×
20.10.2015
216.013.82e1

Результат интеллектуальной деятельности: РАБОЧЕЕ КОЛЕСО РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Рабочее колесо второй ступени вала ротора компрессора низкого давления турбореактивного двигателя содержит диск со ступицей, центральным отверстием, полотно и обод, а также рабочие лопатки, выполненные выпукло-вогнутыми в поперечном сечении. Каждая лопатка комплекта включает перо и хвостовик. Обод асимметрично соединен с полотном диска с образованием двух разноплечих наклонных в направлении вектора потока конических полок. Суммарная равноплечая часть ширины полок снабжена пазами, в которые заведены хвостовики лопаток. Выступающие за габарит пазов консольные участки полок обода развиты до контакта с ответными полками ободов дисков предшествующей и последующей ступеней. Продольная ось каждого из пазов образует с осью рабочего колеса в проекции на условную осевую плоскость, нормальную к радиальной оси пера, угол α установки хвостовика в диапазоне значений α=(21÷27)°. При этом хорда боковых кромок пера в корневой зоне лопатки образует с осью ротора в проекции угол установки пера α, нарастающий по радиальной высоте пера с градиентом закрутки пера, составляющим G=(159,2÷245,8) [град/м]. Технический результат, достигаемый изобретением, состоит в повышении КПД и увеличении запаса ГДУ на всех режимах работы компрессора при повышении ресурса рабочего колеса второй ступени КНД без увеличения материалоемкости. 2 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к области авиадвигателестроения, а именно к компрессорам низкого давления (КНД) авиационных турбореактивных двигателей (ТРД).

Известно рабочее колесо осевого компрессора двигателя, которое состоит из лопаток, имеющих профилированное перо и хвостовик, а также дисков, имеющих обод, полотно и ступицу. Каждое рабочее колесо снабжено двумя дисками. Оба диска соединены между собой с помощью кольцевого бурта первого диска и посадочного пояска с отверстиями в полотне второго диска. Хвостовик рабочей лопатки выполнен в виде полки с ребрами жесткости на ее внутренней стороне. Полки имеют на переднем и заднем торцах по потоку клиновидные кольцевые выступы. На ободах дисков рабочих колес выполнены ответные клиновидные кольцевые углубления, которые образуют кольцевой паз типа "ласточкин хвост" для контакта с клиновидными кольцевыми выступами на торцах полок рабочих лопаток (RU 2269678 С1, опубл. 10.02.2006).

Известно рабочее колесо осевого компрессора двигателя, содержащее диск, лопатки с хвостовиком, средство осевой фиксации лопаток в замковом соединении типа «ласточкин хвост». На боковых контактных гранях хвостовиков лопаток выполнены фаски по хорде, меньшей радиуса округления. Средство осевой фиксации лопаток выполнено в виде разрезного кольца и прорезей под разрезное кольцо в упорном выступе диска и хвостовике лопаток. Величина радиуса округления и фаски выбраны из расчета предельной нормативной прочности (RU 2476729 С1, опубл. 27.02.2013).

Известно рабочее колесо осевого компрессора, которое состоит из диска компрессора с установленными на нем рабочими лопатками, включающими перо и хвостовик. Хвостовик лопатки расположен горизонтально, а перо соединено с хвостовиком через промежуточный элемент - ножку. Лопатки на диске установлены под углом к потоку рабочего тела (Н.Н. Сиротин, А.С.Новиков, А.Г. Пайкин, А.Н. Сиротин. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. М.: Наука, 2011, стр. 257-263).

К недостаткам известных решений относятся непроработанность системы выбора совокупности необходимых параметров общей конфигурации диска, влияющих на площадь проходного сечения проточной части и размещение на ободе пазов и лопаток, формирующих аэродинамические процессы взаимодействия рабочего колеса ступени ротора с потоком рабочего тела, вследствие отсутствия конкретизации диапазонов геометрических и аэродинамических параметров пространственной конфигурации диска и угловой ориентации упомянутых пазов в ободе диска, а также сложность получения компромиссного сочетания повышенных значений КПД, запасов газодинамической устойчивости (ГДУ) компрессора и, как следствие, сложность обеспечения оптимальной динамической прочности и повышенного ресурса при минимуме материалоемкости.

Задача, решаемая изобретением, состоит в разработке рабочего колеса второй ступени ротора компрессора низкого давления турбореактивного двигателя (ТРД) с улучшенными конструктивными и аэродинамическими параметрами пространственной конфигурации, обеспечивающими возможность оптимизации профиля и площади проходных сечений проточной части двигателя, достаточных для увеличения расхода сжимаемого рабочего тела - воздуха, повышения КПД второй ступени, подачи воздушного потока в последующие ступени КНД при повышении запасов ГДУ на всех режимах работы двигателя и ресурса без увеличения материалоемкости.

Поставленная задача в части рабочего колеса по первому варианту решается тем, что рабочее колесо ротора, включающего вал барабанно-дисковой конструкции компрессора низкого давления (КНД) турбореактивного двигателя (ТРД), имеющего корпус с проточной частью, согласно изобретению выполнено в качестве рабочего колеса второй ступени вала ротора, содержит диск в виде моноэлемента, включающего снабженную центральным отверстием ступицу, сопряженную с полотном, на которое оперт обод с рабочими лопатками, имеющими каждая перо с осью, боковыми кромками и хвостовик с продольной осью, при этом перо лопатки выполнено выпукло-вогнутым в поперечном сечении лопатки с вогнутой поверхностью в виде корыта и с выпуклой поверхностью, образующей спинку пера, а обод соединен асимметрично с полотном диска с образованием двух разноплечих, конически расширяющихся вдоль оси ротора в направлении потока рабочего тела полок - фронтальной и тыльной, суммарная равноплечая часть ширины которых снабжена пазами, в которые заведены хвостовики лопаток, а выступающие за габарит пазов консольные участки фронтальной и тыльной полок обода развиты с одной стороны до контакта с ответной полкой обода диска предшествующей ступени и с другой стороны - до контакта с проставкой соединения с диском последующей ступени ротора с возможностью передачи крутящего момента, причем продольная ось каждого из упомянутых пазов диска образует с осью рабочего колеса в проекции на условную осевую плоскость, нормальную к оси пера лопатки, угол α0 установки хвостовика лопатки, определенный в диапазоне значений α0=(21÷27)°, а пазы равномерно разнесены по периметру диска и выполнены в поперечном сечении с боковыми гранями, образующими элемент замкового соединения с хвостовиком лопатки, при этом хорда, соединяющая в корневой зоне боковые кромки пера каждой лопатки, образует с осью двигателя в проекции на упомянутую условную плоскость угол установки пера лопатки, нарастающий с радиальным удалением от оси колеса с градиентом закрутки пера Gз.п, принятым в диапазоне

Gз.п =(αпк)/Lср=(159,2÷245,8) [град/м],

где αк - проекция угла закрутки хорды корневого сечения пера лопатки относительно оси ротора в условной осевой плоскости ротора, нормальной к оси пера лопатки; αп - аналогичная проекция угла закрутки относительно оси ротора наиболее удаленной периферийной хорды пера в плоскости, параллельной упомянутой осевой плоскости; Lcp - средняя осевая длина пера лопатки.

При этом перо лопатки может быть выполнено расширяющимся к периферийному торцу с градиентом расширения хорды Gx

Gx=(Lп.x-Lк.х)/Lcp=(5,9÷8,7)·10-2 [м/м],

где Lп.x - длина периферийной хорды, соединяющей боковые кромки пера лопатки в условной плоскости, параллельной осевой плоскости ротора; Lк.х - длина корневой хорды, соединяющей боковые кромки пера лопатки в условной плоскости, параллельной осевой плоскости ротора; Lcp - средняя осевая длина пера лопатки.

Периферийный торец пера лопатки может быть выполнен скошенным с уклоном в направлении потока рабочего тела, квазиконгруэнтным ответной поверхности проточной части двигателя в зоне второй ступени КНД.

Площадь F1 ометания воздушного потока лопатками на входе в рабочее колесо может быть выполнена составляющей (0,51÷0,65) от полной площади F0, условно ограниченной входным контуром воздухозаборника воздушного потока перед коком входного направляющего аппарата (ВНА), в проекции на плоскость, нормальную к оси двигателя, при этом площадь F1 принята превышающей площадь F2 на выходе из колеса у выходной кромки лопаток в (1,04÷1,25) раза.

Поставленная задача по второму варианту решается тем, что рабочее колесо ротора компрессора низкого давления турбореактивного двигателя, имеющего проточную часть, согласно изобретению содержит рабочие лопатки, предназначенные для установки в имеющем диск с пазами рабочем колесе второй ступени КНД, число которых принято от 34 до 62 лопаток, при этом каждая лопатка содержит перо, длина которого по оси принята перекрывающей с возможностью вращения рабочего колеса поперечное сечение проточной части двигателя на участке длины второй ступени КНД, причем перо каждой лопатки выполнено с переменной относительно оси ротора осевой закруткой, нарастающей от корневого к периферийному сечению, нормальным к оси пера, с градиентом закрутки пера Gз.п, определенным в проекции на условную осевую плоскость рабочего колеса в диапазоне

Gз.п=(αпк)/Lср=(159,2÷245,8) [град/м],

где αк - проекция угла закрутки хорды корневого сечения пера лопатки относительно оси ротора в условной осевой плоскости ротора, нормальной к оси лопатки; αп - аналогичная проекция угла закрутки относительно оси ротора наиболее удаленной периферийной хорды пера в плоскости, параллельной упомянутой осевой плоскости; Lcp - средняя осевая длина пера лопатки; причем каждая лопатка снабжена предназначенным для заведения в любой из пазов диска хвостовиком с продольной осью, размещенной под углом к оси ротора, который в проекции на условную осевую плоскость ротора, нормальную к оси пера лопатки, составляет α0=(21÷27)°.

При этом перо каждой лопатки может быть выполнено с боковыми кромками, расходящимися к периферийному торцу с градиентом увеличения хорды Gx

Gx=(Lп.x.-Lк.х)/Lcp=(5,9÷8,7)·10-2 [м/м],

где Lп.x - длина периферийной хорды, соединяющей боковые кромки пера лопатки в условной плоскости, параллельной осевой плоскости ротора; Lк.х - длина корневой хорды, соединяющей боковые кромки пера лопатки в условной плоскости, параллельной осевой плоскости ротора; Lcp - средняя осевая длина пера лопатки.

Перо каждой лопатки может быть выполнено выпукло-вогнутым с вогнутой поверхностью в виде корыта и с выпуклой поверхностью, образующей спинку пера, кроме того, хорда, соединяющая боковые кромки пера в корневой зоне, образует с осью ротора в проекции на упомянутую условную плоскость угол установки пера не менее угла α0 установки хвостовика лопатки.

Каждая лопатка может быть снабжена антивибрационной полкой, расположенной в зоне одной трети длины от периферийного торца пера лопатки, а каждый торец указанной полки выполнен с возможностью взаимного опирания на обращенный к нему аналогичный торец смежной лопатки рабочего колеса.

Перо каждой лопатки может быть выполнено переменной по ширине и высоте пера толщиной, определяемой в поперечном сечении как разность высот спинки и корыта относительно условной хорды, соединяющей боковые кромки пера лопатки.

Технический результат изобретения, достигаемый приведенной совокупностью существенных признаков рабочего колеса второй ступени ротора КНД ТРД, заключается в повышении КПД и расширении диапазона режимов газодинамической устойчивости компрессора на 2,2% при повышении ресурса рабочего колеса в 2 раза.

Сущность изобретения поясняется чертежами, где:

на фиг. 1 изображено рабочее колесо второй ступени вала ротора КНД, продольный разрез;

на фиг. 2 - фрагмент рабочего колеса второй ступени вала ротора КНД, фронтальная проекция;

на фиг. 3 - лопатка рабочего колеса второй ступени, вид сверху;

на фиг. 4 - перо лопатки рабочего колеса второй ступени, поперечный разрез;

на фиг. 5 - фрагмент обода диска рабочего колеса второй ступени, фронтальная проекция.

Рабочее колесо второй ступени ротора, включающего вал барабанно-дисковой конструкции компрессора низкого давления турбореактивного двигателя, имеющего корпус с проточной частью, содержит диск 1 в виде моноэлемента, включающего ступицу 2 с центральным отверстием 3, сопряженную с полотном 4. На полотно 4 оперт обод 5 с рабочими лопатками 6. Лопатки 6 выполнены выпукло-вогнутыми в поперечном сечении и имеют каждая перо 7 с осью, боковыми кромками 8 и хвостовик 9 с продольной осью.

Обод 5 соединен асимметрично с полотном 4 диска 1 с образованием двух разноплечих, конически расширяющихся вдоль оси ротора в направлении потока рабочего тела полок - фронтальной полки 10 и тыльной полки 11. Суммарная равноплечая часть ширины полок 10 и 11 снабжена пазами 12, в которые заведены хвостовики 9 лопаток 6. Выступающие за габарит пазов 12 консольные участки фронтальной и тыльной полок 10 и 11 обода 5 развиты с одной стороны до контакта с ответной полкой обода диска предшествующей ступени и с другой стороны - до контакта с проставкой соединения с диском последующей ступени ротора с возможностью передачи крутящего момента.

Продольная ось каждого из указанных пазов 12 диска 1 образует с осью рабочего колеса в проекции на условную осевую плоскость, нормальную к оси пера 7 лопатки 6, угол α0 установки хвостовика 9 лопатки 6, определенный в диапазоне значений α0=(21÷27)°. Пазы 12 равномерно разнесены по периметру диска 1 и выполнены в поперечном сечении с боковыми гранями, образующими элемент замкового соединения с хвостовиком 9 лопатки 6.

Хорда, соединяющая в корневой зоне 13 боковые кромки 8 пера 7 каждой лопатки 6, образует с осью двигателя в проекции на упомянутую условную плоскость угол установки пера 7 лопатки 6, нарастающий с радиальным удалением от оси рабочего колеса с градиентом закрутки пера 7 Gз.п, принятым в диапазоне

Gз.п=(αпк)/Lср=(159,2÷245,8) [град/м],

где αк - проекция угла закрутки хорды корневого сечения пера лопатки относительно оси ротора в условной осевой плоскости ротора, нормальной к оси пера лопатки; αп - аналогичная проекция угла закрутки относительно оси ротора наиболее удаленной периферийной хорды пера в плоскости, параллельной упомянутой осевой плоскости; Lcp - средняя осевая длина пера лопатки.

Перо 7 лопатки 6 выполнено выпукло-вогнутым - с вогнутой поверхностью в виде корыта 14 и с выпуклой поверхностью. Полотно 4 диска 1 рабочего колеса, усиленное ступицей 2, выполнено с центральным отверстием 3, имеющим диаметр, достаточный для обеспечения свободного пропуска через указанное отверстие в процессе монтажа шлицевой трубы двигателя.

Перо 7 лопатки 6 выполнено расширяющимся к периферийному торцу 16 с градиентом расширения хорды Gx

Gx=(Lп.x-Lк.х)/Lcp=(5,9÷8,7)·10-2 [м/м],

где Lп.x - длина периферийной хорды, соединяющей боковые кромки пера лопатки; Lк.х - длина корневой хорды, соединяющей боковые кромки пера лопатки в условной плоскости, параллельной осевой плоскости ротора; Lcp - средняя осевая длина пера лопатки.

Периферийный торец 16 пера 7 лопатки 6 выполнен скошенным с уклоном в направлении потока рабочего тела, квазиконгруэнтным ответной поверхности проточной части двигателя в зоне второй ступени КНД.

Площадь F1 ометания воздушного потока лопатками 6 на входе в рабочее колесо выполнена составляющей (0,51÷0,65) от полной площади F0, условно ограниченной входным контуром воздухозаборника воздушного потока перед коком входного направляющего аппарата (ВНА), в проекции на плоскость, нормальную к оси двигателя. Площадь F1 принята превышающей площадь F2 на выходе из рабочего колеса у выходной кромки лопаток 6 в (1,044÷1,25) раза.

По второму варианту настоящего изобретения рабочее колесо ротора компрессора низкого давления турбореактивного двигателя, имеющего проточную часть, содержит лопатки 6, предназначенные для установки в имеющем диск 1 с пазами 12 рабочем колесе второй ступени КНД. Каждая лопатка 6 комплекта включает перо 7. Длина пера 7 по оси принята перекрывающей с возможностью вращения рабочего колеса поперечное сечение проточной части двигателя на участке длины второй ступени КНД.

Перо 7 каждой лопатки 6 комплекта выполнено с переменной относительно оси ротора осевой закруткой, нарастающей от корневого к периферийному сечению, нормальным к оси пера 7, с градиентом закрутки пера Gз.п, определенным в проекции на условную осевую плоскость рабочего колеса в диапазоне

Gз.п=(αпк)/Lср=(159,2÷245,8) [град/м],

где αк - проекция угла закрутки хорды корневого сечения пера лопатки относительно оси ротора в условной осевой плоскости ротора, нормальной к оси пера лопатки; αп - аналогичная проекция угла закрутки относительно оси ротора наиболее удаленной периферийной хорды пера в плоскости, параллельной упомянутой осевой плоскости; Lcp - средняя осевая длина пера лопатки.

Каждая лопатка 6 комплекта снабжена предназначенным для заведения в любой из пазов 12 диска 1 хвостовиком 9 с продольной осью, размещенной под углом к оси ротора, который в проекции на условную осевую плоскость ротора, нормальную к оси пера 7 лопатки, составляет α0=(21÷27)°.

Перо 7 каждой лопатки 6 комплекта выполнено с боковыми кромками, расходящимися к периферийному торцу 16 с градиентом увеличения хорды Gx

Gx=(Lп.x-Lк.х)/Lcp=(5,9÷8,7)·10-2 [м/м],

где где Lп.x - длина периферийной хорды, соединяющей боковые кромки 8 пера 7 лопатки; Lк.х - длина корневой хорды, соединяющей боковые кромки 8 пера 7 лопатки в условной плоскости, параллельной осевой плоскости ротора; Lcp - средняя осевая длина пера лопатки.

Количество лопаток 6 рабочего колеса второй ступени ротора принято от 34 до 62 лопаток.

Перо 7 каждой лопатки 6 комплекта выполнено выпукло-вогнутым с вогнутой поверхностью в виде корыта 14 и с выпуклой поверхностью, образующей спинку 15 пера 7. Хорда, соединяющая боковые кромки 8 пера 7 в корневой зоне 13, образует с осью ротора в проекции на упомянутую условную плоскость угол установки пера 7 не менее угла α0 установки хвостовика 9 лопатки.

Каждая лопатка 6 комплекта снабжена антивибрационной полкой 17, расположенной в зоне одной трети длины от периферийного торца 16 пера 7 лопатки 6. Каждый торец 18 указанной полки 17 выполнен с возможностью взаимного опирания на обращенный к нему аналогичный торец смежной лопатки рабочего колеса.

Перо 7 каждой лопатки 6 комплекта выполнено переменной по ширине и высоте пера 7 толщиной, определяемой в поперечном сечении как разность высот спинки 15 и корыта 14 относительно условной хорды 19, соединяющей боковые кромки 8 пера 7 лопатки 6.

Рабочее колесо второй ступени КНД ТРД состоит из диска 1 и установленных на нем рабочих лопаток 6. Диск второй ступени изготавливают объемной штамповкой из поковки в виде моноэлемента, включающего выполненные за одно целое массивную ступицу 2, полотно 4 и обод 5. Профили полотна 4 и ступицы 2 формируют обтачиванием заготовки с последующей полировкой.

Изготовленный диск имеет следующие геометрические параметры: габаритная ширина ступицы - 30 мм; диаметр центрального отверстия ступицы - 157 мм; средняя толщина полотна - 6 мм; ширина обода - 50 мм; минимальный и максимальный диаметры внешней поверхности обода диска - 464 мм и 491 мм соответственно; угол наклона внешней поверхности обода диска - 15°.

Лопатку рабочего колеса второй ступени ротора КНД ТРД поэтапно изготавливают из прутка авиационного сплава. На первом этапе отрезают фрагмент прутка требуемой длины, из которого электровысадкой с последующей механической обработкой выполняют заготовку лопатки с локальными утолщениями на участках расположения хвостовика 2 и антивибрационной полки 17. На следующем этапе заготовку подвергают общему нагреву в электропечи до состояния термопластичности и выполняют горячую объемную штамповку, используя штамп, состоящий из двух ответно профилированных полуматриц. Рабочая поверхность одной из полуматриц штампа включает участок, форма которого выполнена ответной пространственной поверхности спинки 15 пера 7 лопатки. Рабочая поверхность другой полуматрицы штампа включает участок, форма которого выполнена ответной пространственной поверхности корыта 14 пера 7 лопатки. После чего лопатку подвергают механической обработке, включая обдирку облоя фрезерованием, протягивание хвостовика 9.

Доводку обтекаемых поверхностей профилей пера 7 и антивибрационной полки 17 производят фрезерованием с последующей полировкой. Контактные торцы 18 антивибрационной полки 17 упрочняют, нанося на них высокопрочный слой.

Изготовленная таким образом лопатка состоит из объединенных в одно целое пера 7 с хвостовиком 8 и антивибрационной полкой 17, выполненной как сегмент сборного кольца лопаточного венца рабочего колеса второй ступени ротора КНД ТРД.

Профиль пера 7 лопатки 6 имеет следующие геометрические параметры:

- в корневом сечении профиль пера лопатки выполнен с максимальной толщиной профиля Сmax=4,9 мм; длина хорды пера - 50,8 мм; угол αк установки профиля пера 1 к оси вращения ротора в проекции на осевую плоскость последнего, нормальную к оси пера лопатки, составляет 25,5°;

- в периферийном сечении профиль пера лопатки выполнен с максимальной толщиной профиля Сmax=2,1 мм; длина хорды пера принята 63,8 мм; угол αп установки профиля пера к оси вращения ротора в проекции на осевую плоскость последнего, нормальную к оси пера лопатки, составляет 59°;

- средняя осевая длина Lcp профиля пера составляет 178,7 мм.

На внешней стороне обода 5 диска 1 выполняют протягиванием замковые пазы 12 для крепления лопаток путем установки хвостовика 9 в пазу 12 обода 5 диска. В рабочем колесе второй ступени устанавливают 45 лопаток. Пазы 12 выполнены со следующими геометрическими параметрами: угол наклона контактных поверхностей с хвостовиком лопатки к донной плоскости паза составляет 70°; ширина основания паза - 18 мм.

Лопатки удерживают от перемещения в радиальном направлении от действия центробежных сил при помощи контактных выступов замка типа «ласточкин хвост». Каждую лопатку удерживают в диске от перемещения в направлении протяжки паза с помощью штифта. Лопатки сопрягают по ответным торцам смежных антивибрационных полок.

Антивибрационная полка 17 лопатки выполнена с максимальной толщиной 4,5 мм и размещена на среднем радиусе от оси вращения ротора, принятым 366,6 мм, с контактными поверхностями, выполненными под углом 29° к оси вращения ротора в проекции на осевую плоскость последнего, нормальную к оси пера лопатки.

Рабочее колесо имеет следующие геометрические параметры: входной и выходной диаметры внутренней поверхности рабочего колеса - 464 мм и 491 мм; аналогично периферийной поверхности рабочего колеса - 842 мм и 830 мм; максимальная ширина второй ступени ротора - 50 мм.

В процессе работы ТРД диск 1 рабочего колеса второй ступени приводится во вращение путем передачи крутящего момента от турбины низкого давления (ТНД) через силовую барабанно-дисковую оболочку вала ротора КНД с включением в работу лопаток 6 рабочего колеса. В результате чего происходит нагнетание воздушного потока в КНД. На вогнутой поверхности в виде корыта 14 пера 7 каждой лопатки 6 создается зона повышенного давления, а на выпуклой поверхности, образующей спинку 15 пера 7, создается при этом зона пониженного давления, усиливающая образование направленного воздушного потока. Вращающиеся лопатки 6 рабочего колеса ротора передают энергию воздушному потоку, направляя сжимаемый поток на лопатки статора второй ступени, и после выравнивания в последнем поток поступает в последующие ступени КНД.

В процессе реализации разработанной в изобретении конструкции рабочего колеса второй ступени ротора КНД технический результат достигается только при установке лопатки в рабочем колесе с ориентацией профиля пера 7 в корневом сечении лопатки под углом αк к оси ротора в проекции на условную осевую плоскость ротора, нормальную к оси пера 7, в диапазоне угловых значений αк=(21÷27)° в сочетании с одновременным согласованным удовлетворением условий соответствия найденных в изобретении геометрических и аэродинамических параметров пространственной конфигурации пера 7 и градиентов их изменения по высоте лопатки 6. В качестве оси пера 7 лопатки принята единственная прямая продольная ось профиля пера, совпадающая с осью закрутки профиля. В качестве оси ротора принята ось вращения ротора. При назначении угла αк в корневом сечении лопатки, принятом из интервала значений αк=(21÷27)°, найденного в изобретении с учетом углов установки профиля пера последующих ступеней ротора компрессора, достигают наиболее высоких значений КПД, запасов ГДУ компрессора и ресурса рабочего колеса.

При уменьшении угла αк<21° существенно ограничивается диапазон газодинамической устойчивости работы компрессора, падает КПД ступени и возрастает риск аварийно опасного срыва воздушного потока с выпуклой спинки 15 лопатки с результирующей потерей ГДУ. С увеличением угла αк>27° возрастает риск срыва воздушного потока с корыта 14 пера 7 лопатки и снижается КПД. Кроме того, при увеличении угла αк>27° неоправданно возрастают напряжения в лопатке на всех режимах работы КНД, что приводит к снижению ресурса, увеличению материалоемкости рабочего колеса и, в конечном счете, к утяжелению компрессора и снижению эксплуатационной экономичности двигателя.

Аналогичные процессы имеют место с получением положительного результата при соблюдении и отрицательного при выходе за пределы найденных в группе изобретений границ диапазона градиентов Gз.п по длине Lcp пера 7 лопатки. При выполнении трехмерного профиля пера лопатки со значениями градиента Gз.п<159,2 [град/м] существенно ограничивается диапазон ГДУ работы КНД, падает КПД ступени и возрастает риск аварийно опасного срыва потока воздушного потока с выпуклой спинки 15 лопатки 6 с результирующей потерей ГДУ. Увеличение отношения разности углов установки хорды пера 7 по длине лопатки до значений градиента Gз.п…, превышающих верхний принятый по изобретению предел Gз.п>245,8 [град/м], приводит к недопустимому уменьшению угла раскрытия периферийного участка пера 7 лопатки, что, в свою очередь, приводит к снижению КПД, негативному уменьшению диапазона ГДУ компрессора и недопустимому рассогласованию работы второй ступени ротора с последующими ступенями компрессора низкого давления.

Градиент Gx увеличения хорды 19 пера 7 лопатки 6 по средней длине Lcp пера 7 лопатки характеризует парусность пера, образованную в результате углового расхождения входной и выходной боковых кромок 8 пера 1 от втулки до периферийного торца 16. Парусность пера 7 по высоте лопатки спрофилирована по упомянутому градиенту Gx углового расширения хорды 19 пера с заявленным диапазоном Gx=(5,9÷8,7)·10-2 [м/м], при котором обеспечивается получение технического результата изобретения. Уменьшение отношения разности длин периферийной и корневой хорд пера 7 к средней длине Lcp пера (Gx<5,9·10-2) приводит к образованию недостаточной густоты заполнения периферийного кольцевого участка площади поперечного сечения проточной части лопаточного венца периферийными участками пера лопаток в проекции на условную плоскость, нормальную к оси ротора. Как следствие, возникает недопустимое снижение запаса ГДУ, сужение диапазона газодинамической устойчивости работы компрессора и существенное снижение КПД за счет возможного срыва воздушного потока со спинки 15 лопатки. Увеличение (Gx>8,7·10-2) приводит к неоправданному увеличению потерь от трения потока о профиль пера лопатки и к снижению КПД компрессора.

Технический результат настоящего изобретения достигают совокупностью разработанных в изобретении конструктивных решений и геометрических параметров основных элементов диска рабочего колеса второй ступени ротора КНД, а именно радиальных параметров диска, геометрической конфигурации обода 5 с разноплечими кольцевыми полками 10 и 11, принятого сочетания тонкого полотна 4 и осевой ширины ступицы 2, компенсирующей ослабление полотна 4 диска центральным отверстием 3, что приводит к снижению материалоемкости и повышению максимальных допустимых усилий в элементах диска. Диаметр отверстия 3 в ступице 2 принят достаточным для свободного пропуска шлицевой трубы при монтаже и ремонтных операциях сборки компрессора. Превышение радиуса отверстия в ступице 2 не менее чем на 25% относительно радиуса шлицевой трубы необходимо для заведения в полость компрессора монтажного и ремонтно-технологического инструмента.

Таким образом, за счет улучшения конструктивных и аэродинамических параметров рабочего колеса второй ступени достигают повышение КПД и увеличение запаса ГДУ на всех режимах работы компрессора при повышении ресурса рабочего колеса без увеличения материалоемкости.


РАБОЧЕЕ КОЛЕСО РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ)
РАБОЧЕЕ КОЛЕСО РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ)
РАБОЧЕЕ КОЛЕСО РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ)
РАБОЧЕЕ КОЛЕСО РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ)
РАБОЧЕЕ КОЛЕСО РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 241-249 of 249 items.
20.01.2018
№218.016.15df

Коробка двигательных агрегатов (кда) турбореактивного двигателя, узел кда турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку. Корпус КДА размещен на промежуточном корпусе двигателя. На корпусе КДА смонтированы центробежный топливоподкачивающий насос, суфлер центробежный и насос плунжерный. Со...
Тип: Изобретение
Номер охранного документа: 0002635227
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.15ec

Коробка двигательных агрегатов (кда) турбореактивного двигателя (трд), корпус кда, главная коническая передача (гкп) кда, ведущее колесо гкп кда, ведомое колесо гкп кда, входной вал кда

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку, выполненных с уступообразным плоским дном и цилиндрическими стенками переменной кривизны. Корпус КДА седлообразно размещен на промежуточном корпусе двигателя. Корпус...
Тип: Изобретение
Номер охранного документа: 0002635125
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1642

Устройство для запуска газотурбинного двигателя

Изобретение относится к области авиационной техники, в частности к способам запуска авиационных турбореактивных двигателей. Устройство для запуска газотурбинного двигателя содержит ротор, образованный компрессором, турбиной и валом, соединяющим их, камеру сгорания, вспомогательную силовую...
Тип: Изобретение
Номер охранного документа: 0002635164
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1b72

Механизм передачи крутящего момента агрегатам турбореактивного двигателя (трд), центральная коническая передача (цкп) трд, главная коническая шестерённая пара цкп трд, корпус цкп трд, ведущее зубчатое коническое колесо цкп, ведомое зубчатое коническое колесо цкп, узел цкп трд

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам...
Тип: Изобретение
Номер охранного документа: 0002636626
Дата охранного документа: 24.11.2017
20.01.2018
№218.016.1e3e

Маслосистема газотурбинного двигателя маневренного самолета

Изобретение относится к области авиационного двигателестроения и касается масляной системы газотурбинного двигателя маневренного самолета. Перепускной клапан установлен за топливомасляным теплообменником, а выход из перепускного клапана сообщен трубопроводом с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002640900
Дата охранного документа: 12.01.2018
17.02.2018
№218.016.2a88

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы РВД и РНД модуля газогенератора и вал ротора...
Тип: Изобретение
Номер охранного документа: 0002642955
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2a8e

Рабочее колесо ротора компрессора высокого давления газотурбинного двигателя

Изобретение относится к области турбомашиностроения, в частности, может быть использовано в конструкции рабочих колес осевых компрессоров газотурбинных двигателей. Рабочее колесо ротора компрессора высокого давления газотурбинного двигателя содержит диск с кольцевым пазом и лопатки. Между...
Тип: Изобретение
Номер охранного документа: 0002642976
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2ead

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов...
Тип: Изобретение
Номер охранного документа: 0002644497
Дата охранного документа: 12.02.2018
10.04.2019
№219.016.ff53

Способ исследования динамических свойств вращающегося ротора

Изобретение относится к области турбомашиностроения, а именно к способам снижения уровня вибраций турбомашин, и может быть использовано в авиационных газотурбинных двигателях, роторы которых оборудованы упругими опорами. Способ исследования динамических свойств вращающегося ротора осуществляют...
Тип: Изобретение
Номер охранного документа: 0002273836
Дата охранного документа: 10.04.2006
Showing 251-260 of 337 items.
09.06.2018
№218.016.5c96

Спрямляющий аппарат компрессора газотурбинного двигателя

Изобретение относится к области двигателестроения, в частности к спрямляющим аппаратам компрессора газотурбинного двигателя. В спрямляющем аппарате компрессора газотурбинного двигателя, содержащем наружное кольцо, выполненное разборным и зафиксированное в составном корпусе, внутреннее кольцо и...
Тип: Изобретение
Номер охранного документа: 0002656168
Дата охранного документа: 31.05.2018
06.07.2018
№218.016.6d09

Двухсекционный центробежно-шестеренный насос

Изобретение относится к авиадвигателестроению и касается устройства насоса, используемого в маслосистемах авиационных газотурбинных двигателей. Двухсекционный центробежно-шестеренный насос содержит корпус, выполненный в виде двух полуразъемов, образующих замкнутую полость. Внутри полости с...
Тип: Изобретение
Номер охранного документа: 0002660228
Дата охранного документа: 05.07.2018
09.08.2018
№218.016.7985

Контактное радиально-торцевое графитовое уплотнение ротора турбомашины

Изобретение относится к области машиностроения и может быть использовано в конструкциях турбомашин для уплотнения кольцевых щелей между статором и ротором. Контактное радиально-торцевое графитовое уплотнение ротора турбомашины содержит последовательно установленные в кольцевой полости набор...
Тип: Изобретение
Номер охранного документа: 0002663368
Дата охранного документа: 03.08.2018
13.10.2018
№218.016.9130

Блок подпятников откачивающего насоса маслоагрегата газотурбинного двигателя (гтд) (варианты), подпятник ведущего колеса откачивающего насоса маслоагрегата, подпятник ведомого колеса откачивающего насоса маслоагрегата

Группа изобретений относится к области авиадвигателестроения. Первый блок подпятников откачивающего насоса маслоагрегата включает два фронтальных подпятника, которые установлены в нижнем корпусе маслоагрегата. Второй блок подпятников включает два тыльных подпятника, которые установлены в...
Тип: Изобретение
Номер охранного документа: 0002669453
Дата охранного документа: 11.10.2018
13.10.2018
№218.016.9192

Способ работы откачивающего насоса маслоагрегата газотурбинного двигателя (гтд) и откачивающий насос маслоагрегата гтд, работающий этим способом (варианты), ведущее колесо откачивающего насоса маслоагрегата гтд, ведомое колесо откачивающего насоса маслоагрегата гтд

Группа изобретений относится к области авиадвигателестроения. Смонтированный в корпусе маслоагрегата откачивающий насос устанавливают на крышке КДА в зоне стока отработанного масла. Откачивающий насос содержит шестеренный рабочий орган, который включает установленные на параллельных валах два...
Тип: Изобретение
Номер охранного документа: 0002669531
Дата охранного документа: 11.10.2018
15.10.2018
№218.016.9208

Способ работы нагнетающего насоса маслоагрегата газотурбинного двигателя (гтд) и нагнетающий насос маслоагрегата гтд, работающий этим способом, шестерённое колесо нагнетающего насоса маслоагрегата гтд, блок подпятников нагнетающего насоса маслоагрегата гтд

Группа изобретений относится к области авиадвигателестроения. Нагнетающий насос содержит шестеренный рабочий орган, который включает установленные на параллельных валах два колеса, наделяя каждое с торцов подпятниками. Ведущий вал сообщен по крутящему моменту через рессору редуктора привода с...
Тип: Изобретение
Номер охранного документа: 0002669634
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.9210

Способ работы маслоагрегата газотурбинного двигателя (гтд) и маслоагрегат гтд, работающий этим способом (варианты)

Группа изобретений относится к области авиадвигателестроения. Маслоагрегат включает откачивающий и нагнетающий насосы с общими валами. На валах устанавливают две пары шестеренных колес насосов и наделяют каждое с торцов подпятниками, снабженными входными и выходными каналами. Подпятники...
Тип: Изобретение
Номер охранного документа: 0002669662
Дата охранного документа: 12.10.2018
07.12.2018
№218.016.a461

Турбореактивный двигатель и способ его работы

Изобретения относятся к турбореактивному двигателю и способу его работы. Одновальный двухконтурный турбореактивный двигатель содержит компрессор, турбину, основную непрерывно-детонационную камеру сгорания с каналами подачи топлива, топливными форсунками и инициатором детонации, газодинамический...
Тип: Изобретение
Номер охранного документа: 0002674172
Дата охранного документа: 05.12.2018
07.12.2018
№218.016.a4ac

Охлаждаемая турбина двухконтурного газотурбинного двигателя

Охлаждаемая турбина двухконтурного газотурбинного двигателя содержит раздаточный коллектор с узлом для соединения с источником высокотемпературного воздуха, коллектор с узлом для соединения с источником низкотемпературного воздуха, междисковую полость, сообщенную с источником...
Тип: Изобретение
Номер охранного документа: 0002674229
Дата охранного документа: 05.12.2018
26.12.2018
№218.016.aaae

Газоперекачивающий агрегат (гпа), способ охлаждения газотурбинного двигателя (гтд) гпа и система охлаждения гтд гпа, работающая этим способом, направляющий аппарат системы охлаждения гтд гпа

Группа изобретений относится к нефтегазовой области. В способе охлаждения ГТД ГПА двигатель снабжают защитным кожухом, к которому подводят нагнетающий и отводящий воздуховоды. Воздух забирают из атмосферы через воздухозаборник и подают снизу в кожух. Через распределительный короб до 20%...
Тип: Изобретение
Номер охранного документа: 0002675729
Дата охранного документа: 24.12.2018
+ добавить свой РИД