×
10.10.2015
216.013.814e

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ДОБРОТНОСТИ РЕЗОНАНСНОГО КОНТУРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002564699
Дата охранного документа
10.10.2015
Аннотация: Изобретение относится к измерительной технике. Способ измерения добротности резонансного контура заключается в возбуждении колебаний за счет положительной обратной связи в контуре, стабилизации этих колебаний за счет введения отрицательной обратной связи по их амплитуде с помощью схемы автоматического регулирования усиления с источником опорного сигнала. Добротность Q определяют по формуле Q=KU/U, где U - величина задаваемого напряжения опорного сигнала, а К - постоянная величина. Устройство содержит цепь положительной обратной связи, выполненную в виде последовательно включенных усилителя и устройства сдвига фазы, цепь отрицательной обратной связи, содержащую источник опорного сигнала и последовательно включенные детектор, дифференциальный усилитель и умножитель. Источник опорного сигнала соединен со входом дифференциального усилителя, второй вход умножителя соединен с выходом устройства сдвига фазы, вход детектора соединен с выходом устройства сдвига фазы. Устройство также содержит вычислительный блок, реализующий функцию K/V, где V - величина входного сигнала вычислительного блока. При этом вход вычислительного блока соединен с выходом дифференциального усилителя. Технический результат - повышение точности измерений. 2 н.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано при исследовании резонаторов различного типа, в частности микромеханических и пьезоэлектрических, а также микромеханических резонансных подвесов.

Резонаторы (резонансные контуры, резонансные цепи) различного типа широко применяются в различных областях техники. Одним из основных параметров, характеризующим резонаторы, является добротность.

Аналоги изобретения

Практически все применяемые методы определения добротности, как отмечается в работе [1], являются динамическими, связанными с изменением частоты сигнала, подаваемого на вход резонансного звена, и амплитуды выходного сигнала этого звена.

Например, в работе [2] описан способ измерения добротности резонатора, основанный на возбуждении в нем в полосе частот пропускания колебаний с линейно изменяющейся частотой и последующим определением добротности.

В работе [3] описан способ определения добротности, предусматривающий изменение частоты возбуждающего воздействия с заданной скоростью.

Способ измерения добротности, также предусматривающий свипирование подаваемого на резонатор сигнала, приведен в работе [4].

Недостатком описанных в указанных выше источниках способов является невозможность измерения добротности резонатора при его работе в контуре возбуждения колебаний на его резонансной частоте, что является наиболее часто используемым применением резонаторов.

Пример измерения добротности микромеханического резонатора приведены в работе [5]. В этой работе в резонаторе, образованном микромеханическими элементами, электродами возбуждения и измерительным электродом (соответственно именуемыми в работе - resonator beams, stimulus electrodes, response electrode) за счет положительной обратной связи, как показано на фиг. 2 этой работы, через усилитель с ограничением по выходу возбуждаются колебания на резонансной частоте, при этом амплитуда сигнала, поступающего на электроды возбуждения, остается постоянной. Измерение амплитуды выходного сигнала Авых с помощью стандартного мультиметра, показанного на фиг. 4, в этом случае позволяет определить добротность Q резонатора, которая оказывается пропорциональна Авых.

Пример измерения добротности микромеханического резонатора приведен в работе [6]. В этой работе добротность резонансного контура определяется с помощью анализатора цепей (фиг. 12) или измерителя амплитуды (фиг. 14).

В работе [7] приведена блок-схема (фиг. 4b) устройства возбуждения колебаний в резонаторе, которым является торсионный подвес инерционной массы микромеханического гироскопа по оси первичных колебаний. Показано, что в этой структуре, несмотря на значительные изменения добротности Q (Q изменяется более чем в два раза, как показано на фиг. 6), амплитуда колебаний резонатора остается практически постоянной (изменения не превышают 1-1,5%, фиг. 10). Можно отметить, что авторы проводили измерение добротности традиционным способом с использованием анализатора спектра (см. фиг. 4а).

Ближайшие аналоги (прототипы) предлагаемого изобретения

В качестве прототипа предлагаемого способа выбран способ измерения добротности, описанный в работе [5]. Способ-прототип заключается в следующем: в резонансного контуре за счет положительной обратной связи возбуждаются колебания на резонансной частоте, стабилизация амплитуды колебаний на входе резонансного контура осуществляется за счет применения в цепи обратной связи усилителя с ограничением выходного сигнала, а добротность определяется путем измерения амплитуды колебаний на выходе резонансного контура. Недостатком способа-прототипа является то, что при изменении добротности происходит изменение амплитуды колебаний на выходе резонатора, тогда как в ряде применений необходимо, чтобы амплитуда колебаний оставалась постоянной. Примером такого применения являются микромеханические гироскопы, в которых амплитуда первичных колебаний должна быть постоянной. В качестве прототипа предложенного устройства выбрано устройство, приведенное в работе [7], блок-схема которого приведена на фиг. 4b. В работе [7] приведена блок-схема (фиг. 4b) устройства возбуждения колебаний в резонаторе, которым является торсионный подвес инерционной массы микромеханического гироскопа по оси первичных колебаний. Показано, что в этой структуре, несмотря на значительные изменения добротности Q (Q изменяется более чем в два раза, как показано на фиг. 6), амплитуда колебаний резонатора остается практически постоянной (изменения не превышают 1-1,5%, фиг. 10). При этом проведение измерения добротности осуществляется традиционным способом с использованием анализатора спектра (см. фиг. 4а). Устройство-прототип содержит резонансный контур, элементами которого является торсионный подвес пробной массы (ПМ), силовые и измерительные электроды, расположенные по оси подвеса ПМ, при этом входом резонансного контура являются силовые электроды, а его выходом - измерительные электроды, цепи положительной и обратной связи, включающие в себя преобразователь емкость-напряжение, вход которого соединен с выходом резонансного контура, блок автоматического регулирования усиления (АРУ) и выходной усилитель, выход которого соединен со входом резонансного контура. Для измерения добротности резонансного контура эта схема переводится в разомкнутый режим работы и выход резонатора соединяется со входом анализатора спектра (как это показано на фиг. 4а работы [7]). Недостатком этого устройства является то, что оно не позволяет измерять добротность во время работы резонатора в режиме автоколебаний с постоянной амплитудой выходного сигнала резонатора известными способами и тем самым обеспечить возможность, например, диагностирования исправности работы путем оценки степени вакуумирования по величине добротности и/или компенсации температуры или ее измерение. Измерение же добротности путем определения отношения сигналов на выходе и входе резонансного сопряжена с определенными сложностью и погрешностью, которые обусловлены тем, что при больших величинах добротности входной сигнал резонатора на резонансной частоте является сигналом переменного тока, имеет малую величину, измерение которой представляет сложную задачу.

Задачей изобретения является повышение точности измерения добротности в режиме работы резонатора при постоянной амплитуде колебаний резонатора. Достигаемый технический результат - возможность измерения добротности Q в реальном времени как при постоянной, так и при изменяемой амплитуде колебаний резонатора и повышение точности измерения Q.

Преимуществом предлагаемого способа измерения добротности является возможность его использования для компенсации влияния температуры (или других внешних факторов) на устройства с резонаторами в случаях, когда эти устройства должны работать при постоянных амплитудах выходного сигнала резонатора, так как добротность зависит от этих внешних факторов. Измерение добротности подвеса инерционной массы, как предлагается в устройстве, позволит диагностировать в микромеханическом гироскопе изменение вакуума в полости, где расположены подвижные элементы конструкции, и проводить, таким образом, диагностику отказа резонатора.

Поставленная задача решается тем, что при измерении добротности резонансного контура, заключающемся в возбуждении колебаний за счет положительной обратной связи в контуре, стабилизации этих колебаний на выходе резонансного контура за счет введения отрицательной обратной связи по их амплитуде с помощью схемы автоматического регулирования усиления с источником опорного сигнала, добротность Q определяют путем измерения величины сигнала на выходе звена отрицательной обратной связи Uoc и расчета по формуле:

Q=K/Uoc, где К - коэффициент, причем К - постоянная величина.

Поставленная задача решается также тем, что дополнительно измеряют величину опорного сигнала, а добротность определяют по формуле:

Q=KUA/Uoc, где UA - величина опорного сигнала.

В устройстве, реализующем предложенный способ, поставленная задача решается тем, что в этом устройстве измерения добротности резонансного контура, содержащем цепь положительной обратной связи, выполненную в виде последовательно включенных усилителя и устройства сдвига фазы, цепь отрицательной обратной связи, содержащую источник опорного сигнала и последовательно включенных детектора, дифференциального усилителя и умножителя, при этом источник опорного сигнала соединен со входом дифференциального усилителя, второй вход умножителя соединен с выходом устройства сдвига фазы, вход детектора соединен с выходом устройства сдвига фазы, в него введен вычислительный блок, реализующий функцию K/Vвх (где К - постоянная величина, Vвх - величина входного сигнала блока), при этом вход вычислительного блока соединен с выходом дифференциального усилителя.

По сравнению с прототипом, в предложенном устройстве достигается возможность измерения добротности Q при постоянной амплитуде колебаний резонатора, при этом, вместо измерения амплитуды сигнала на резонансной частоте на входе резонатора, в соответствии с предложенным способом, для определения добротности Q измеряют сигнал на выходе звена отрицательной обратной связи, который является сигналом постоянного тока, что позволяет измерять его с более высокой точностью, чем малые сигналы переменного тока.

Кроме того, при измерении величины опорного сигнала появляется возможность измерять добротность и в случаях, когда амплитуда колебаний резонатора изменяется в процессе работы последнего при изменении величины опорного сигнала.

В устройстве, реализующем предложенный способ измерения добротности, обеспечивается возможность при постоянной амплитуде колебаний резонатора определять добротность резонатора и на основе этих измерений получать в реальном времени оценку температуры или/и степени вакуумирования полости, в которой находится резонатор в случае, когда он выполняется как высокодобротный (Q>10000) микромеханический резонатор.

Заявляемое устройство поясняется чертежами.

На фиг. 1 показана блок-схема предложенного устройства для случая, когда резонатор выполняется как высокодобротный микромеханический резонатор, например как подвес инерционной массы по оси первичных колебаний в микромеханическом гироскопе.

На фиг. 1 приняты следующие обозначения:

1 - инерционная масса (ИМ)

2, 3 - электроды, расположенные по оси первичных колебаний

4 - преобразователь емкость-напряжение

5 - устройство сдвига фазы

6 - блок автоматического регулирования усиления (АРУ)

7 - умножитель

8 - усилитель

9 - источник опорного сигнала

10 - вычислительный блок

Величина сигнала на выходе элемента 9, сигнала на выходе блока АРУ 6 и на электроде 2 (выходе усилителя 8) обозначены соответственно Ua, Uoc, Uэ2

На фиг. 2 приведен вариант выполнения блока автоматического регулирования усиления.

На фиг. 2 приняты следующие обозначения:

элементы 5, 6, 9 - так же, что и на фиг. 1

11 - дифференциальный усилитель

12- детектор.

На фиг. 3 показана блок-схема предложенного устройства для случая, когда резонатор выполняется как высокодобротный микромеханический резонатор, а устройство сдвига фазы 5 выполнено как цифровая система фазовой автоподстройки частоты (ФАПЧ), амплитуда выходного сигнала которой остается постоянной.

Элементы этой блок-схемы обозначены так же, как и на фиг. 1.

Предлагаемый способ осуществляется следующим образом:

Для измерения добротности резонатора, реализованного как торсионный подвес инерционной массы 1, находящейся между группой электродов, одна часть из которых выполняет функции измерительных электродов для определения смещения инерционной массы 1 от центрального положения и обозначена как электрод 3 на фиг. 1, а вторая группа (обозначена как электрод 2 на фиг. 1) выполняет функции задатчика силы или момента и предназначена соответственно для формирования силы или момента, воздействующего на массу 1 при поступлении на него напряжения, в нем возбуждаются колебания за счет положительной обратной связи, реализуемой с помощью элементов 4, 5, 8. Амплитуда этих колебаний задается источником опорного сигнала 9 и поддерживается постоянной за счет элементов 6, 7.

Отметим, что количество электродов, расположенных по оси первичных колебаний может быть больше, как правило, используется не менее двух измерительных и двух силовых электродов. Однако количество электродов, используемых в резонаторе, не влияет на суть изобретения.

Сигнал на электроде 2 может быть представлен выражением:

Uэ2=K7K8U5Uoc,

где соответственно обозначены К7, К8 - коэффициент передачи элементов 7, 8, U5, Uoc - напряжения на выходе элементов 5 и 6. Размерность коэффициент передачи умножителя 7 (К7) [В-1].

Отметим, что зачастую электроды 2, 3 имеют гребенчатую структуру, их работа подробно описана в литературе, посвященной микромеханическим гироскопам (см., например, [8]).

Для случая гребенчатых электродов имеет место линейная зависимость изменения емкости от перемещения массы 1 и силы от напряжения на электроде (Uэ2).

Поэтому, обозначив коэффициенты передачи перемещения массы 1 в изменение емкости как Кпс, напряжения в силу как Kue, а передаточную функцию резонатора как W(p)/C, где С - жесткость подвеса ИМ, получим выражение:

K7K8U5UocKпсW(p)C-1KcvKueK5=U5 (1)

Поскольку в структуре на фиг. 1 при сдвиге фазы в элементе 5, равном 90°, колебания возникают на резонансной частоте резонатора, при которой | W(p) |=Q, обозначив произведение коэффициентов K7K8KпсC-1KcvKueK5 как L-1, получим, что

W(p)=L/Uoc (2)

Q=L/Uoc (3)

При реализации звеном 10 функции L/Uoc (где L - постоянная величина) получим на его выходе величину, пропорциональную Q.

Для блок-схемы на фиг. 3 можно составить уравнение:

K7K8U5UocKпcQC-1KcvKueUa (4)

Обозначив произведение коэффициентов K7K8KпcC-1KcvKue как К-1, получим, что

Q=KUa/Uoc (5)

Поскольку задаваемая величина Ua известна, заменяя величину L в выражении (3) на K=L/Ua,

получим выражение (5) для вычисления Q, т.е. выражение (5) применимо для расчета Q в обоих случаях.

Устройство для реализации предложенного способа приведено на фиг. 1.

Здесь электрод, расположенный по оси первичных колебаний и выполняющий функции измерительного электрода (элемент 3), соединен со входом преобразователя емкость-напряжение 4, выход преобразователя емкость-напряжение соединен со входом устройства сдвига фазы 5. Выход элемента 5 соединен с одним из входов блока АРУ 6 и умножителя 7, другой вход которого соединен с выходом элемента 6, вход которого соединен с источником опорного сигнала 9. Выход элемента 7 соединен со входом усилителя 8, выход которого соединен с электродом, расположенным по оси первичных колебаний и выполняющим функции силового электрода (элемент 2). Выход блока АРУ 6 соединен со входом вычислительного блока 10.

Устройство работает следующим образом. С помощью элементов 1-5 и 7, 8 в предлагаемом устройстве сформирована положительная обратная связь со сдвигом фазы на резонансной частоте резонатора, равным -180°. С помощью элементов 6, 7, 8 и 1-5 в предлагаемом устройстве сформирована отрицательная обратная связь, которая обеспечивает постоянство контурного усиления по положительной связи, равного единице при амплитуде колебаний, пропорциональной сигналу источника 9, что обеспечивает условия для возникновения и поддержания постоянной амплитуды колебаний резонатора на его резонансной частоте. При высоком коэффициенте передачи блоков, входящих в блок 6, амплитуда колебаний резонатора остается постоянной при достаточно больших изменениях добротности резонатора. При этом величина сигнала Uoc увеличивается, если добротность Q снижается, и наоборот. Вычисление значения Q осуществляется блоком 10 в соответствии с выражением (3).

На фиг. 2. показан пример реализации блока 6, который включает в себя дифференциальный усилитель 11 и демодулятор 12, соединенный с его входом. Демодулятор 12 преобразует сигнал переменного тока в сигнал постоянного тока, величина которого пропорциональна или равна (в зависимости от реализации демодулятора) амплитуде входного сигнала. Разность сигналов от элементов 9 и 12 усиливается элементом 11. Для повышения коэффициента передачи и обеспечения устойчивости контура стабилизации амплитуды в предлагаемом устройстве в состав элемента 11 могут входить корректирующие звенья.

Возможность реализации способа и устройства и достижение технического результата были подтверждены результатами моделирования и экспериментальной проверки работы микромеханического резонатора.

Список литературы

1. Ключников С.Н. Методы определения добротности резонансных систем // Ползуновский вестник, 2011, №3/1, с. 42-43.

2. Патент РФ №2312368.

3. Патент РФ №2264605.

4. Патент РФ №2059209.

5. М A. Hopcroft et al, TEMPERATURE COMPENSATION OF A MEMS RESONATOR USING QUALITY FACTOR AS A THERMOMETER, MEMS, 2006, pp. 222-225.

6. Bongsang Kim et al (Temperature Dependence of Quality Factor in MEMS Resonators JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 17, № 3, JUNE 2008, pp. 755-766.

7. Dunzhu Xia, Shuling Chen, Shourong Wang and Hongsheng Li. Microgyroscope Temperature Effects and Compensation-Control Methods // Sensors, 2009, №9, pp. 8349-8376.

8. Распопов В.Я. Микромеханические приборы // Учебное пособие. - Тула: Тульский государственный университет, 2002.


СПОСОБ ИЗМЕРЕНИЯ ДОБРОТНОСТИ РЕЗОНАНСНОГО КОНТУРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИЗМЕРЕНИЯ ДОБРОТНОСТИ РЕЗОНАНСНОГО КОНТУРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИЗМЕРЕНИЯ ДОБРОТНОСТИ РЕЗОНАНСНОГО КОНТУРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Showing 291-300 of 368 items.
08.03.2019
№219.016.d559

Способ определения коэффициента передачи гидрофонного тракта в натурных условиях и гидрофонный тракт для его реализации

Изобретение относится к гидроакустике. Техническим результатом изобретения является обеспечение возможности определения коэффициента передачи гидрофонного тракта в натурных условиях. Гидрофонный тракт для реализации способа содержит пьезочувствительный элемент, усилитель, блок обработки и...
Тип: Изобретение
Номер охранного документа: 0002450479
Дата охранного документа: 10.05.2012
08.03.2019
№219.016.d583

Устройство для стерилизации консервов

Изобретение относится к пищевой промышленности. Устройство содержит по меньшей мере один автоклав, подключенный к магистралям подачи и слива процессной воды, систему оборотного водоснабжения, содержащую блок очистки воды, соединенный с магистралью слива процессной воды, блок ультрафиолетового...
Тип: Изобретение
Номер охранного документа: 0002437586
Дата охранного документа: 27.12.2011
08.03.2019
№219.016.d593

Устройство прогнозирования и анализа обстановки для группы подвижных объектов

Изобретение относится к устройству прогнозирования и анализа обстановки для группы подвижных объектов. Техническим результатом является расширение функциональных возможностей за счет возможности прогнозирования состояния и взаимного положения каждого подвижного объекта группы в определенный...
Тип: Изобретение
Номер охранного документа: 0002447476
Дата охранного документа: 10.04.2012
11.03.2019
№219.016.dbce

Многослойный полимерно-текстильный материал и способ его получения

Изобретение относится к производству пластмасс и может быть использовано для изготовления герметичных надувных изделий. Материал в качестве текстильной основы содержит полиэфирную ткань, на поверхность которой вакуумным напылением осажден сплав, содержащий, мас.%: 68,2 Fe, 2,0 Mn, 11,6 Ni, 17,5...
Тип: Изобретение
Номер охранного документа: 0002453442
Дата охранного документа: 20.06.2012
11.03.2019
№219.016.dcc3

Система автоматического управления многофункциональным энергетическим комплексом

Использование: в области электротехники. Технический результат заключается в обеспечении гарантированного бесперебойного энергоснабжения пассивной нагрузки. Система содержит разнородные источники питания и накопитель электроэнергии, выходы которых через преобразователи ac-dc (ac-dc-ac)...
Тип: Изобретение
Номер охранного документа: 0002432659
Дата охранного документа: 27.10.2011
15.03.2019
№219.016.e122

Палладированные нанотрубки для гидрирования растительных масел, способ их приготовления и способ жидкофазного гидрирования

Изобретение относится к катализаторам гидрирования растительных масел и жиров. Описан палладиевый катализатор, нанесенный на углеродный носитель, для жидкофазного гидрирования растительных масел и жиров, характризующийся тем, что в качестве углеродного носителя он содержит углеродные нанотрубки...
Тип: Изобретение
Номер охранного документа: 0002438776
Дата охранного документа: 10.01.2012
15.03.2019
№219.016.e15a

Катализатор, способ его приготовления и способ гидрооблагораживания дизельных дистиллятов

Изобретение относится к катализаторам гидрооблагораживания дизельных дистиллятов, способу получения катализатора и способу гидрооблагораживания дизельных дистиллятов с целью получения экологически чистых дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности. Описан...
Тип: Изобретение
Номер охранного документа: 0002468864
Дата охранного документа: 10.12.2012
20.03.2019
№219.016.e56c

Способ определения диагностических параметров разряда емкостных систем зажигания

Изобретение относится к области измерительной техники, а именно к методам диагностики параметров разрядов, генерируемых емкостными системами зажигания, применяемыми в авиационных двигателях и им подобных объектах. Способ определения диагностических параметров разряда емкостных систем зажигания,...
Тип: Изобретение
Номер охранного документа: 0002394170
Дата охранного документа: 10.07.2010
20.03.2019
№219.016.e813

Смазочная композиция универсального синтетического масла, работоспособного в газотурбинных двигателях и редукторах вертолетов, а также турбовинтовых двигателях и турбовинтовентиляторных двигателях самолетов

Настоящее изобретение относится к смазочной композиции универсального синтетического масла, работоспособного в газотурбинных двигателях и турбиновинтовентиляторных двигателях, включающей в качестве базовой основы авиационный пентаэритритовый эфир на основе смеси полных сложных эфиров...
Тип: Изобретение
Номер охранного документа: 0002452767
Дата охранного документа: 10.06.2012
20.03.2019
№219.016.e817

Композиция высокотемпературного масла на основе фторсилоксановой жидкости

Изобретение относится к получению высокотемпературного масла на основе фторсодержащего полиорганосилоксана, пригодного для аэрокосмической техники. Композиция масла содержит фторсилоксановую жидкость, содержащую γ-трифторпропильный радикал (марки 161-44М), с вязкостью при 100°С не менее 9,0...
Тип: Изобретение
Номер охранного документа: 0002452765
Дата охранного документа: 10.06.2012
Showing 281-285 of 285 items.
29.06.2019
№219.017.9da0

Микромеханический гироскоп rr-типа

Изобретение относится к области точного приборостроения и может быть использовано в системах управления подвижной массой в микромеханических датчиках различного назначения. Микромеханический гироскоп RR-типа содержит подвижный механический элемент, гребенчатый двигатель, образованный гребенками...
Тип: Изобретение
Номер охранного документа: 0002375678
Дата охранного документа: 10.12.2009
29.06.2019
№219.017.9dcd

Микромеханический гироскоп вибрационного типа

Изобретение относится к приборам, измеряющим угловую скорость, в частности к микромеханическим гироскопам (ММГ) вибрационного типа. ММГ содержит опору на основании, к которой на резонансном подвесе подвешена проводящая подвижная масса. Две пары неподвижных электродов нанесены на крышку ММГ,...
Тип: Изобретение
Номер охранного документа: 0002370733
Дата охранного документа: 20.10.2009
29.06.2019
№219.017.9ecf

Электродная структура для микромеханического гироскопа и микромеханический гироскоп на ее основе

Изобретения относятся к устройствам для измерения угловой скорости, в частности к микромеханическим гироскопам (ММГ). Электродная структура ММГ содержит подвижный электрод, образованный симметрично расположенными идентичными секторами или частями секторов, при этом часть секторов имеет зубцы на...
Тип: Изобретение
Номер охранного документа: 0002320962
Дата охранного документа: 27.03.2008
23.02.2020
№220.018.04c2

Микромеханический гироскоп

Изобретение относится к области точного приборостроения, в частности к вибрационным микромеханическим гироскопам (ММГ), измеряющим угловую скорость. Сущность изобретения заключается в том, что в ММГ со встроенным датчиком температуры, квадратурными электродами и управляемыми источниками...
Тип: Изобретение
Номер охранного документа: 0002714870
Дата охранного документа: 19.02.2020
23.02.2020
№220.018.04df

Способ компенсации синфазной помехи в микромеханическом гироскопе

Изобретение относится к области микромеханики, в частности к микромеханическим гироскопам (ММГ) вибрационного типа. Сущность изобретения заключается в том, что предварительно экспериментально определяют зависимость амплитуды компенсирующего напряжения на синфазных электродах от выходного...
Тип: Изобретение
Номер охранного документа: 0002714955
Дата охранного документа: 21.02.2020
+ добавить свой РИД