×
20.10.2015
216.013.8747

СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к металлургии, а именно к получению пористых металлических материалов методом самораспространяющегося высокотемпературного синтеза, и может использоваться в медицинской имплантологии. Пористый сплав на основе никелида титана получают из шихты, уплотненной до пористости 45-50% при температуре предварительного подогрева 400-450°С. Полученный пористый сплав подвергают нескольким циклам химического травления в растворе азотной и плавиковой кислот до появления металлического блеска, после чего образец погружают в воду на 10-12 часов. Ускоряется прорастание тканей и повышается долговечность функционирования пористого имплантата в организме за счет оптимизации размеров пор и перегородок, уменьшения их разброса, а также увеличения их удельной поверхности. 1 з.п. ф-лы, 6 ил.
Реферат Свернуть Развернуть

Изобретение относится к металлургии, конкретно к технологии получения пористых металлических материалов методом самораспространяющегося высокотемпературного синтеза, и может использоваться в медицинской имплантологии.

Пористые сплавы на основе никелида титана получают все большее распространение в медицине благодаря их высокой биосовместимости, обусловленной химической инертностью, развитой поверхностью и сходством с живыми тканями по механическим свойствам. В качестве имплантатов пористые сплавы на основе никелида титана способны замещать фрагменты костей, хрящей и других каркасных образований / Медицинские материалы и имплантаты с памятью формы / Гюнтер В.Э., Дамбаев Г.Ц., Сысолятин П.Г. и др. Томск, изд-во Том. ун-та, 1998. 486 с. Кроме того, в последнее время пористые имплантаты успешно используются как клеточные инкубаторы для культивирования стволовых клеток, имеющих тенденцию дифференцироваться в любые клеточные типы тканей взрослого организма и иметь их характерные и функциональные характеристики / James E. Dennis, Pierre Charbord. Origin and differentiation of human and murine stroma. // Stem Cells. 2003. Vol.19; №3. P.220-229./

Пути дальнейшего совершенствования пористых сплавов в том и другом аспектах применения связаны с оптимизацией их структурных характеристик в направлении повышения эффективности культивации клеточного материала и обеспечения долговечности функционирования имплантата в организме ввиду общей тенденции увеличения продолжительности жизни при любых формах применения имплантатов. В основе настоящего изобретения лежит экспериментальное установление соответствия между структурными особенностями пористого сплава на основе никелида титана и его инкубационными и биомеханическими качествами, в частности зависимости эффективности прорастания тканей от степени шероховатости стенок пор, наличия в них мелкомасштабной (субмикронной) структуры.

Известен способ получения пористого сплава на основе никелида титана методом самораспространяющегося высокотемпературного синтеза (СВС) /Сплавы с памятью формы в медицине, В.Э.Гюнтер, В.В. Котенко и др. Изд. Томского госуниверситета, г. Томск, 1986, с.50/. Способ включает следующие основные этапы: формовку шихты из смеси порошков титана, никеля и легирующих элементов в цилиндрической оправке, предварительный подогрев, инициацию реакции СВС и охлаждение. Недостатком известного способа является неполное соответствие структурных характеристик получаемого сплава требованиям высоких темпов прорастания тканями и механической долговечности. Среди известных источников информации нет полных сведений о критериях указанного соответствия, а также путях его достижения. Поскольку пористый сплав характеризуется индивидуальным статистическим распределением пор и перегородок по размерам, шероховатости и субмикронной структуре, существует потребность сформулировать оптимальные параметры распределения и способ приближения к ним. Развитость поверхности на микроскопическом уровне достаточно адекватно отражается характеристикой удельной поверхности пористого материала.

Технический результат изобретения - ускорение прорастания тканей и повышение долговечности функционирования пористого имплантата в организме за счет оптимизации размеров пор и перегородок, уменьшения их разброса, а также увеличения их удельной поверхности.

Технический результат достигается тем, что при осуществлении способа получения пористого сплава на основе никелида титана, включающего формовку шихты из смеси порошков титана, никеля в цилиндрической оправке, предварительный подогрев, инициацию реакции СВС и охлаждение, отличие состоит в том, что шихту уплотняют до пористости 45-50%, а температуру предварительного подогрева выбирают в пределах 400-450°С. Улучшению технического результата способствует то, что полученный пористый сплав подвергают нескольким циклам химического травления, включающим погружение на 2-3 сек в раствор азотной и плавиковой кислот с последующей промывкой под струей воды, вплоть до появления металлического блеска, после чего образец погружают в воду на 10-12 часов.

Сущность изобретения поясняется фигурами 1-6.

Выбор параметров процесса получения пористого сплава на основе никелида титана определяется следующими соображениями.

Уплотнение шихты может производиться от насыпного состояния (порядка 15% пористости) до максимально утрамбованного - порядка 65%, превышение которого уже связано с повреждением оправки. При малой плотности трамбовки материал получается чрезмерно рыхлым, с крупными порами, большой размер которых снижает действие капиллярных сил, отвечающих за адгезию и удержание биологических жидкостей в имплантате. При большой плотности трамбовки материал получается близким к монолиту, с чрезмерно мелкими порами и с большим процентом замкнутых пор; малый размер пор ограничивает транспорт жидкостей и ограничивает распространение клеточных элементов, имеющих конечные размеры. Экспериментально установлено, что оптимальная структура пористости - со средним размером пор 100-150 мкм - получается в указанном диапазоне плотностей трамбовки 45-50%. Для получения оптимальной степени уплотнения шихту насыпают в кварцевую трубку и трамбуют в вертикальном положении. Степень уплотнения легко контролируется по уменьшению высоты насыпанной шихты в трубке.

Температура предварительного подогрева влияет на статистическое распределение пор по размерам. При низкой температуре предварительного подогрева процесс СВС происходит с дефицитом тепла, и составляющие шихты (порошки никеля и титана) не проплавляются целиком. Вследствие этого получается многофазный хрупкий материал из слабо скрепленных частиц никеля, титана и их произвольных соединений. Начиная с температуры 400°C подавляющая часть исходных компонентов трансформируется в многофазный сплав с достаточной механической прочностью и развитой пористой поверхностью. При температуре предварительного подогрева выше 450°C расплавление шихты в процессе СВС достигает такой степени, что пористая структура получается сглаженной, содержит значительное количество крупных пор и не обладает необходимой шероховатостью для полноценной адгезии биоматериала.

Сочетание режимов уплотнения шихты и температуры предварительного подогрева обеспечивает структуру пористого материала, близкую к оптимальной с точки зрения статистического распределения пор по размеру, по преобладанию открытых пор, по шероховатости перегородок.

Распределение пор и перегородок по размеру радикально влияет на механическую прочность пористого сплава в условиях длительного функционирования в организме при постоянной подвижности. Для металлических имплантатов из никелида титана особое значение имеет сходство между их деформационными характеристиками и аналогичными характеристиками биологических тканей. По мере увеличения пористости сплав проявляет все большую деформируемость, что связано с утончением межпоровых перегородок. Это обстоятельство позволяет подбирать для конкретных тканей, интегрируемых с имплантатом, величину пористости, придающую максимальное подобие механических свойств. Наряду с интегральной деформационной способностью, большое значение имеет однородность пористой структуры. Перегородки с одинаковым поперечным сечением испытывают при изгибе и сжатии пористого имплантата одинаковые напряжения, в то время как для более толстых перегородок при тех же макроскопических деформациях локальные напряжения и деформации оказываются значительно больше, чем для более тонких перегородок. В местах локализации повышенных напряжений в первую очередь развиваются дислокации, ведущие к постепенному разрушению имплантата. Таким образом, чем меньше доля укрупненных пор, тем меньше вероятность развития пластической деформации и выхода имплантата из строя в прижизненный период. Экспериментально отмечено, что в режимах уплотнения шихты и предварительного подогрева, указанных в формуле изобретения, наряду с оптимальным средним размером пор и высокой шероховатостью поверхности обеспечивается одномодальное распределение пор и перегородок по размеру с небольшим разбросом. Оптимальный средний размер пор для наилучшей прорастаемости клеток экспериментально определен в пределах 100-150 микрон.

Химическое травление циклическим погружением в смесь кислот обеспечивает вскрытие и растравливание наиболее мелких, субмикронных элементов пористой структуры. Время погружения от 3 до 4 сек обосновано требованиями равномерности контакта пористой поверхности с раствором кислот и возможности контролирования процесса. В момент погружения раствор проникает в глубину пористого образца постепенно. Поэтому при малом времени погружения равномерное смачивание не обеспечивается. При времени погружения больше 4 сек увеличивается вероятность чрезмерного протравливания, характеризующегося не только уничтожением субмикронных пор, но и увеличением числа пор крупного размера, что ведет к уменьшению адгезионной способности пористой структуры по отношению к биотканям. Промывка под струей воды обеспечивает завершение каждого отдельного цикла травления. Цикличный характер травления позволяет визуально контролировать состояние структуры образца и принимать решение о достижении оптимального состояния поверхности. Признаком этого служит появление металлического блеска, свидетельствующего о снятии оксидной пленки. В результате травления по предлагаемой методике шероховатость поверхности пор достигает максимума, а в перегородках между порами появляются дополнительные каналы. Как правило, выбирают травитель, содержащий HNO3 (30 мл), HF (10 мл), H2O (30 мл1), температура смеси составляет 50-70°C. Окончательная промывка образца погружением в воду на 10-12 часов обеспечивает радикальное удаление остатков травителя и предотвращает его разрушающее воздействие на субмикронные поры.

Результатом выбора режимов при получении пористого сплава на основе никелида титана методом СВС является структура материала, оптимальная как по инкубационным, так и по механическим свойствам.

Эффективность заявляемого способа подтверждается результатами микроскопического исследования самих образцов пористого сплава, включая фотографирование и расчет распределения по размерам пор, а также наблюдение темпов и качества прорастания образцов клеточными культурами.

На фиг.1 представлены микрофотографии двух образцов пористого сплава. Первый из них, именуемый далее «образец типа а», был получен в соответствии с заявляемым способом (при степени уплотнения 45%, температуре предварительного подогрева 450°C и с проведенным циклическим травлением. Второй, именуемый далее «образец типа б», был получен при температуре предварительного подогрева 600°C (б) и без травления. «Образец а» обладает развитой, извилистой структурой с шероховатой поверхностью стенок пор и множеством субмикронных пор (фиг.1, а). «Образец б» имеет гладкую, словно оплавленную поверхность пор, содержит малое количество микропор (фиг.1, б), вследствие чего обладает низкими адгезивными свойствами. В связи с этим такая поверхность менее пригодна для культивирования клеток, чем у вышеприведенного образца «а».

На фиг.2а, б представлены гистограммы распределения пор по размерам для тех же образцов. Судя по гистограмме фиг.2, а, можно видеть, что у «образца типа а», полученного при температуре предварительного подогрева 400°C, преобладают поры размером порядка 100-150 микрон, в то время как у «образца типа б» с температурой подогрева 600°C (фиг.2, б) размеры пор имеют более широкий разброс, в основном, в пределах от 100 до 450 мкм, причем встречаются поры размером вплоть до 1000 микрон. Ввиду такого значительного разброса в получаемом пористом материале в большом количестве присутствуют утолщенные перемычки, ограничивающие свободу деформации имплантата вместе с тканями и служащие локальными источниками дислокации, ведущими к более раннему механическому разрушению.

Наличие субмикронной пористой структуры является важным преимуществом материала, полученного в соответствии с заявляемым способом, от других материалов, получаемых путем СВС. На фиг.3 представлена гистограмма распределения субмикронных пор в образце типа «а». Можно видеть, что в дополнение к порам с размерами 1-150 микрон и более присутствуют поры с размерами от единиц до сотен нанометров, не встречающиеся в образце «б».

На фиг.4-6 представлены результаты культивирования клеточных структур. Культивирование клеточных культур было проведено на полученных образцах пористо-проницаемого никелида титана с использованием клеток костного мозга. Перед испытанием образцы-инкубаторы стерилизовали при 180°C в течение 60 мин. В качестве клеточного материала были использованы костномозговые стволовые клетки мышей-гибридов F1 CBA/j. В стерильных условиях извлекали бедренную кость. Костный мозг вымывали с помощью шприца во флаконы. Концентрацию клеток доводили до 4Н106/мл полной среды, засевали на инкубаторы из пористого никелида титана и помещали в 50 мл пластиковые флаконы фирмы "Coming". Культивирование in vivo происходило в среде, которая состояла: из среды DMEM-F12 ("ПанЭко", РФ), 10% эмбриональной телячьей сыворотки ("HyClone", США), гентамицина 40 мкг/мл ("ПанЭко", РФ), глутамина 250 мг/л ("ПанЭко", РФ). В систему с остеогенной дифференцировкой были введены дифференцировочные добавки: бета-глицерофосфат 3 мг/мл ("Sigma", США) в комбинации с 0,15 мг/мл аскорбиновой кислоты ("Sigma", США). Инкубаторы с клетками содержали при 37°C при 100% влажности с 5% СО2. Образцы на исследование отбирали на 7, 14, 21 сут. Образцы фиксировали в течение 1 ч в 2,5% глютаральдегиде ("Sigma", США), затем промывали 3 раза в PBS среде (15 мин каждый). Далее образцы фиксировали 1 ч в 1% тетраоксиде осмия ("Sigma", США), промывали 3 раза в PBS и затем дегидратировали, пропуская через ряд растворов этанола (30, 50, 70, 90, 100%) по 15 мин в каждом. Каждый образец инкубатора был исследован на растровом электронном микроскопе Quanta 200-3D.

Анализ развития клеток в разные сроки в образцах-инкубаторах «а» и «б», полученных разными способами, показал, что рост, размножение клеток и образование тканей идут в них в целом по одним и тем же механизмам. Однако в образцах типа «б» эти процессы идут гораздо медленнее, чем в образцах типа «а». Особенности взаимодействия клеток с поверхностью инкубаторов заключаются в том, что клетки прикрепляются чаще и в больших количествах на развитую, шероховатую микропористую поверхность, где имеется множество мелких субмикронных пор, служащих дополнительными хранилищами питательных сред. Клетки прикрепляются к стенкам мелких пор, затем начинают активно расти, размножаться и заполнять все поровое пространство. Структурный анализ роста клеток костного мозга в структуре пористых инкубаторов, полученных разными методами, выявил ряд различий.

На 7 сутки в инкубаторах типа «а» наблюдается на стенках пор и по всему объему высокая плотность отдельных клеток и их скоплений. Большое количество псевдоподий выстилают поверхность стенок пор, что подтверждает активный процесс размножения и жизнедеятельности клеток (фиг.4, а). В образцах типа «б» в указанный срок количество и плотность клеток на стенках пор и объеме заметно ниже (фиг.4, б). Сквозь клеточную массу просматривается структура стенок пор. Отмечаются в основном отдельные клетки.

На 14 сутки поровое пространство инкубатора типа «а» начинает заполняться тканевыми структурами различной плотности (фиг.5, а). Отдельные клетки лишь изредка просматриваются в этой ткани. Массивные псевдоподии сменили характер распространения с поверхностного на объемный, что говорит об активном заполнении инкубатора тканевыми структурами. Совокупность клеток и массивных волокон образует растущую ткань. Плотность этого слоя ткани такова, что структура материала никелида титана уже не просматривается. Контуры клеток потеряли свою сферичность и практически не выделяются в общей массе ткани. В образце инкубатора типа «б» также наблюдается дальнейший рост числа клеток, их развитие и размножение (фиг.5, б). Однако плотность их в объеме инкубатора не высока, отмечается выраженная неоднородность развития клеточной массы в порах разного размера. В отдельных порах наблюдаются лишь отдельные клетки с псевдоподиями, тогда как в других порах начинается процесс тканеобразования, состоящий из генерации крупных волокон и межклеточного матрикса.

На 21-е сутки инкубаторы типа «а» заполнены практически полностью образовавшейся тканью (фиг.6, а). Процесс образования ткани прошел как в массивных, так и в малых порах. Ткань в порах плотная, имеет определенный структурный рисунок, характеризующийся наличием плотных волокон и тяжей, что говорит о ее зрелости. В порах инкубатора типа «б» наблюдается заметная неоднородность в степени заполнения пор (рис.6, б). В отдельных порах (чаще крупных) присутствуют колонии клеток, в других (мелких) - клетки с плотными тяжами, подиями, большое количество межклеточного матрикса или уже сформированная ткань. То есть, при сохранении последовательности механизмов и этапов тканеобразования в целом, процесс роста тканей в порах образца «а» опережает по времени развитие тканей в образце «б». Главными факторами «отставания» в развитии тканевых структур у образца «б» являются его структурные характеристики, а именно гладкая поверхность стенок пор с малым количеством микропор - потенциальных мест прикрепления клеток.

Таким образом, результаты экспериментов показывают, что интеграционная связь клеток костного мозга с пористо-проницаемыми инкубаторами на основе никелида титана в принципе имеет место для образцов обоих типов: как получаемых известным способом, так и получаемых в соответствии с заявляемым способом. Вместе с тем, экспериментальные результаты демонстрируют преимущества заявляемого способа, который обеспечивает ускоренное развитие тканевых структур в получаемых пористых имплантатах, служащих эндопротезами или клеточными инкубаторами. Помимо этого, достигаемое уменьшение разброса размеров пор обеспечивает повышенную механическую устойчивость пористых имплантатов в функционирующем организме.


СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА
Источник поступления информации: Роспатент

Showing 1-10 of 42 items.
20.02.2013
№216.012.25ca

Способ хирургического лечения рака гортани

Изобретение относится к области медицины, а именно к ЛОР-хирургии и онкологии, и может найти применение при хирургическом лечении обширных злокачественных опухолей гортани, в том числе на фоне последствий радикальной химиолучевой терапии. Сущность способа состоит в префабрикации...
Тип: Изобретение
Номер охранного документа: 0002475194
Дата охранного документа: 20.02.2013
20.03.2013
№216.012.2f3a

Способ криодеструкции опухолей надпочечников

Изобретение относится к медицине, онкологии и может быть использовано для криодеструкции опухолей надпочечников. Для этого воздействуют на патологические зоны жидким азотом при температуре -196°С на один и тот же локальный участок надпочечника. В зоне контактного воздействия поддерживают...
Тип: Изобретение
Номер охранного документа: 0002477625
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.31fe

Способ эндопротезирования височно-нижнечелюстного сустава

Изобретение относится к медицине и предназначено для использования при хирургическом лечении больных с заболеваниями и повреждениями височно-нижнечелюстного сустава. Скелетируют ветвь и угол нижней челюсти. После отсечения собственно-жевательной, медиальной и латеральной крыловидных мышц от...
Тип: Изобретение
Номер охранного документа: 0002478341
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3911

Способ хирургической коррекции воронкообразной деформации грудной клетки у детей

Изобретение относится к области медицины, а именно к торакальной пластической хирургии, и может найти применение при коррекции воронкообразной деформации грудной клетки у детей. Сущность способа заключается в выполнении разрезов кожи и подкожной клетчатки по линии межреберья, загрудинной...
Тип: Изобретение
Номер охранного документа: 0002480170
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.3f6d

Ортопедический силовой элемент

Изобретение относится к медицинской ортопедической технике и может использоваться в экстракорпоральных корректорах патологии опорно-двигательного аппарата. Ортопедический силовой элемент в виде изогнутой проволочной структуры из сверхэластичного сплава на основе никелида титана с центральным...
Тип: Изобретение
Номер охранного документа: 0002481807
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.4f62

Способ протезирования культи глазного яблока

Изобретение относится к области медицины, а именно к офтальмологии, и может найти применение при протезировании культи глазного яблока. Сущность способа заключается в подготовке орбитального ложа, имплантации в подготовленное орбитальное ложе протеза культи глазного яблока, выполненного из...
Тип: Изобретение
Номер охранного документа: 0002485915
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5639

Способ хирургического лечения рака гортани

Изобретение относится к области медицины, а именно к хирургии гортани и онкологии, и может найти применение при реконструктивном лечении рака гортани. Способ заключается в префабрикации аутотрансплантата с использованием высокопроницаемой конструкции из сплава на основе никелида титана. При...
Тип: Изобретение
Номер охранного документа: 0002487681
Дата охранного документа: 20.07.2013
10.08.2013
№216.012.5bb4

Способ восстановления целостности каркаса грудины при стерномедиастинитах

Изобретение относится к области медицины, а именно к торакальной хирургии, и может найти применение при устранении осложнений, возникающих после операций с использованием продольной стернотомии. Способ заключается в применении фиксирующих элементов - отрезков трубчатого шнура, сплетенного из...
Тип: Изобретение
Номер охранного документа: 0002489097
Дата охранного документа: 10.08.2013
27.09.2013
№216.012.6df9

Способ остановки кровотечения из пресакрального венозного сплетения

Изобретение относится к медицине, а именно к хирургии. Выполняют остановку кровотечения из сакрального венозного сплетения путем тампонады. При этом тампонаду проводят тонкими эластичными пластинами, выполненными из пористо-проницаемого никелида титана. Способ позволяет уменьшить кровотечение,...
Тип: Изобретение
Номер охранного документа: 0002493804
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.7169

Способ пластики грыжи пищеводного отверстия диафрагмы

Изобретение относится к медицине, а именно к хирургии, и может быть использовано при операциях на органах брюшной полости, в частности при лечении грыж пищеводного отверстия диафрагмы, рефлюкс-эзофагита, резистентного к консервативной терапии. С целью снижения послеоперационных осложнений, за...
Тип: Изобретение
Номер охранного документа: 0002494690
Дата охранного документа: 10.10.2013
Showing 1-10 of 49 items.
20.02.2013
№216.012.25ca

Способ хирургического лечения рака гортани

Изобретение относится к области медицины, а именно к ЛОР-хирургии и онкологии, и может найти применение при хирургическом лечении обширных злокачественных опухолей гортани, в том числе на фоне последствий радикальной химиолучевой терапии. Сущность способа состоит в префабрикации...
Тип: Изобретение
Номер охранного документа: 0002475194
Дата охранного документа: 20.02.2013
10.04.2013
№216.012.31fe

Способ эндопротезирования височно-нижнечелюстного сустава

Изобретение относится к медицине и предназначено для использования при хирургическом лечении больных с заболеваниями и повреждениями височно-нижнечелюстного сустава. Скелетируют ветвь и угол нижней челюсти. После отсечения собственно-жевательной, медиальной и латеральной крыловидных мышц от...
Тип: Изобретение
Номер охранного документа: 0002478341
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3911

Способ хирургической коррекции воронкообразной деформации грудной клетки у детей

Изобретение относится к области медицины, а именно к торакальной пластической хирургии, и может найти применение при коррекции воронкообразной деформации грудной клетки у детей. Сущность способа заключается в выполнении разрезов кожи и подкожной клетчатки по линии межреберья, загрудинной...
Тип: Изобретение
Номер охранного документа: 0002480170
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.3f6d

Ортопедический силовой элемент

Изобретение относится к медицинской ортопедической технике и может использоваться в экстракорпоральных корректорах патологии опорно-двигательного аппарата. Ортопедический силовой элемент в виде изогнутой проволочной структуры из сверхэластичного сплава на основе никелида титана с центральным...
Тип: Изобретение
Номер охранного документа: 0002481807
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.4f62

Способ протезирования культи глазного яблока

Изобретение относится к области медицины, а именно к офтальмологии, и может найти применение при протезировании культи глазного яблока. Сущность способа заключается в подготовке орбитального ложа, имплантации в подготовленное орбитальное ложе протеза культи глазного яблока, выполненного из...
Тип: Изобретение
Номер охранного документа: 0002485915
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5639

Способ хирургического лечения рака гортани

Изобретение относится к области медицины, а именно к хирургии гортани и онкологии, и может найти применение при реконструктивном лечении рака гортани. Способ заключается в префабрикации аутотрансплантата с использованием высокопроницаемой конструкции из сплава на основе никелида титана. При...
Тип: Изобретение
Номер охранного документа: 0002487681
Дата охранного документа: 20.07.2013
10.08.2013
№216.012.5bb4

Способ восстановления целостности каркаса грудины при стерномедиастинитах

Изобретение относится к области медицины, а именно к торакальной хирургии, и может найти применение при устранении осложнений, возникающих после операций с использованием продольной стернотомии. Способ заключается в применении фиксирующих элементов - отрезков трубчатого шнура, сплетенного из...
Тип: Изобретение
Номер охранного документа: 0002489097
Дата охранного документа: 10.08.2013
27.09.2013
№216.012.6df9

Способ остановки кровотечения из пресакрального венозного сплетения

Изобретение относится к медицине, а именно к хирургии. Выполняют остановку кровотечения из сакрального венозного сплетения путем тампонады. При этом тампонаду проводят тонкими эластичными пластинами, выполненными из пористо-проницаемого никелида титана. Способ позволяет уменьшить кровотечение,...
Тип: Изобретение
Номер охранного документа: 0002493804
Дата охранного документа: 27.09.2013
27.12.2013
№216.012.910a

Способ изготовления тонкой никелид-титановой проволоки

Изобретение относится к области металлургии, а именно к производству проволоки волочением, и может быть использовано для нагрева при изготовлении тонкой и тончайшей проволоки из никелида титана. Способ нагрева проволоки перед волочением, включающий дозированный нагрев потоком инфракрасного...
Тип: Изобретение
Номер охранного документа: 0002502823
Дата охранного документа: 27.12.2013
10.05.2014
№216.012.bf51

Криохирургический эпикардиальный аппликатор

Изобретение относится к медицине, а именно к кардиохирургии, и может применяться для криоабляции миокарда при лечении фибрилляции предсердий. Криохирургический эпикардиальный аппликатор содержит цилиндрический сердечник 1 из пористого никилида титана, аксиально закрепленный на проволочном...
Тип: Изобретение
Номер охранного документа: 0002514726
Дата охранного документа: 10.05.2014
+ добавить свой РИД