×
20.10.2015
216.013.85d0

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КОМПОНЕНТОВ НАНОЭЛЕКТРОНИКИ С ИСПОЛЬЗОВАНИЕМ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ ГРЕЮЩЕЙ МОЩНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения теплофизических параметров компонентов наноэлектроники, таких как нанотранзисторы, нанорезисторы и др.. Сущность: способ заключается в пропускании через объект измерения последовательности импульсов греющего тока с постоянным периодом следования и длительностью, изменяющейся по гармоническому закону, измерении в паузах температурочувствительного параметра - напряжения на объекте при пропускании через него измерительного тока и определении изменения температуры объекта, вызванной модуляцией греющей мощности. Далее с помощью Фурье-преобразования вычисляют амплитуду первой гармоники температуры объекта, после чего определяют тепловое сопротивление как отношение амплитуд первых гармоник температуры и греющей мощности. При этом при определении амплитуды первой гармоники греющей мощности учитывают величину рассеиваемой мощности в паузе между греющими импульсами при пропускании через объект измерительного тока. Технический результат: повышение точности. 2 ил.
Основные результаты: Способ измерения теплового сопротивления компонентов наноэлектроники с использованием широтно-импульсной модуляции греющей мощности, заключающийся в том, что через объект измерения пропускают последовательность широтно-импульсно модулированных импульсов греющего тока I с гармоническим законом модуляции и постоянным периодом следования Т, измеряют напряжение U на объекте измерения на вершине греющих импульсов и напряжение U в паузе между ними при протекании через объект измерения измерительного тока I, определяют амплитуду Р первой гармоники греющей мощности и изменение температуры объекта измерения T(t), затем с помощью Фурье-преобразования вычисляют амплитуду Т первой гармоники переменной составляющей температуры объекта измерения, после чего определяют тепловое сопротивление объекта измерения как отношение амплитуд первых гармоник температуры и греющей мощности, отличающийся тем, что учитывают величину рассеиваемой мощности в паузе между греющими импульсами при пропускании через объект измерения измерительного тока, и расчет амплитуды Р первой гармоники греющей мощности осуществляют по формуле где а - коэффициент модуляции импульсов, τ - средняя длительность импульсов, Т - период следования импульсов, I - амплитуда импульсов греющего тока через объект измерения, U - напряжение на объекте измерения на вершине греющих импульсов, I - величина тока через объект измерения в паузе между греющими импульсами, U - напряжение на объекте измерения в паузе между греющими импульсами.

Изобретение относится к технике измерения теплофизических параметров электронных компонентов и может быть использовано для контроля теплового сопротивления при разработке и производстве нанотранзисторов, нанорезисторов и других компонентов наноэлектроники.

Параметры разрабатываемых в настоящее время нанотранзисторов и других компонентов наноэлектроники очень чувствительны к изменению их температуры. При малых значениях теплоемкости компонентов наноэлектроники небольшая рассеиваемая мощность может вызвать существенный перегрев их активной области. Это требует контроля теплового сопротивления, характеризующего степень перегрева активной области компонента при единичной рассеиваемой мощности. Тем не менее, средств измерения теплового сопротивления компонентов наноэлектроники в настоящее время не существует (Афонский А.А., Дьяконов В.П. Электронные измерения в нанотехнологиях и микроэлектронике - М.: ДМК Пресс, 2011. С. 688).

Среди существующих способов измерения теплового сопротивления электронных компонентов известен способ измерения теплового сопротивления переход-корпус диодов СВЧ (ГОСТ 19656, 18-84 Диоды полупроводниковые СВЧ. Методы измерения теплового сопротивления переход-корпус и импульсного теплового сопротивления), заключающийся в том, что через объект пропускают импульсы греющей мощности фиксированной длительности и амплитуды, а в промежутках между импульсами измеряют изменение температурочувствительного параметра UТЧП - прямого напряжения полупроводникового диода при пропускании через него малого измерительного тока. Прямое напряжение полупроводникового диода при пропускании через него малого измерительного тока линейно зависит от температуры, что позволяет косвенно измерить температуру перехода, предварительно определив температурный коэффициент напряжения.

Недостатком способа является низкая точность, обусловленная большой погрешностью измерения импульсного напряжения UТЧП(t) из-за влияния переходных тепловых и электрических процессов при переключении полупроводникового диода из режима разогрева в режим измерения.

Наиболее близким по технической сущности к заявленному изобретению (прототипом) является способ измерения теплового импеданса полупроводниковых диодов (см. патент РФ №2402783. Способ измерения теплового импеданса полупроводниковых диодов, Б.И. №30, 2010 г.), суть которого заключается в следующем. Через полупроводниковый диод в прямом направлении пропускают последовательность импульсов греющего тока, длительность τ которых изменяется по гармоническому закону

где τ0 - средняя длительность импульсов; а - коэффициент модуляции; ω - частота модуляции. Период следования импульсов Тсл и амплитудное значение греющего тока Iгр на полупроводниковом диоде поддерживают постоянными. В промежутках между импульсами греющего тока через диод пропускают малый измерительный ток Iизм, измеряют температурочувствительный параметр UТЧП - прямое напряжение на p-n-переходе и при известном температурном коэффициенте напряжения КТ определяют изменения температуры p-n-перехода T(t), вызванные пропусканием через диод широтно-импульсно модулированных импульсов греющего тока

Среднюю за период следования Тсл греющую мощность определяют по формуле:

ге - среднее значение греющей мощности; Uгр - напряжение на объекте измерения на вершине греющих импульсов;

Р1ср·а - амплитуда переменной составляющей греющей мощности.

По результатам вычисления амплитуд первых гармоник температуры T1(ω) p-n-перехода и греющей мощности Р1(ω) определяют тепловое сопротивление RT(ω) на частоте модуляции ω по формуле

Недостатком прототипа является то, что при его применении для измерения теплового сопротивления компонентов наноэлектроники появляется значительная погрешность, обусловленная тем, что значение измерительного тока Iизм в паузе между греющими импульсами не является пренебрежимо малым по сравнению с амплитудным значением греющего тока Iгр, в результате чего амплитуда первой гармоники греющей мощности P1 и, как следствие, тепловое сопротивление RT определяются с существенной погрешностью.

Технический результат - повышение точности измерения теплового сопротивления компонентов наноэлектроники.

Технический результат достигается тем, что, как и в прототипе, через объект измерения пропускают последовательность импульсов греющего тока амплитудой Iгр и постоянным периодом следования Тсл, а в паузах между ними измеряют температурочувствительный параметр UТЧП при постоянном значении Iизм - величине тока через объект измерения в паузе между греющими импульсами. В качестве температурочувствительного параметра может быть использовано, например, электрическое сопротивление жгутов углеродных нанотрубок, которое линейно зависит от температуры (Z.J. Han, К. Ostrikov. Controlled electronic transport in single-walled carbon nanotube networks // Applied Physics Letters 2010, 96, 233115). По измеренным значениям UТЧП - напряжения на объекте измерения в паузе между греющими импульсами и Uгр - напряжения на объекте измерения на вершине греющих импульсов вычисляют амплитуды первых гармоник температуры T1 и рассеиваемой мощности Р1, отношение которых определяет тепловое сопротивление объекта измерения. В отличие от прототипа, в котором измерительный ток Iизм считают пренебрежимо малым по сравнению с греющим током Iгр, в заявляемом изобретении учитывают величину рассеиваемой мощности в паузе между греющими импульсами при пропускании через объект измерительного тока Iизм и расчет средней за период следования Тсл греющей мощности осуществляют по формуле

где Рср - среднее значение греющей мощности, которое с учетом (1) вычисляют по формуле

P1 - амплитуда первой гармоники переменной составляющей греющей мощности, которую с учетом (1) вычисляют по формуле

При расчете амплитуды первой гармоники P1 переменной составляющей греющей мощности используют допущение, что вариации напряжения на объекте, вызванные циклическим изменением его температуры, существенно меньше напряжения Uгр в момент протекания греющего тока (на вершине греющего импульса) и напряжения UТЧП в паузе между греющими импульсами, что позволяет при расчете Р1 по формуле (5) принять напряжения Uгр и UТЧП постоянными для всех греющих импульсов.

Зависимость тока I через объект измерения от времени представлена на фиг. 1а. Широтно-импульсная модуляция греющего тока Iгр, осуществляемая по гармоническому закону, вызывает соответствующие изменения рассеиваемой в объекте мощности график которой представлен на фиг. 1б. Модуляция греющей мощности вызывает соответствующие изменения температуры T(t) объекта измерения, сдвинутые по фазе относительно мощности (фиг. 1в). Изменение температуры вызывает соответствующие изменения температурочувствительного параметра UТЧП(t), например напряжения на жгуте из углеродных нанотрубок при протекании через него постоянного измерительного тока Iизм. Зависимость температурочувствительного параметра UТЧП(t) от времени представлена на фиг. 1г.

Для измерения теплового сопротивления компонентов наноэлектроники, например жгутов из углеродных нанотрубок, через объект пропускают последовательность широтно-импульсно модулированных импульсов греющего тока Iгр с гармоническим законом модуляции и постоянным периодом следования Тсл, измеряют напряжение Uгр на объекте измерения на вершине греющих импульсов и напряжение UТЧП в паузе между ними при протекании через объект измерительного тока Iизм, по формуле (5) определяют амплитуду P1 первой гармоники греющей мощности, а по формуле (2) - изменение температуры объекта T(t), затем с помощью Фурье-преобразования вычисляют амплитуду T1 первой гармоники переменной составляющей температуры объекта, после чего с помощью формулы (3) определяют тепловое сопротивление RT(ω) на частоте модуляции греющей мощности ω.

Предлагаемый способ может быть реализован с помощью устройства, структурная схема которого показана на фиг. 2. Устройство содержит источник 1 измерительного тока; формирователь 2 греющих импульсов, управляемый микроконтроллером 3; аналого-цифровой преобразователь 4, вход которого соединен с объектом измерения 5, а выход - с микроконтроллером 3.

Способ осуществляют следующим образом. С выхода формирователя 2 греющих импульсов на объект измерения 5 поступает заданное микроконтроллером 3 количество импульсов греющего тока Iгр, период следования Тсл которых постоянный, а длительность модулируют по гармоническому закону. Измеряют напряжение Uгр на вершине греющего импульса, а в паузах между греющими импульсами измеряют температурочувствительный параметр - напряжение UТЧП на объекте 5, возникающее при протекании через него измерительного тока Iизм, сформированного источником 1. Напряжение UТЧП с помощью аналого-цифрового преобразователя 4 преобразуют в цифровой код, поступающий в микроконтроллер 3, в результате чего в памяти микроконтроллера 3 формируют массив значений {UТЧП}, который затем преобразуют в массив температур {Т}. С помощью Фурье-преобразования вычисляют амплитуду T1 первой гармоники переменной составляющей температуры объекта. Используя измеренные значения напряжений на вершине греющих импульсов Uгр и в паузах между ними UТЧП, вычисляют амплитуду Р1 первой гармоники греющей мощности и далее определяют тепловое сопротивление объекта, равное отношению амплитуд первых гармоник температуры Т1 и греющей мощности Р1.

Повышение точности измерения теплового сопротивления компонентов наноэлектроники в заявленном способе достигается за счет того, что в отличие от прототипа, в нем при расчете амплитуды P1 первой гармоники греющей мощности учтена тепловая мощность, рассеиваемая в объекте в паузе между греющими импульсами при протекании через него измерительного тока.

Способ измерения теплового сопротивления компонентов наноэлектроники с использованием широтно-импульсной модуляции греющей мощности, заключающийся в том, что через объект измерения пропускают последовательность широтно-импульсно модулированных импульсов греющего тока I с гармоническим законом модуляции и постоянным периодом следования Т, измеряют напряжение U на объекте измерения на вершине греющих импульсов и напряжение U в паузе между ними при протекании через объект измерения измерительного тока I, определяют амплитуду Р первой гармоники греющей мощности и изменение температуры объекта измерения T(t), затем с помощью Фурье-преобразования вычисляют амплитуду Т первой гармоники переменной составляющей температуры объекта измерения, после чего определяют тепловое сопротивление объекта измерения как отношение амплитуд первых гармоник температуры и греющей мощности, отличающийся тем, что учитывают величину рассеиваемой мощности в паузе между греющими импульсами при пропускании через объект измерения измерительного тока, и расчет амплитуды Р первой гармоники греющей мощности осуществляют по формуле где а - коэффициент модуляции импульсов, τ - средняя длительность импульсов, Т - период следования импульсов, I - амплитуда импульсов греющего тока через объект измерения, U - напряжение на объекте измерения на вершине греющих импульсов, I - величина тока через объект измерения в паузе между греющими импульсами, U - напряжение на объекте измерения в паузе между греющими импульсами.
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КОМПОНЕНТОВ НАНОЭЛЕКТРОНИКИ С ИСПОЛЬЗОВАНИЕМ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ ГРЕЮЩЕЙ МОЩНОСТИ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КОМПОНЕНТОВ НАНОЭЛЕКТРОНИКИ С ИСПОЛЬЗОВАНИЕМ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ ГРЕЮЩЕЙ МОЩНОСТИ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КОМПОНЕНТОВ НАНОЭЛЕКТРОНИКИ С ИСПОЛЬЗОВАНИЕМ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ ГРЕЮЩЕЙ МОЩНОСТИ
Источник поступления информации: Роспатент

Showing 21-30 of 261 items.
27.11.2014
№216.013.0b11

Устройство для отверждения изделий из полимерных материалов ультрафиолетовым излучением

Устройство относится к установкам для отверждения полимерных материалов на основе полиэфирных смол ультрафиолетовым излучением и может быть использовано при изготовлении изделий со сложной поверхностью. Устройство для отверждения изделий из полимерных материалов ультрафиолетовым излучением...
Тип: Изобретение
Номер охранного документа: 0002534241
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.17cb

Способ определения напряжения локализации тока в мощных вч и свч биполярных транзисторах

Изобретение относится к технике измерения предельных параметров мощных биполярных транзисторов и может использоваться на входном и выходном контроле их качества. Способ основан на использовании известного эффекта резкого изменения крутизны зависимости напряжения на эмиттерном переходе при...
Тип: Изобретение
Номер охранного документа: 0002537519
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1854

Способ работы тепловой электрической станции

Изобретение относится к энергетике. Способ работы тепловой электрической станции, по которому в котле вырабатывают пар, подают его в турбину, пар отборов турбины используют для нагрева сетевой воды в нижнем и верхнем сетевых подогревателях, подпиточную воду деаэрируют в деаэраторе, для чего в...
Тип: Изобретение
Номер охранного документа: 0002537656
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1906

Ворота с повышенной противотаранной прочностью

Ворота с повышенной противотаранной прочностью относятся к устройствам, предназначенным для защиты неподвижных и подвижных объектов от воздействия ударных нагрузок. Ворота содержат две плоские створки 1, 2, размещенные внутри прямоугольной стальной рамы 3, жестко прикрепленной по контуру к...
Тип: Изобретение
Номер охранного документа: 0002537834
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.197f

Устройство для пуска и компенсации реактивной мощности асинхронного двигателя

Изобретение относится к области электротехники и может быть использовано для пуска и компенсации реактивной мощности асинхронных двигателей большой мощности с вентиляторной нагрузкой или пускаемых без нагрузки. Технический результат - уменьшение потерь в рабочем режиме за счет исключения...
Тип: Изобретение
Номер охранного документа: 0002537955
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19ac

Тепловая электрическая станция

Изобретение относится к энергетике. Тепловая электрическая станция, содержащая паровой котел, теплофикационную турбину с отборами пара, подключенными к регенеративным подогревателям, деаэратор добавочной питательной воды с подключенными к нему трубопроводом исходной воды и патрубками подвода и...
Тип: Изобретение
Номер охранного документа: 0002538000
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19e3

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к области нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, ниобия и молибдена при их содержании,...
Тип: Изобретение
Номер охранного документа: 0002538055
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19e4

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002538056
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19e5

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, ниобия и молибдена при их содержании, в мас.%:...
Тип: Изобретение
Номер охранного документа: 0002538057
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19e6

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения титана,...
Тип: Изобретение
Номер охранного документа: 0002538058
Дата охранного документа: 10.01.2015
Showing 21-30 of 432 items.
27.04.2013
№216.012.3bfd

Адаптивный кодер гиперкода размерности 3d

Изобретение относится к технике связи, а именно к системам помехоустойчивого кодирования с параметрической адаптацией. Техническим результатом является повышение достоверности и скорости передачи информации. Технический результат достигается тем, что в адаптивный кодер гиперкода размерности 3D,...
Тип: Изобретение
Номер охранного документа: 0002480918
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3e05

Устройство для удаления сосулек с карниза крыши здания

Изобретение относится к области строительства, в частности к устройству для удаления сосулек с карниза крыши здания. Технический результат изобретения заключается в повышении эксплуатационной надежности крыши. Устройство для удаления сосулек с карниза крыши содержит элемент для намерзания воды,...
Тип: Изобретение
Номер охранного документа: 0002481444
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3ef5

Устройство для сброса гололедных отложений с проводов

Устройство для сброса гололедных отложений с проводов относится к области электроэнергетики. Устройство представляет собой надетую на провод 1 прямоугольную рамку, две противоположные стороны 2, 3 которой выполнены в виде пластинчатых постоянных магнитов, намагниченных аксиально и обращенных...
Тип: Изобретение
Номер охранного документа: 0002481684
Дата охранного документа: 10.05.2013
20.07.2013
№216.012.5764

Устройство для удаления сосулек с карниза крыши здания

Изобретение относится к области строительства, в частности к устройству для удаления сосулек с карниза крыши здания. Устройство для удаления сосулек содержит элемент для намерзания воды при таянии на крыше снега и льда, прикрепленный к наружному крав карниза. При этом элемент для намерзания...
Тип: Изобретение
Номер охранного документа: 0002487980
Дата охранного документа: 20.07.2013
10.08.2013
№216.012.5e6d

Взрывобезопасный бесконтактный пускатель

Изобретение относится к области электротехники и может быть использовано в асинхронном электроприводе. Техническим результатом является повышение ресурса работы и снижения габаритов пускателя по сравнению с электромагнитными. Взрывобезопасный бесконтактный пускатель содержит 5 оптосимисторных...
Тип: Изобретение
Номер охранного документа: 0002489794
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5e6f

Устройство для торможения асинхронного двигателя

Устройство для торможения асинхронного двигателя предназначено для применения в электроприводах, требующих быстрого и надежного останова и фиксации механизма в отключенном состоянии. Устройство содержит трехфазную сеть с нулевым проводом, асинхронный двигатель с фазными обмотками, конденсатор...
Тип: Изобретение
Номер охранного документа: 0002489796
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.5f84

Способ формообразования коробчатых в плане квадратных деталей с отверстием в донной части путем совмещения вытяжки и отбортовки

Изобретение относится к области автомобильной промышленности листоштамповочного производства для изготовления коробчатых деталей в плане квадратных небольшой высоты с отверстием в донной части. Вырубают плоский листовой полуфабрикат с предварительно пробитым отверстием, размеры которого меньше...
Тип: Изобретение
Номер охранного документа: 0002490084
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.5f94

Червячно-модульная фреза на основе эвольвентного червяка с положительными передними углами

Изобретение относится к области зуборезных инструментов, а именно к червячно-модульным фрезам на основе эвольвентного червяка с положительными передними углами, и может быть использовано для нарезания зубчатых цилиндрических колес с повышенной точностью профиля рабочей стороны зубьев. Фреза...
Тип: Изобретение
Номер охранного документа: 0002490100
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.5f9e

Способ управления двусторонним торцовым шлифованием и устройство для его осуществления

Изобретение относится к автоматизации технологических процессов и может быть использовано при шлифовании заготовок деталей машин и приборов на шлифовальных станках с устройствами числового программного управления. Технический результат - повышение производительности обработки и улучшение...
Тип: Изобретение
Номер охранного документа: 0002490110
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.5fa0

Способ очистки эльборового шлифовального круга

Изобретение относится к машиностроению и может быть использовано на операциях эльборового шлифования заготовок из вязких, пластичных и адгезионно-активных материалов. К рабочей поверхности засаленного шлифовального круга прижимают инструмент для очистки в виде абразивного бруска. Абразивные...
Тип: Изобретение
Номер охранного документа: 0002490112
Дата охранного документа: 20.08.2013
+ добавить свой РИД