×
10.10.2015
216.013.820e

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЦИТОКИНИНОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются сельскохозяйственные препараты группы цитокининов, в качестве оболочки - альгинат натрия, который осаждают из суспензии в изопропаноле путем добавления четыреххлористого углерода в качестве нерастворителя, с последующей сушкой при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе). 3 пр.
Основные результаты: Способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются сельскохозяйственные препараты группы цитокининов, в качестве оболочки - альгинат натрия, который осаждают из суспензии в изопропаноле путем добавления четыреххлористого углерода в качестве нерастворителя, с последующей сушкой при комнатной температуре.

Изобретение относится к области нанотехнологии, в частности к растениеводству.

Ранее были известны способы получения микрокапсул. Так, в пат. 2092155, МПК А61K 047/02, А61K 009/16, опубликован 10.10.1997, Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055, МПК А61K 9/52, А61К 9/16, А61K 9/10, Российская Федерация, опубликован 10.11.1997 предложен способ получения твердых непористых микросфер, включающий расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°С, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997 предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010, МПК А61K 9/52, А61K 9/50, А61K 9/22, А61K 9/20, А61K 31/19, Российская Федерация, опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2139046, МПК А61K 9/50, А61K 49/00, А61K 51/00. Российская Федерация, опубликован 10.10.1999 предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и, возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.

Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.

В пат. 2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000 предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащие твердый агрохимический материал 0,1-55 мас.%, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас.% неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности». Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135 описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°С), термическое разложение его в пиролизной печи (650°С при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°С, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В статье «Разработка микро- и наносистем доставки лекарственных средств». Российский химический журнал, 2008, т. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.

Недостатком предложенного способа получения микрокапсул является сложность процесса, что, в свою очередь, приводит к уменьшению выхода конечных капсул.

В пат. 2173140, МПК А61K 009/50, А61K 009/127, Российская Федерация, опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662 МПК А61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

В пат. WO/2009/148058 JP, МПК B01J 13/04, A23L 1/00, А61K 35/20, А61K 45/00, А61K 47/08), А61K 47/26, А61K 47/32, А61K 47/34, А61K 47/36, А61K 9/50, B01J 2/04, B01J 2/06, опубликован 10.12.2009 описан процесс получения микрокапсул, применимый для промышленного производства, в которых высокое содержание гидрофильного биологически активного вещества, заключенного в оболочку. Предлагаемые микрокапсулы могут быть использованы в пищевой, фармацевтической и в других областях промышленности. В процессе производства применяются диспергирующие композиции, состоящие из гидрофильных биологически активных веществ и ПАВ в твердом жире. Температура не ниже, чем температура плавления твердого жира.

Недостатками данного способа являются сложность и длительность процесса получения микрокапсул.

В пат. WO/2010/076360, ES МПК B01J 13/00; А61K 9/14; А61K 9/10; А61K 9/12, опубликован 08.07.2010 предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологией.

Недостатком предложенного способа является сложность процесса, а отсюда низкий выход конечного продукта.

В пат. WO/2010/014011 NL, МПК А61K 9/50; B01J 13/02; A61K 9/50; B01J 13/02, опубликован 4.02.2010 описан способ получения микрокапсул диаметром от 0,1 мкм до 25 мкм, включающих: ядро частицы диаметром 90 нм до 23 мкм, содержащее не менее 3% активного компонента по весу частицы; покрытие, которое полностью охватывает основные частицы, содержащие не менее 20% от веса гидрофобного полимера, выбранного из целлюлозных эфиров, сложных эфиров целлюлозы, шеллака, клейковины, полилактида, гидрофобных производных крахмала, поливинилацетата, полимеров или сополимеров на основе эфира акриловой кислоты и/или метакриловой кислоты, эфир и их комбинации. Активный компонент не высвобождается при введении в водосодержащие продукты питания, напитки, пищевые или фармацевтические композиции. После приема внутрь, однако, активный компонент выделяется быстро.

Недостатками данного способа являются сложность, длительность процесса, а также применение ультразвука и специального оборудования, использование в качестве оболочек микрокапсул сополимеров акриловой или метакриловой кислоты, которые способны вызывать раковые опухоли.

В пат. WO/2010/119041 ЕР МПК, A23L 1/00, опубликован 21.10.2010 предложен способ получения микрошариков, содержащих активный компонент инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения и последующее отверждение микрошариков в растворе анионный полисахарид с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является тепло-денатурирующим, хотя и другие методы денатурации, также применимы, например, денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°С до 80°С, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, приостановление процесса фильтрации осуществляется через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронные размеры пор, например от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG,. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.

Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), пролучение микрокапсул посредством денатурации белка, сложность выделения полученных данным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.

В пат. WO/2011/003805, ЕР МПК B01J 13/18; B65D 83/14; C08G 18/00, опубликован 13.01.2011 описан способ получения микрокапсул, которые подходят для использования в композициях, образующих герметики, пены, покрытия или клеи.

Недостатками предложенного способа являются применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.

В пат. 20110223314, МПК B05D 7/00 20060101; B05D 007/00, В05С 3/02 20060101; В05С 003/02; В05С 11/00 20060101; В05С 011/00; B05D 1/18 20060101; B05D 001/18; B05D 3/02 20060101; B05D 003/02; B05D 3/06 20060101; B05D 003/06, от 10.03.2011, US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатками данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.

В пат. WO/2011/150138 US МПК C11D 3/37; B01J 13/08; C11D 17/00 опубликован 01.12.2011 описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.

Недостатками данного способа являются сложность исполнения и длительность процесса.

В пат. WO/2011/127030 US, МПК А61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, опубликован 13.10.2011 предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.

Недостатками предложенных способов являются сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).

В пат .WO/2011/104526, GB МПК B01J 13/00; B01J 13/14; С09В 67/00; C09D 11/02, опубликован 01.09.2011 предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых, изделий, по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.

Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика не применима.

В пат. WO/2011/056935 US МПК C11D 17/00; А61К 8/11; B01J 13/02; C11D 3/50 опубликован 12.05.2011 описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонатов, полиэфиров, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемыми для материала сердечника и материалов в окружающей среде, в которой инкапсулируются, агент выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воска, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

В пат. WO/2011/160733 ЕР, МПК B01J 13/16, опубликован 29.12.2011 описан способ получения микрокапсул, которые содержат оболочки и ядра не растворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В), не растворимых в воде, собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°С до формирования микрокапсул.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

В пат. WO/2011/161229, ЕР МПК А61K 8/11; B01J 13/14; B01J 13/16; C11D 3/50, опубликован 29.12.2011 описан способ получения микрокапсул, содержащих оболочку из полимочевины и духов в масле, где оболочка получается в результате реакции двух структурно различных диизоцианатов в виде эмульсии. В процессе получения микрокапсул используются защитные коллоиды. Во время реакции изоцианатов и аминов, должен присутствовать защитный коллоид. Это предпочтительно поливинилпирролидон (ПВП). Защитный коллоид - полимерная система, которая в суспензии или дисперсии предотвращает слипание (агломерация, коагуляции, флокуляции). При данном способе может быть использован для духов и всевозможных потребительских товаров. Исчерпывающий перечень потребительских товаров не может быть перечислен. Наглядные примеры потребительских товаров включают в себя все приложения, включая жидкие моющие средства, и порошковые моющие средства; все личной для гигиены и ухода за волосами приложений, включая шампуни, кондиционеры, кремы для расчесывания, оставьте на кондиционеры, стайлинг- крем, мыло, кремы для тела и т.п.; дезодоранты и антиперспиранты.

Недостатками данного способа получения микрокапсул являются сложность и длительность процесса, использование в качестве оболочки микрокапсул диизоцианатов, которые получают в результате реакции двух изоцианатов.

В пат. WO/2012/007438 ЕР, МПК А61K 8/11; A61Q 13/00; B01J 13/16; B01J 13/18, опубликован 19.01.2012 описан способ получения частиц со средним диаметром менее 50 микрон, состоящих по крайней мере из одной оболочки, методом ступенчатой полимеризации с участием мономера изоцианата. По крайней мере одна оболочка образована цепной реакцией полимеризации роста (желательно свободно-радикальной полимеризации), которая не связана с изоцианатом. Изобретение также относится к способу получения таких частиц, в которых оболочка формируется до цепного роста полимеризации при температуре, при которой цепная реакция роста подавляется. Изобретение также обеспечивает полностью сформулированные продукты, предпочтительно жидкости и гели, которые содержат указанные частицы.

Недостатками предложенного способа являются сложность и длительность процесса, получение микрокапсул химическим методом ступенчатой полимеризации. Получаемые данным способом частицы имеют достаточно большой размер - 50 мкм.

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения микрокапсул водораствормых сельскохозяйственных препаратов группы цитокининов в альгинате натрия, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул 6-БАП (6-аминобензилпурина), характеризующийся тем, что в качестве оболочки микрокапсул используется альгинат натрия, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - четыреххлористого углерода.

Результатом предлагаемого метода является получение нанокапсул 6-БАП в альгинате натрия в течение 15 минут. Выход нанокапсул составляет более 90%.

ПРИМЕР 1 Получение нанокапсул 6-БАП в соотношении ядро:облолочка 1:3

К 1,5 г альгината натрия в изопропаноле добавляют 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,5 г порошка 6-БАП по порциям добавляют в суспензию альгината натрия в изопропаноле. После образования самостоятельной твердой фазы очень медленно по каплям добавляют 5 мл четыреххлористого углерода. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают четыреххлористым углеродом и сушат.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул 6-БАП в соотношении ядро:облолочка 1:1

К 0,5 г альгината натрия в изопропаноле добавляют 0,01 г препарата Е472 с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,5 г порошка 6-БАП по порциям добавляют в суспензию альгината натрия в изопропаноле. После образования самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл четыреххлористого углерода. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают четыреххлористым углеродом и сушат.

Получено 1 г белого порошка. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул 6-БАП в соотношении ядро:облолочка 5:1

К 0,5 г альгината натрия в изопропаноле добавляют 0,01 г препарата Е472 с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 2,5 г порошка 6-БАП по порциям добавляют в суспензию альгината натрия в изопропаноле. После образования самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл четыреххлористого углерода. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают четыреххлористым углеродом и сушат.

Получено 3 г белого порошка. Выход составил 100%.

Источник поступления информации: Роспатент

Showing 191-200 of 673 items.
10.10.2015
№216.013.820d

Способ получения нанокапсул антибиотиков в конжаковой камеди

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются антибиотики, в качестве оболочки - конжаковая камедь, которую осаждают из суспензии...
Тип: Изобретение
Номер охранного документа: 0002564890
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.820f

Способ получения нанокапсул 2-цис-4-транс-абсцизовой кислоты

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используется абсцизовая кислота, в качестве оболочки - каррагинан, который осаждают из суспензии...
Тип: Изобретение
Номер охранного документа: 0002564892
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.8210

Способ получения нанокапсул гиббереллиновой кислоты

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядра нанокапсул используется гиббереллиновая кислота, в качестве оболочки - каррагинан, который осаждают из...
Тип: Изобретение
Номер охранного документа: 0002564893
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.8213

Способ инкапсуляции танина

Изобретение относится к области инкапсуляции, в частности к способу получения микрокапсул танина в оболочке из альгината натрия. Согласно способу по изобретению танин суспензируют в бензоле и диспергируют полученную смесь в суспензию альгината натрия в бутаноле в присутствии препарата Е472с при...
Тип: Изобретение
Номер охранного документа: 0002564896
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.8215

Способ получения нанокапсул антибиотиков

Изобретение относится к способу получения нанокапсул антибиотиков. В качестве оболочки нанокапсул используется ксантановая камедь, в качестве ядра - антибиотик. Массовое соотношение ядро:оболочка составляет 1:3. Согласно способу по изобретению порошок антибиотика добавляют в суспензию...
Тип: Изобретение
Номер охранного документа: 0002564898
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.83fd

Способ получения нанокапсул витаминов в ксантановой камеди

Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул витамина А, С, D, Е или Q, заключающийся в том, что витамин А, С, D, Е или Q добавляют в суспензию ксантановой камеди в бутаноле, при перемешивании 1300 об/с, после чего приливают...
Тип: Изобретение
Номер охранного документа: 0002565392
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.83fe

Способ получения микрокапсул розмарина

Изобретение относится в области нанотехнологии, в частности к инкапсуляции. Способ получения микрокапсул розмарина, при этом суспензию розмарина в изопропаноле диспергируют в суспензию каррагинана в изопропаноле, затем перемешивают при 1300 об/с, после приливают ацетонитрил и воду; после чего...
Тип: Изобретение
Номер охранного документа: 0002565393
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8401

Способ получения нанокапсул аспирина в альгинате натрия

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядра нанокапсул используется аспирин, в качестве оболочки - альгинат натрия, который осаждают из...
Тип: Изобретение
Номер охранного документа: 0002565396
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.840d

Способ получения микрокапсул аминокислот в альгинате натрия

Способ получения микрокапсул аминокислот в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Согласно способу по изобретению аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию альгината натрия в бутаноле в...
Тип: Изобретение
Номер охранного документа: 0002565408
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8923

Способ получения микрокапсул антиоксидантов, обладающих супрамолекулярными свойствами

Изобретение относится к фармацевтической промышленности, а именно к способу получения микрокапсул антиоксидантов: витаминов С, Е, элеутерококка или экстракта женьшеня. Способ получения микрокапсул антиоксидантов: витаминов С, Е, элеутерококка или экстракта женьшеня, в котором в качестве...
Тип: Изобретение
Номер охранного документа: 0002566710
Дата охранного документа: 27.10.2015
Showing 191-200 of 687 items.
27.01.2016
№216.014.bc69

Способ получения нанокапсул кверцетина или дигидрокверцетина в геллановой камеди

Изобретение относится к способу получения нанокапсул кверцетина или дигидрокверцетина в геллановой камеди. Указанный способ характеризуется тем, что кверцетин или дигидрокверцетин добавляют в суспензию геллановой камеди в гексане в присутствии сложного эфира глицерина с одной-двумя молекулами...
Тип: Изобретение
Номер охранного документа: 0002573978
Дата охранного документа: 27.01.2016
27.01.2016
№216.014.bc83

Способ получения нанокапсул ауксинов

Изобретение относится к способу получения нанокапсул ауксинов. Указанный способ характеризуется тем, что ауксин добавляют в суспензию каррагинана в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при...
Тип: Изобретение
Номер охранного документа: 0002573983
Дата охранного документа: 27.01.2016
27.01.2016
№216.014.bd04

Способ получения нанокапсул антибиотиков в агар-агаре

Изобретение относится к способу получения нанокапсул антибиотиков в агар-агаре. Указанный способ характеризуется тем, что в суспензию агар-агара в гексане и сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты добавляют порошок...
Тип: Изобретение
Номер охранного документа: 0002573979
Дата охранного документа: 27.01.2016
27.01.2016
№216.014.bd2b

Способ получения нанокапсул гиббереллиновой кислоты

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул гиббереллиновой кислоты. Согласно способу по изобретению гиббереллиновую кислоту добавляют в суспензию каррагинана в бутаноле в присутствии препарата Е472с при перемешивании 1300 об/с. Затем добавляют бутилхлорид....
Тип: Изобретение
Номер охранного документа: 0002573982
Дата охранного документа: 27.01.2016
27.01.2016
№216.014.bd8e

Способ получения нанокапсул ферроцена

Изобретение относится к способу инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используется ферроцен, в качестве оболочки - каррагенан, при этом ферроцен медленно добавляют в суспензию каррагенана в бутаноле в присутствии...
Тип: Изобретение
Номер охранного документа: 0002573980
Дата охранного документа: 27.01.2016
27.02.2016
№216.014.bf00

Способ получения нанокапсул антибиотиков в агар-агаре

Изобретение относится в области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование...
Тип: Изобретение
Номер охранного документа: 0002576236
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c10a

Способ получения нанокапсул антисептика-стимулятора дорогова (асд) 2 фракция

Изобретение относится в области нанотехнологии, в частности к способу получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в оболочке натрий карбоксиметилцеллюлозе, характеризующемуся тем, что АСД 2 фракция диспергируют в суспензию натрий карбоксиметилцеллюлозы в бензоле в...
Тип: Изобретение
Номер охранного документа: 0002576239
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c1d4

Способ получения нанокапсул кверцетина и дигидрокверцетина в хитозане

Изобретение относится в области нанотехнологии. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование кверцетина и дигидрокверцетина, оболочки нанокапсул...
Тип: Изобретение
Номер охранного документа: 0002574897
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c428

Способ получения нанокапсул бетулина

Изобретение относится в области нанотехнологии и пищевой промышленности. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование бетулина и оболочки...
Тип: Изобретение
Номер охранного документа: 0002574899
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c5dc

Способ получения нанокапсул флавоноидов шиповника

Изобретение относится к способу получения нанокапсул флавоноидов шиповника. Указанный способ характеризуется тем, что флавоноиды шиповника диспергируют в суспензию альгината натрия в бензоле в присутствии препарата Е472с при перемешивании, затем приливают хлороформ, полученный осадок...
Тип: Изобретение
Номер охранного документа: 0002578404
Дата охранного документа: 27.03.2016
+ добавить свой РИД