров орбиты. 5 ил.
Основные результаты: Способ определения величины угла атмосферной рефракции в условиях космического полета, отличающийся тем, что одновременно измеряют угловые расстояния между одной звездой, наблюдаемой сквозь атмосферу, и каждой из не менее чем двух звезд, находящихся над атмосферой, а по измеренным расстояниям определяют величину угла атмосферной рефракции в момент измерения по формуле: ,гдеρ - угол атмосферной рефракции,α - известное угловое расстояние между первой и второй звездами, находящимися выше атмосферы планеты, относительно которых проводят угловые измерения относительно третьей звезды, заходящей за горизонт планеты,µ - известное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты без учета атмосферной рефракции,λ - известное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты без учета атмосферной рефракции,µ′ - измеренное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты (т.е. с учетом атмосферной рефракции),λ′ - измеренное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты (т.е. с учетом атмосферной рефракции).

Способ определения величины атмосферной рефракции (ρ) в условиях космического полета для определения параметров орбиты космического аппарата предназначен для применения в системах управления движением (СУД) и автономной навигации (АН) космического аппарата (КА).

Во время полета КА при значительных удалениях от Земли, например при перелетах с околоземной орбиты на лунную орбиту, необходимо уточнение параметров орбиты, для чего средствами автономной системы навигации КА предусматриваются измерения различных навигационных параметров.

Наиболее известным навигационным параметром, который измеряется для уточнения параметров орбиты КА, является угловое расстояние в заданный момент времени между известной (опознанной) звездой и видимым горизонтом планеты. Для измерения этого навигационного параметра применяется хорошо известный способ с использованием секстанта, как это делалось при полетах КА «Apollon» к Луне. Описание способа измерения этого навигационного параметра приведено в книге «Навигация, наведение и стабилизация в космосе», изд. «Машиностроение», Москва, 1970, стр. 235, посвященной КА Apollon.

Однако указанный способ измерения этого навигационного параметра имеет ряд недостатков:

- неопределенность положения линии видимого горизонта относительно поверхности планеты;

- необходимость определенной ориентации измерительной плоскости секстанта относительно линии видимого горизонта.

В качестве аналога способа можно привести предложенный американским ученым Kenneth Р. способ измерять навигационный параметр (для уточнения параметров орбиты КА) в виде угла между истинным направлением на звезду и видимым направлением на звезду, лучи света которой подверглись рефракции (отклонению) в атмосфере Земли (патент №3439427, USA).

Однако предложенный в патенте USA №3439427 способ измерения в условиях комического полета такого навигационного параметра требует:

- сложного прецизионного оборудования (гироскопов),

- предварительного наведения оси измерительного инструмента (телескопа) на звезду до ее погружения в атмосферу,

стабилизации этой оси в инерциальном пространстве либо с помощью гиростабилизированной платформы, на которой установлен телескоп, либо стабилизации целиком КА,

- отслеживания трека звезды с фиксацией времени измерений,

- вычисления угла рефракции по величине трека,

- повторения измерений, не менее чем для 6 звезд, для определения положения КА на орбите классическими способами определения орбиты по 6-ти параметрам.

К недостаткам данного способа можно отнести значительную погрешность, относительно большое время измерений, а также необходимость наличия большого приборного состава для реализации этого способа.

Прототипа заявленного способа не найдено.

Задачей изобретения является обеспечение возможности определения параметров орбиты с высокой точностью и быстродействием при одновременной простоте аппаратурного состава.

Для решения поставленной задачи определяется навигационный параметр - величина угла рефракции звезды, заходящей за атмосферу планеты, для чего одновременно проводят измерения угловых расстояний между видимым положением известной звезды, лучи которой подвергаются рефракции в атмосфере и двумя другими известными звездами, лучи которых проходят выше атмосферы и не подвергаются рефракции. Для этих измерений может использоваться, например, звездный датчик. Взаимное положение этих трех звезд, поверхность планеты и толща атмосферы в угловом поле звездного прибора показаны на Фиг. 1. С помощью прибора одновременно (в момент времени, когда одна из звезд наблюдается сквозь атмосферу) измеряются угловые расстояния между 1-й и 3-й звездами - µ′, между 2-й и 3-й звездами - λ′.

Угловое расстояние между 1-й и 2-й звездами - α, а также истинные (т.е. без учета атмосферной рефракции) угловые расстояния между 1-й и 3-й звездами - µ и между 2-й и 3-й звездами - λ - константы (вычисляются по координатам этих трех звезд, приведенным в звездном каталоге).

Значение угла атмосферной рефракции ρ вычисляем по формуле, приведенной ниже:

где

α - известное угловое расстояние между первой и второй звездами, находящимися выше атмосферы Земли, относительно которых проводят угловые измерения относительно третьей звезды, заходящей за горизонт Земли,

µ - известное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы Земли и третьей звездой, заходящей за атмосферу Земли без учета атмосферной рефракции,

λ - известное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы Земли и третьей звездой, заходящей за атмосферу Земли без учета атмосферной рефракции,

µ′ - измеренное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы Земли и третьей звездой, заходящей за атмосферу Земли (т.е. с учетом атмосферной рефракции),

λ′ - измеренное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы Земли и третьей звездой, заходящей за атмосферу Земли (т.е. с учетом атмосферной рефракции);

В качестве примера покажем определение угла рефракции по данным измерений с КА звездным прибором угловых расстояний между тремя звездами из созвездия Южный Крест, одна из которых заходит за атмосферу Земли. Геоцентрические координаты звезд (эпоха J2000):

1-я звезда: β Южного Креста α1=191°55′48′′, δ1=-59°41′19′′,

2-я звезда: γ Южного Креста α2=187°47′28′′, δ2=-57°06′47′′,

3-я звезда: α Южного Креста α3=186°38′58′′, δ3=-63°05′56′′,

3-я звезда заходит за атмосферу Земли.

Истинные угловые расстояния между звездами (без учета атмосферной рефракции) составляют:

между 1-й и 2-й звездами угол α=3,6571°,

между 1-й и 3-й звездами угол µ=4,24237°,

между 2-й и 3-й звездами угол λ=6,01256°.

Измеренные угловые расстояния между заходящей за атмосферу 3-й звездой и звездами над атмосферой составили:

между 1-й и 3-й звездами угол µ′=4,378°,

между 2-й и 3-й звездами угол λ′=6,169°.

Подставив вычисленные и измеренные значения в формулу, получим значение угла рефракции ρ=9,39486′≈2,73 мрад.

Взаимное положение КА и хода луча от звезды (лини ed, db, bc, cKA) показаны на Фиг. 2. Высота Н соответствует отрезку ab, лежащему на линии, совпадающей с радиусом Земли, а точка b соответствует максимальному погружению луча от звезды, наблюдаемой из точки КА. Зависимость угла рефракции ρ от высоты Н является известной (табличные значения для разных значений длин волн оптического излучения, географических широт и времен года). Пример графика зависимости угла рефракции ρ от высоты Н для длины волны 0,850 мкм и средних широт показан на Фиг. 3. По этому графику вычисленное выше в примере значение угла рефракции ρ≈2,73 мрад соответствует высоте луча от звезды над поверхностью Земли H≈13 км.

Положение точки КА на орбите в геоцентрической системе координат определяется углом θ между векторами КА - центр планеты и КА - первая звезда, показанным на фиг. 2, и углом η между векторами КА - центр планеты и КА - вторая звезда. Углы θ и η в проекции сферических треугольников на плоскость показаны на фиг. 4, а также на фиг. 5 в плоскостях 1 зв. - КА-О и 2 зв. - КА-О. Вычисление углов θ и η производится по формулам:

и

,

где

θ - угол между направлением на первую звезду, находящуюся выше атмосферы, и направлением местной вертикали для КА,

η - угол между направлением на вторую звезду, находящуюся выше атмосферы, и направлением местной вертикали для КА,

R - радиус планеты,

H0 - высота орбиты КА,

h - высота рефрагированного луча от третьей звезды, для угла рефракции ρ.

Для примера рассчитаем углы θ и η по приведенным выше формулам для следующих исходных данных: R=6371 км, H0=300 км, ρ=0,006 рад, h=30 км, µ=4,6°, µ′=4,59°, λ=6,6°, λ′=6,58°. После подстановки исходных данных в приведенные выше формулы получим:

θ≈73,656° и η≈73,962°.

Аналогичные измерения в другой момент времени и в другом направлении (по азимуту), как описано выше, позволяют определить второе положение точки КА на орбите, а следовательно, и уточнить параметры орбиты.

Таким образом, поставленная задача решена. На фигурах 1-5 изображено:

1 зв. - 1-я известная звезда, наблюдаемая над атмосферой планеты,

2 зв. - 2-я известная звезда, наблюдаемая над атмосферой планеты,

3 зв. - 3-я известная звезда, наблюдаемая сквозь атмосферу планеты (истинное положение без рефракции),

3′ зв. - 3-я известная звезда, наблюдаемая сквозь атмосферу планеты (видимое положение с учетом рефракции),

А - атмосфера планеты,

П - твердая поверхность планеты,

α - угловое расстояние между 1-й и 2-й известными звездами, наблюдаемыми над атмосферой планеты,

λ - угловое расстояние между 2-й звездой и истинным положением 3-й звезды,

λ′ - угловое расстояние между 2-й звездой и видимым положением 3-й звезды,

µ - угловое расстояние между 1-й звездой и истинным положением 3-й звезды,

µ′ - угловое расстояние между 1-й звездой и видимым положением 3-й звезды,

ρ - угол рефракции луча от 3-й звезды в момент измерений,

R - радиус планеты,

Но - высота орбиты,

КА - космический аппарат,

h - максимальная высота рефрагированного луча над поверхностью планеты,

θ - угол между направлениями КА - 1-я звезда и КА - О (центр планеты),

η - угол между направлениями КА - 2-я звезда и КА - О (центр планеты).

Преимуществами описываемого способа по сравнению с аналогом являются:

1. Уменьшение погрешности.

Длительность измерений влияет на погрешность способа. Например, если время измерений составляет ~1 мс (что достаточно для современного звездного прибора), то за это время КА сместится по орбите на ~7,5 м, при орбитальной скорости 7,5 км/с. Это смещение и составит ошибку определения положения для одиночного цикла измерений. При последующих измерениях эта ошибка может быть учтена и минимизирована. В случае упомянутого выше аналога, где измеряется трек звезды, длительность измерения определяется длиной трека звезды на чувствительном элементе измерительного инструмента, ось которого стабилизирована. Так, при погружении луча звезды в атмосферу на глубину ~20 км (от поверхности до луча) угловой размера трека рефрагированной звезды ~5′. При угловой скорости захода звезд (в плоскости орбиты) ~4′/с, и если считать, что выше 50 км угол рефракции практически ~0, то время измерения составит:

Тизм.=arctg[(50 км - 20 км) / 2300 км]/(4′/c)≈10 с,

что соответствует смещению КА по орбите на ~75 км. Т.е. погрешность заявленного способа (7,5 м) значительно меньше погрешности аналога (75 км). Всего же, для полного определения положения КА на орбите для способа, принятого в качестве аналога, нужно не менее 6 измерений, что соответственно приводит к увеличению ошибки и сложности ее учета.

2. Уменьшение времени измерений.

Длительность процесса измерений, включающего не менее 6 измерений, для способа, рассматриваемого в качестве аналога, составляет не менее 60 с, что в несколько раз превышает необходимое время для заявленного способа ~1 мс.

3. Простота аппаратурного состава.

Для заявленного способа может быть использован современный звездный датчик, в памяти которого хранится звездный каталог с координатами звезд, и имеющий процессор для обработки результатов измерений. Положение КА определяется по результатам измерений в вычислительном комплексе КА.

Для способа, указанного в качестве аналога, необходимы следующие компоненты:

- измерительный инструмент - телескоп в кардановом подвесе,

- система наведения телескопа на заданную звезду,

- система стабилизации для удержания направления оси телескопа на звезду в процессе измерения трека звезды (из-за рефракции) на чувствительном элементе телескопа,

- процессор для обработки результатов измерений и вычисления положения КА

- система управления для сопряжения и согласованной работы всех составляющих компонентов.

Как видим, в случае аналога, приборный состав для решения поставленной задачи превышает приборный состав для заявленного способа по номенклатуре (количественному составу компонентов), а следовательно, по объему, массе, габаритам, энергопотреблению, т.е. тем параметрам, которые имеют большое значение для космических аппаратов.

Литература

1. «Навигация, наведение и стабилизация в космосе», изд. «Машиностроение», Москва, 1970,

2. Патент №3439427, USA.

Способ определения величины угла атмосферной рефракции в условиях космического полета, отличающийся тем, что одновременно измеряют угловые расстояния между одной звездой, наблюдаемой сквозь атмосферу, и каждой из не менее чем двух звезд, находящихся над атмосферой, а по измеренным расстояниям определяют величину угла атмосферной рефракции в момент измерения по формуле: ,гдеρ - угол атмосферной рефракции,α - известное угловое расстояние между первой и второй звездами, находящимися выше атмосферы планеты, относительно которых проводят угловые измерения относительно третьей звезды, заходящей за горизонт планеты,µ - известное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты без учета атмосферной рефракции,λ - известное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты без учета атмосферной рефракции,µ′ - измеренное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты (т.е. с учетом атмосферной рефракции),λ′ - измеренное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты (т.е. с учетом атмосферной рефракции).
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
Источник поступления информации: Роспатент

Showing 41-50 of 370 items.
20.11.2013
№216.012.8314

Устройство для измерения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в системах измерения уровня заправки ракетно-космической техники. Устройство содержит эталон, который подключен к блоку переключения и к первому измерительному...
Тип: Изобретение
Номер охранного документа: 0002499232
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8338

Способ определения амплитудно-фазовой частотной характеристики динамического объекта

Способ относится к области испытаний и исследований динамических систем. Способ определения амплитудно-фазовых частотных характеристик динамического объекта предполагает проведение анализа завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания...
Тип: Изобретение
Номер охранного документа: 0002499268
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8373

Приемник-преобразователь концентрированного электромагнитного излучения

Изобретение относится к области беспроводной передачи энергии с потоком концентрированного электромагнитного излучения оптического диапазона, в частности монохроматического электромагнитного излучения лазера, на приемник-преобразователь на основе фотоэлектрического преобразователя и может найти...
Тип: Изобретение
Номер охранного документа: 0002499327
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.8518

Спутниковая система связи и наблюдения

Изобретение относится к космической технике и может быть использовано в спутниковых системах связи и наблюдения. Спутниковая система связи и наблюдения содержит от 1 до 7 спутников с аппаратурой связи и наблюдения. Спутники размещены на эллиптических орбитах с критическим наклонением и апогеем...
Тип: Изобретение
Номер охранного документа: 0002499750
Дата охранного документа: 27.11.2013
27.12.2013
№216.012.9059

Устройство герметизации люков космических объектов и способ его эксплуатации

Изобретения относятся к устройству герметизации люков космических объектов и к способу его эксплуатации. Устройство герметизации люков космических объектов содержит средство герметизации, выполненное в виде герметичного рукава из эластичного газонепроницаемого материала. Рукав герметично...
Тип: Изобретение
Номер охранного документа: 0002502646
Дата охранного документа: 27.12.2013
20.01.2014
№216.012.993e

Плавильная печь установки для плазменно-дуговой плавки

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначено для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях...
Тип: Изобретение
Номер охранного документа: 0002504929
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9a8e

Механизм коленного шарнира

Изобретение относится к протезированию нижних конечностей. Механизм коленного шарнира содержит верхнюю опорную головку с креплением гильзы бедра, нижний опорный кронштейн с креплением трубки голени, переходное кинематическое звено, по меньшей мере две оси вращения, а также голенно-откидное...
Тип: Изобретение
Номер охранного документа: 0002505272
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9b4d

Космическое зубило (варианты)

Изобретение относится к космической технике, в частности к ручным инструментам, используемым космонавтом, снаряженным в скафандр, в условиях невесомости при выполнении технологических операций в процессе внекорабельной деятельности. Зубило для обработки материала в условиях космического...
Тип: Изобретение
Номер охранного документа: 0002505463
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f37

Узел крепления двух объектов

Изобретение относится к узлам крепления компонентов конструкции, преимущественно для крепления космических объектов при внекорабельной деятельности, и направлено на обеспечение исключения потерь крепежных элементов, а также обеспечение стопорения крепежного элемента при динамических нагрузках и...
Тип: Изобретение
Номер охранного документа: 0002506467
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a6d0

Установка для электролиза воды под давлением и способ ее эксплуатации

Изобретение относится к установке для электролиза воды под давлением, состоящей из электролизера с линией подачи воды, подключенного к блоку питания, который электрически связан с блоком управления, подключенных к электролизеру по линиям водорода и кислорода ресиверов для накопления водорода и...
Тип: Изобретение
Номер охранного документа: 0002508419
Дата охранного документа: 27.02.2014
Showing 41-50 of 293 items.
10.11.2013
№216.012.7d35

Космическая головная часть и способ ее сборки

Изобретение относится к космической головной части и к способу ее сборки. Космическая головная часть содержит космический аппарат, головной обтекатель и переходную систему, которая обеспечивает стыковку ракеты-носителя с космическим аппаратом. В состав космического аппарата выше его центра масс...
Тип: Изобретение
Номер охранного документа: 0002497726
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7d39

Двигательная установка космического летательного аппарата (варианты) и способ ее эксплуатации

Изобретение относится к ракетно-космической технике. Двигательная установка включает криогенный бак с экранно-вакуумной теплоизоляцией, расходный клапан, бустерный насос, трубопровод питания, камеру сгорания двигателя и заборное устройство криогенного бака, содержащее нижнее днище криогенного...
Тип: Изобретение
Номер охранного документа: 0002497730
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7d3a

Устройство для компенсации потерь рабочего тела из гидравлической магистрали системы термостатирования герметичного обитаемого помещения и способ его эксплуатации

Изобретения относятся к эксплуатации систем терморегулирования (СТР), преимущественно пилотируемых космических объектов, а также могут быть использованы в ряде областей наземной научно-технической и хозяйственной деятельности. Устройство предназначено для дозаправки в полете гидравлической...
Тип: Изобретение
Номер охранного документа: 0002497731
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.82e0

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств (термокомпрессоров). Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, устройство для...
Тип: Изобретение
Номер охранного документа: 0002499180
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8313

Устройство для измерения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в системах измерения уровня заправки ракетно-космической техники. Устройство для измерения уровня диэлектрического вещества содержит эталон, первый вывод которого...
Тип: Изобретение
Номер охранного документа: 0002499231
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8314

Устройство для измерения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в системах измерения уровня заправки ракетно-космической техники. Устройство содержит эталон, который подключен к блоку переключения и к первому измерительному...
Тип: Изобретение
Номер охранного документа: 0002499232
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8338

Способ определения амплитудно-фазовой частотной характеристики динамического объекта

Способ относится к области испытаний и исследований динамических систем. Способ определения амплитудно-фазовых частотных характеристик динамического объекта предполагает проведение анализа завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания...
Тип: Изобретение
Номер охранного документа: 0002499268
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8373

Приемник-преобразователь концентрированного электромагнитного излучения

Изобретение относится к области беспроводной передачи энергии с потоком концентрированного электромагнитного излучения оптического диапазона, в частности монохроматического электромагнитного излучения лазера, на приемник-преобразователь на основе фотоэлектрического преобразователя и может найти...
Тип: Изобретение
Номер охранного документа: 0002499327
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.8518

Спутниковая система связи и наблюдения

Изобретение относится к космической технике и может быть использовано в спутниковых системах связи и наблюдения. Спутниковая система связи и наблюдения содержит от 1 до 7 спутников с аппаратурой связи и наблюдения. Спутники размещены на эллиптических орбитах с критическим наклонением и апогеем...
Тип: Изобретение
Номер охранного документа: 0002499750
Дата охранного документа: 27.11.2013
27.12.2013
№216.012.9059

Устройство герметизации люков космических объектов и способ его эксплуатации

Изобретения относятся к устройству герметизации люков космических объектов и к способу его эксплуатации. Устройство герметизации люков космических объектов содержит средство герметизации, выполненное в виде герметичного рукава из эластичного газонепроницаемого материала. Рукав герметично...
Тип: Изобретение
Номер охранного документа: 0002502646
Дата охранного документа: 27.12.2013
+ добавить свой РИД