×
20.10.2015
216.013.834e

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в металлургической области. Способ получения глинозема включает обработку алюминийсодержащего сырья соляной кислотой, кристаллизацию гексагидрата хлорида алюминия из осветленного хлоридного раствора, двухстадийное термическое разложение гексагидрата хлорида алюминия с получением глинозема и термогидролиз маточного раствора с выделением гематита. Первую стадию термического разложения гексагидрата хлорида алюминия ведут до образования оксихлоридов и аморфного гидроксида алюминия, часть их порционно вводят в осветленный раствор перед кристаллизацией гексагидрата хлорида алюминия до достижения pH, равного 1,6-2,2, образовавшийся при этом осадок гидроксида железа отделяют и смешивают с маточным раствором, а часть полученного гематита возвращают в осветленный раствор после достижения pH, равного 1,6-2,2. Изобретение позволяет повысить качество глинозема, снизив содержание FeO в продукте на 0.003-0.007% (абс.) без введения в технологию посторонних реагентов. 1 ил., 1 табл., 1 пр.
Основные результаты: Способ получения глинозема, включающий обработку алюминийсодержащего сырья соляной кислотой, кристаллизацию гексагидрата хлорида алюминия из осветленного хлоридного раствора, двухстадийное термическое разложение гексагидрата хлорида алюминия с получением глинозема и термогидролиз маточного раствора с выделением гематита, отличающийся тем, что первую стадию термического разложения гексагидрата хлорида алюминия ведут до образования оксихлоридов и аморфного гидроксида алюминия, часть их порционно вводят в осветленный раствор перед кристаллизацией гексагидрата хлорида алюминия до достижения pH, равного 1,6-2,2, образовавшийся при этом осадок гидроксида железа отделяют и смешивают с маточным раствором, а часть полученного гематита возвращают в осветленный раствор после достижения pH, равного 1,6-2,2.

Изобретение относится к металлургии, в частности к кислотным способам получения глинозема, и может быть использовано при переработке низкосортного алюминийсодержащего сырья.

Известен солянокислотный способ получения глинозема путем кислотной обработки сырья, выпаривания осветленного хлоридного раствора с кристаллизацией гексагидрата хлорида алюминия (AlCl3·6Н2О) с последующей кальцинацией его до оксида, который ввиду значительного содержания железа и других примесей (за исключением кремния), назван авторами «черновым глиноземом» (Справочник металлурга по цветным металлам. Производство глинозема. М:. Металлургия, 1970, с.236-237). Далее этот промежуточный продукт перерабатывался по традиционной щелочной схеме Байера для удаления железа и получения глинозема металлургического качества.

К недостаткам данного способа получения глинозема относятся также сложность технологической схемы, высокие энергозатраты при ее реализации, попадание хлоридов из кислотного цикла в щелочной, и связанные с этим дополнительные потери щелочи, достигавшие 36-37 кг/т глинозема. По перечисленным причинам этот способ не нашел применения в промышленности.

Наиболее близким к заявленному способу является способ получения глинозема из алюминийсодержащего сырья, включающий обработку его соляной кислотой, кристаллизацию (высаливание) гексагидрата хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлороводородом, двухстадийное термическое разложение гексагидрата хлорида алюминия для получения оксида алюминия и термогидролиз маточного раствора с выделением гематита и возвратом образовавшегося хлороводорода на стадии кислотной обработки и высаливания (Elsner D., Jenkins D.H. and Sinha H.N. Alumina via hydrochloric acid leaching of high silica bauxites - process development. Light metals, 1984, p.411-426).

Согласно этому способу гексагидрат хлорида алюминия кристаллизовался из раствора путем высаливания газообразным хлороводородом, что позволило упростить технологическую схему, отказаться от процесса Байера и снизить энергозатраты. Однако содержание примесей в конечном продукте, особенно, Fe2O3 (0,03%), не отвечало современным требованиям к металлургическому глинозему (не более 0,015%).

При высаливании AlCl3·6Н2О из раствора, содержащего хлориды железа и других примесных металлов, практически невозможно обеспечить высокую чистоту целевого продукта.

В основу изобретения положена задача, заключающаяся в минимизировании содержания железа в продукционном металлургическом глиноземе, получаемом путем кислотной переработки низкосортного алюминийсодержащего сырья.

Техническим результатом является повышение качества глинозема.

Достижение вышеуказанного технического результата обеспечивается тем, что в способе получения глинозема, включающем обработку алюминийсодержащего сырья соляной кислотой, кристаллизацию гексагидрата хлорида алюминия из осветленного хлоридного раствора, двухстадийное термическое разложение гексагидрата хлорида алюминия с получением глинозема и термогидролиз маточного раствора с выделением гематита, первую стадию термического разложения гексагидрата хлорида алюминия ведут до образования оксихлоридов и аморфного гидроксида алюминия, часть их порционно вводят в осветленный раствор перед кристаллизацией гексагидрата хлорида алюминия до достижения pH, равного 1,6-2,2, образовавшийся при этом осадок гидроксида железа отделяют и смешивают с маточным раствором, а часть полученного гематита возвращают в осветленный раствор после достижения pH, равного 1,6-2,2.

Причинами поступления железа из алюминийсодержащего сырья в продукционный глинозем являются:

- изоморфное соосаждение при кристаллизации AlCl3·6H2O;

- остатки маточного раствора на поверхности кристаллов AlCl3·6H2O;

- захват маточного раствора в изолированных кавернах кристаллов AlCl3·6H2O.

Очевидно, что для исключения вышеперечисленных причин необходимо минимизировать содержание железа в осветленном растворе. Наиболее доступным приемом такого обезжелезивания является увеличение уровня pH осветленного раствора до начала выпадения гидроксида железа(III) путем введения в раствор какого-либо нейтрализующего реагента, например гидроксидов щелочных, щелочноземельных металлов или аммиака. Однако такой прием неизбежно приводит к увеличению расхода кислоты в технологии.

Установлено, что нейтрализующий реагент может быть получен непосредственно в солянокислотном способе на первой стадии термического разложения гексагидрата хлорида алюминия, когда образуются оксихлориды алюминия различной основности и рентгеноаморфный активный гидроксид алюминия по реакциям:

Все эти соединения алюминия легко растворяются в солянокислых растворах и способны обеспечить увеличение pH среды в заявляемых пределах pH, равном 1,6-2,2. Регенерация таких нейтрализующих реагентов легко осуществляется повторным термическим разложением. Таким образом, может быть организован рациональный технологический оборот без привнесения в солянокислотный цикл щелочных компонентов.

Для увеличения степени очистки осветленного раствора от железа предложено проводить ее с добавлением затравки активного гематита, получаемого в ходе операции термогидролиза маточного раствора. Затравку целесообразно вводить после достижения pH осветленного раствора, равного 1,6-2,2 с тем, чтобы предупредить повторное растворение оксида железа. При использовании затравки железо выводится из процесса в виде железистого осадка, состоящего из оксида и гидроксида железа.

Сущность изобретения поясняется технологической схемой получения глинозема.

Способ получения глинозема осуществляется следующим образом.

Алюминиевую железосодержащую руду подвергают солянокислотной обработке с максимально возможным извлечением всех растворимых компонентов, как целевого (алюминия), так и примесных (главным образом, железа). Полученную хлоридную пульпу фильтруют и промывают с отделением нерастворимого остатка - отвального сиштофа, представляющего собой практически чистый кремнезем.

В осветленный раствор с фильтра порционно вводят смесь оксихлоридов различной основности и аморфного гидроксида алюминия, выступающих в роли нейтрализующего реагента, до достижения pH, равного 1,6-2,2, при котором начинается выделение в твердую фазу гидроксида железа. Заявляемый диапазон pH выбран из расчета наиболее полного удаления из раствора железа без нежелательного начала гидролиза хлорида алюминия, который может привести к потерям целевого компонента с железистым осадком. Для более глубокой очистки раствора от железа возможно введение в него в виде затравки активного оксида железа. После отделения железистого осадка обезжелезенный осветленный раствор направляют на кристаллизацию гексагидрата хлорида алюминия, реализуемую путем упаривания или высаливания, например, введением газообразного хлороводорода.

Полученные кристаллы промывают не менее чем 30-процентной чистой соляной кислотой для удаления остатков маточного раствора кристаллизации и подвергают двухстадийному термическому разложению. Кислоту после промывки кристаллов направляют на кислотную обработку руды. Маточный раствор после кристаллизации смешивают с железистым осадком и подают на термогидролиз для выделения гематита и части прочих примесных компонентов и регенерации соляной кислоты, которую возвращают на кислотную обработку руды. Таким образом, затравочный гематит является промежуточным продуктом, циркулирующим внутри технологической схемы через операции нейтрализации и термогидролиза.

Первую стадию термического разложения гексагидрата хлорида алюминия ведут до образования оксихлоридов и аморфного гидроксида алюминия, часть которых возвращают на нейтрализацию осветленного раствора, а остальное передают на вторую стадию термического разложения.

Режимные параметры (температуру и время пребывания материала в печи) на первой стадии подбирают опытным путем отдельно для каждого вида печного агрегата (с неподвижным, пересыпающимся или кипящим слоем), в котором проводят термическое разложение.

Выделяющийся на первой стадии термического разложения хлороводород вводят либо на кислотную обработку руды в виде абсорбированной соляной кислоты, либо - на кристаллизацию гексагидрата хлорида алюминия в газообразной форме (зависимости от выбранного метода кристаллизации).

Вторую стадию термического разложения с получением металлургического глинозема осуществляют известными методами, а выделящийся хлороводород в виде соляной кислоты направляют на кислотную обработку руды.

Соляную кислоту, образующуюся при термогидролизе маточного раствора, возвращают на промывку кристаллов гексагидрата хлорида алюминия, а часть выделенного гематита возвращают на передел нейтрализации и вводят в осветленный раствор после достижения pH, равного 1,6-2,2.

Следует отметить, что в зависимости от конкретного состава сырья (главным образом, соотношения в ней алюминия и железа) потоки хлороводорода в газообразной или растворенной форме могут перераспределяться по переделам технологической схемы.

Способ получения глинозема иллюстрируется конкретными примерами.

Лабораторные эксперименты проводили в следующих условиях.

В 20-процентный раствор соляной кислоты, нагретый до 110-115°C, при перемешивании вводили каолиновую глину с содержанием основных компонентов, %: Al2O3 36,4; SiO2 45,3; Fe2O3 0,78; TiO2 0,51; CaO 0,96; MgO 0,49; P2O5 0,12; до достижения pH пульпы, равного значению 1,4, и выдерживали в этих условиях в течение 3 ч. По окончании процесса полученную пульпу отфильтровывали. В осветленный хлоридный раствор постепенно вводили продукт, полученный после первой стадии термического разложения гексагидрата хлорида алюминия от предыдущих опытов, состоящий из смеси оксихлоридов различной основности и аморфного гидроксида алюминия (примерный состав реагента был определен на основе химического и рентгенофазового анализа) до достижения требуемого (в пределах заявляемого интервала) значения pH и выдерживали при 115°C и перемешивании в течение 1 ч. Полученный железистый осадок отфильтровывали, а обезжелезенный раствор переливали в колбу ротационного испарителя и постепенно упаривали до полного выделения кристаллов гексагидрата хлорида алюминия, которые отделяли и промывали на фильтре двумя объемами 38-процентной чистой соляной кислоты. Промытые кристаллы помещали в трубчатую лабораторную печь, нагревали ее до 1100°C и выдерживали в течение 3 ч. Полученный таким образом глинозем подвергали рентгеноспектральному анализу на содержание Fe2O3.

В экспериментах по дополнительному введению активного гематита предварительно приготовили этот реагент из полученного железистого осадка. Железистый осадок смешали с тремя объемами воды, поместили смесь в автоклав, нагрели его до 180°C и, не снижая температуры, постепенно сбросили паровую фазу через верхний клапан автоклава, осуществив, таким образом, процесс его термогидролиз с получением активного гематита.

Затем после введения оксихлоридов различной основности и аморфного гидроксида алюминия до достижения требуемого значения pH осветленного раствора дополнительно вводили активный гематит в количестве, десятикратно превышающем расчетную массу Fe2O3, пришедшего в процесс с сырьем, и далее продолжали опыт до получения глинозема с последующим его анализом, как это описано выше. Полученные результаты примеров реализации заявляемого способа, а также опыт по прототипу представлены в таблице.

Из данных таблицы следует, что во всех примерах реализации заявляемого способа удалось получить требуемое содержание Fe2O3 в глиноземе (не более 0,015%), в то время как в примере по прототипу оно оказалось вдвое выше.

Дополнительное введение активного гематита позволяет снизить содержание Fe2O3 в продукте на 0,003-0,007% (абс.) от уровня, достигнутого очисткой с применением оксихлоридов и аморфного гидроксида алюминия.

Заявляемый способ обеспечивает достижение требуемого технического результата без введения в технологию посторонних реагентов, заменив их оксихлоридами и аморфным гидроксидом алюминия, а также активным гематитом, и осуществить их выделение и регенерацию в рамках существующих переделов, в едином технологическом цикле.

Таблица
Пример Реализуемый способ Введение оксихлоридов и аморфного гидроксида алюминия до значения рН Введение активного гематита Содержание Fe2O3 в глиноземе, %
1 заявляемый 1,6 нет 0,015
2 заявляемый 1,9 нет 0,010
3 заявляемый 2,2 нет 0,012
4 заявляемый 1,6 есть 0,008
5 заявляемый 1,9 есть 0,007
6 заявляемый 2,2 есть 0,007
7 по прототипу нет нет 0,030

Способ получения глинозема, включающий обработку алюминийсодержащего сырья соляной кислотой, кристаллизацию гексагидрата хлорида алюминия из осветленного хлоридного раствора, двухстадийное термическое разложение гексагидрата хлорида алюминия с получением глинозема и термогидролиз маточного раствора с выделением гематита, отличающийся тем, что первую стадию термического разложения гексагидрата хлорида алюминия ведут до образования оксихлоридов и аморфного гидроксида алюминия, часть их порционно вводят в осветленный раствор перед кристаллизацией гексагидрата хлорида алюминия до достижения pH, равного 1,6-2,2, образовавшийся при этом осадок гидроксида железа отделяют и смешивают с маточным раствором, а часть полученного гематита возвращают в осветленный раствор после достижения pH, равного 1,6-2,2.
СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА
Источник поступления информации: Роспатент

Showing 81-90 of 234 items.
10.06.2016
№216.015.4648

Способ производства анодной массы

Изобретение относится к способу изготовления анодной массы для анодов алюминиевых электролизеров. Способ включает приготовление анодной массы смешением зерновых фракций углеродного наполнителя в виде кокса с предварительно подготовленной связующей матрицей (СМ) на основе пылевой фракции кокса...
Тип: Изобретение
Номер охранного документа: 0002586195
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46a1

Способ получения связующего пека

Изобретение относится к коксохимической промышленности, в частности к способу получения связующего пека, который может быть использован в качестве замены каменноугольного пека для производства анодной массы, угольной и графитированной продукции, конструкционных углеграфитовых материалов. Способ...
Тип: Изобретение
Номер охранного документа: 0002586135
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.5498

Способ получения биметаллической заготовки

Изобретение может быть использовано для получения биметалла из меди и низкоуглеродистой стали при изготовлении деталей, применяемых в конструкциях установок для электролиза алюминия. Перед диффузионной сваркой проводят сжатие поверхностей заготовок при комнатной температуре с приложением к ним...
Тип: Изобретение
Номер охранного документа: 0002593242
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.54b4

Способ обжига подины алюминиевого электролизера

Изобретение относится к способу обжига подины алюминиевого электролизера с обожженными анодами. В способе регулируют токовую нагрузку при определении перегрева поверхности подины путем непрерывного измерения температуры и токовой нагрузки по анодам и ниппелями, отключают анододержатели с...
Тип: Изобретение
Номер охранного документа: 0002593253
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55b3

Самоходная машина для обработки алюминиевых электролизеров

Изобретение относится к самоходной машине для обслуживания алюминиевых электролизеров при их технологической обработке. Самоходная машина содержит раму, к которой в передней части шарнирно с возможностью качания закреплен ведомый управляемый мост, два гидромотора, двигатель внутреннего...
Тип: Изобретение
Номер охранного документа: 0002593251
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55fb

Способ футеровки катодного устройства электролизера для получения алюминия

Изобретение относится к способу футеровки катодного устройства электролизера для получения алюминия неформованными материалами. В способе, включающем кладку кирпичной бровки по периметру внутренней боковой поверхности металлического кожуха, засыпку и горизонтальное выравнивание...
Тип: Изобретение
Номер охранного документа: 0002593247
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5626

Способ получения лигатуры алюминий-скандий

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий. Способ включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление...
Тип: Изобретение
Номер охранного документа: 0002593246
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5808

Навеска с прицепным устройством

Изобретение относится к области машиностроения. Навеска с прицепным устройством содержит шкворень, соединенный с гидроцилиндром подъема и опускания, и гидроцилиндр навески, закрепленный на раме самоходной машины и соединенный через рычаг с поворотным валом. Нижняя часть навески выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002588550
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.704c

Подвеска колес самоходной машины

Изобретение относится к подвеске колес тягово-транспортных средств, применяемых в электролитическом производстве алюминия. Подвеска колес содержит раму подвески, выполненную в виде пространственной фигуры коробчатой формы из двух металлических листов, соединенных между собой вертикальными...
Тип: Изобретение
Номер охранного документа: 0002596559
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.70ab

Способ управления подачей глинозема в электролизер при получении алюминия

Изобретение относится к способу управления подачей глинозема в электролизеры для получения алюминия для поддержания концентрации глинозема в электролите, равной или близкой к концентрации насыщения. В способе измеряют приведенное напряжение (U) или псевдосопротивление (R), регистрируют...
Тип: Изобретение
Номер охранного документа: 0002596560
Дата охранного документа: 10.09.2016
Showing 81-90 of 139 items.
10.06.2016
№216.015.46a1

Способ получения связующего пека

Изобретение относится к коксохимической промышленности, в частности к способу получения связующего пека, который может быть использован в качестве замены каменноугольного пека для производства анодной массы, угольной и графитированной продукции, конструкционных углеграфитовых материалов. Способ...
Тип: Изобретение
Номер охранного документа: 0002586135
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.5498

Способ получения биметаллической заготовки

Изобретение может быть использовано для получения биметалла из меди и низкоуглеродистой стали при изготовлении деталей, применяемых в конструкциях установок для электролиза алюминия. Перед диффузионной сваркой проводят сжатие поверхностей заготовок при комнатной температуре с приложением к ним...
Тип: Изобретение
Номер охранного документа: 0002593242
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.54b4

Способ обжига подины алюминиевого электролизера

Изобретение относится к способу обжига подины алюминиевого электролизера с обожженными анодами. В способе регулируют токовую нагрузку при определении перегрева поверхности подины путем непрерывного измерения температуры и токовой нагрузки по анодам и ниппелями, отключают анододержатели с...
Тип: Изобретение
Номер охранного документа: 0002593253
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55b3

Самоходная машина для обработки алюминиевых электролизеров

Изобретение относится к самоходной машине для обслуживания алюминиевых электролизеров при их технологической обработке. Самоходная машина содержит раму, к которой в передней части шарнирно с возможностью качания закреплен ведомый управляемый мост, два гидромотора, двигатель внутреннего...
Тип: Изобретение
Номер охранного документа: 0002593251
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55fb

Способ футеровки катодного устройства электролизера для получения алюминия

Изобретение относится к способу футеровки катодного устройства электролизера для получения алюминия неформованными материалами. В способе, включающем кладку кирпичной бровки по периметру внутренней боковой поверхности металлического кожуха, засыпку и горизонтальное выравнивание...
Тип: Изобретение
Номер охранного документа: 0002593247
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5626

Способ получения лигатуры алюминий-скандий

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий. Способ включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление...
Тип: Изобретение
Номер охранного документа: 0002593246
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5808

Навеска с прицепным устройством

Изобретение относится к области машиностроения. Навеска с прицепным устройством содержит шкворень, соединенный с гидроцилиндром подъема и опускания, и гидроцилиндр навески, закрепленный на раме самоходной машины и соединенный через рычаг с поворотным валом. Нижняя часть навески выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002588550
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.704c

Подвеска колес самоходной машины

Изобретение относится к подвеске колес тягово-транспортных средств, применяемых в электролитическом производстве алюминия. Подвеска колес содержит раму подвески, выполненную в виде пространственной фигуры коробчатой формы из двух металлических листов, соединенных между собой вертикальными...
Тип: Изобретение
Номер охранного документа: 0002596559
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.70ab

Способ управления подачей глинозема в электролизер при получении алюминия

Изобретение относится к способу управления подачей глинозема в электролизеры для получения алюминия для поддержания концентрации глинозема в электролите, равной или близкой к концентрации насыщения. В способе измеряют приведенное напряжение (U) или псевдосопротивление (R), регистрируют...
Тип: Изобретение
Номер охранного документа: 0002596560
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7106

Рабочий орган машины для пробивки корки алюминиевого электролизера

Изобретение относится к рабочему органу машины для пробивки корки электролита в электролизере для производства алюминия. Рабочий орган содержит кривошипно-шатунный механизм пробивки корки с пробойником, закрепленный на стреле, коленчатый вал и механизм отклонения пробойника. Гидромотор соединен...
Тип: Изобретение
Номер охранного документа: 0002596550
Дата охранного документа: 10.09.2016
+ добавить свой РИД