×
10.10.2015
216.013.811d

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ЭЛЕКТРОПРОВОДЯЩЕГО ПОКРЫТИЯ ДЛЯ ЭЛЕКТРООБОГРЕВАЕМОГО ЭЛЕМЕНТА ОРГАНИЧЕСКОГО ОСТЕКЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси инертного и реактивного газов с осаждением упомянутого покрытия на полимерную пленку. В качестве металлической мишени используют мишень из сплава индия и олова. На полимерную пленку проводят осаждение покрытия из оксида индия, легированного оловом, с постоянной скоростью, которую обеспечивают за счет поддержания постоянной разницы между величинами суммарного давления упомянутой газовой смеси до начала реактивного магнетронного распыления металлической мишени и суммарного давления газовой смеси в процессе осаждения покрытия. Причем указанную разницу поддерживают постоянной путем регулирования расхода реактивного газа, в качестве которого используют газ, выбранный из группы, включающей кислород, воздух и углекислый газ. Обеспечивается уменьшение разброса оптико-физических характеристик электропроводящего прозрачного покрытия при высоком светопропускании и снижение удельного сопротивления. 1 табл., 8 пр.
Основные результаты: Способ нанесения электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления, включающий реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси инертного и реактивного газов с осаждением упомянутого покрытия на полимерную пленку, отличающийся тем, что в качестве металлической мишени используют мишень из сплава индия и олова, проводят осаждение на полимерную пленку покрытия из оксида индия, легированного оловом, с постоянной скоростью, которую обеспечивают за счет поддержания разницы между суммарным давлением упомянутой газовой смеси до начала реактивного магнетронного распыления металлической мишени и суммарным давлением газовой смеси в процессе осаждения покрытия постоянной путем регулирования расхода реактивного газа, в качестве которого используют газ, выбранный из группы, включающей кислород, воздух и углекислый газ.

Изобретение относится к вакуумной технологии нанесения покрытий на полимерные материалы, в частности к реактивному магнетронному нанесению прозрачных электропроводящих покрытий, и может найти применение в технологии получения слоистых абразивостойких полимерных материалов остекления с интегрированным электрообогреваемым элементом, элементов остекления, устройств индикации авиационной техники и других видов транспорта.

В настоящее время наблюдается повышенный интерес к технологиям получения электрообогреваемых элементов остекления, использование которых в остеклении летательных аппаратов или другого вида транспорта позволяет эффективно бороться с наледью и препятствовать образованию конденсата. Важную роль в получении таких элементов играет технология нанесения прозрачного электропроводящего покрытия на полимерную подложку. В качестве материала электропроводящего покрытия используются полупроводниковые пленки на основе оксидов индия и олова.

Известен способ получения покрытий, включающий предварительную обработку поверхности изделий в газовой плазме и последующее вакуумно-дуговое нанесение на нее металлической пленки с одновременной обработкой осаждаемого покрытия ускоренными ионами рабочего газа, например смеси ацетилена и аргона (RU 2192500 C2, 31.01.2000).

Недостатком вакуумно-дугового нанесения покрытий оптической толщины является наличие капельной фазы, не позволяющее обеспечить необходимую равномерность.

Известен способ получения пленок нитрида кремния, включающий размещение полупроводниковой подложки и распыляемой мишени на противоположные электроды, откачку вакуумного объема, напуск смеси инертного и реактивного газов, высокочастотное распыление металлической мишени кремния в среде смеси аргона и реактивного газа (US 4384933 A, 24.05.1983).

Недостатком данного способа является значительная нестабильность параметров магнетронного разряда и разброс оптико-физических характеристик прозрачных электропроводящих покрытий, получаемых в разных циклах реактивного магнетронного распыления.

Наиболее близким аналогом является способ нанесения проводящего прозрачного покрытия, включающий реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси инертного и реактивного газа и осаждение покрытия, в качестве реактивного газа используют кислород, при этом в качестве металлической мишени используют металлический индий с добавлением олова, и последующее проведение осаждения при поддержании отношения парциальных давлений кислорода и аргона в газовой смеси, составляющем 1:6 (RU 2241065 C2, 27.11.2004).

Недостатком способа - наиболее близкого аналога - является разброс оптико-физических характеристик прозрачных электропроводящих покрытий, получаемых в разных циклах реактивного магнетронного распыления, поскольку поддержание отношения парциальных давлений кислорода и аргона в газовой смеси 1:6 не является необходимым условием для обеспечения повторяемости.

Технической задачей предлагаемого изобретения является снижение себестоимости процесса нанесения электропроводящего покрытия на полимерные пленки, стабилизация параметров магнетронного разряда, а также обеспечение возможности контроля процесса без дополнительного оборудования.

Техническим результатом является получение электропроводящего покрытия для электрообогреваемого элемента органического остекления с уменьшенным разбросом оптико-физических характеристик, а также с высокими значениями величин светопропускания за счет снижения значения поглощения видимого света и сниженным удельным сопротивлением.

Для достижения технического результата предложен способ нанесения электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления, включающий реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси инертного и реактивного газов с осаждением упомянутого покрытия на полимерную пленку, при этом в качестве металлической мишени используют мишень из сплава индия и олова, проводят осаждение покрытия из оксида индия, легированного оловом, на полимерную пленку с постоянной скоростью, которую обеспечивают за счет поддержания постоянной разницы между величинами суммарного давления упомянутой газовой смеси до начала реактивного магнетронного распыления металлической мишени и суммарного давления газовой смеси в процессе осаждения покрытия, причем указанную разницу поддерживают постоянной путем регулирования расхода реактивного газа, в качестве которого используют газ, выбранный из группы, включающей кислород, воздух и углекислый газ.

В качестве материала полимерной пленки предпочтительно использовать полиэтилентерефталат (далее - ПЭТФ). Использование электропроводящего покрытия, нанесенного на пленку из ПЭТФ в составе остекления летательного аппарата, позволяет исключить операции нанесения покрытия на полноразмерные криволинейные элементы остекления или операцию формования остекления с нанесенным покрытием.

В качестве материала подложки также допустимо использовать органическое стекло или поликарбонат, которые обладают высокими значениями величин прочности и ударной вязкости.

В качестве материала мишени используют сплав индия и олова, поскольку его оксиды обладают высокой степенью прозрачности при высоком уровне электропроводности.

В качестве реактивного газа используют газ, выбранный из группы: кислород, воздух и углекислый газ, поскольку перечисленные газы вступают в плазмохимическую реакцию с металлом мишени в процессе распыления.

Скоростью распыления является количество вещества катода магнетрона в граммах или единицах объема, которое удаляется с катода в единицу времени. Все распыленное вещество осаждается на элементы конструкции и стенки вакуумной камеры, а также на подложку. Доля распыленного вещества, осажденная на подложку, определяется конструктивными размерами вакуумной камеры и взаимным расположением магнетрона и подложки. То есть для конкретной технологической установки при одинаковом взаимном расположении магнетрона и подложки скорости осаждения прямо пропорциональна скорость распыления.

При реактивном магнетронном нанесении покрытий в области интенсивного магнитного поля над распыляемой поверхностью металлической мишени создают магнетронный разряд, в котором электроны дрейфуют над распыляемой поверхностью мишени по замкнутым траекториям, повторяющим форму магнитного зазора между полюсами магнитной системы. Дрейфующие электроны сталкиваются с атомами газа. В результате столкновений образуются положительные ионы аргона и кислорода, которые ускоряются отрицательным потенциалом и распыляют атомы с поверхности металлической мишени. Ионы кислорода на поверхности металлической мишени частично вступают в химическую реакцию с атомами мишени, образуя на поверхности мишени оксиды материала мишени. Коэффициенты вторичной ион-электронной эмиссии и распыления чистых металлов и их оксидов могут отличаться в 5-10 раз, поэтому образование даже небольшой оксидной пленки приводит к существенному отклонению скорости осаждения и состава получаемого покрытия. Так, при избыточном парциальном давлении кислорода наблюдается значительное снижение скорости распыления и, соответственно, скорости осаждения, а получаемое покрытие имеет высокое содержание кислорода и низкую электрическую проводимость.

При недостаточном парциальном давлении кислорода наблюдается резкое увеличение скорости осаждения, а в осаждаемом покрытии наблюдается избыток металла, что приводит к увеличению его коэффициента поглощения в видимой области спектра. В процессе нанесения покрытий происходит распыление мишени магнетрона, что приводит к изменению электрической конфигурации плазменного инструмента, поэтому при установке новой мишени, изменении требований к получаемым покрытиям или при сильной выработке мишени необходимо выполнять подбор или корректировку основных параметров технологического режима, таких как сила тока, удерживаемая разница давлений и соотношения расходов плазмообразующих газов. Так как аргон является инертным газом и не вступает в химические реакции с распыляемым материалом, то об изменении парциального давления кислорода можно судить по разнице величин суммарного давления газовой смеси до начала реактивного магнетронного распыления металлической мишени и в процессе ее осаждения на подложку.

Таким образом, скорость осаждения покрытия можно контролировать посредством поддержания разницы величин суммарного давления газовой смеси перед началом и в процессе осаждения покрытия, при этом указанную разницу можно поддерживать за счет регулирования расхода кислорода. При изменении показаний вакуумметра на регулятор расхода кислорода подается команда, корректирующая значение его расхода на величину, рассчитанную по пропорционально-интегрально-дифференциальному (ПИД) алгоритму.

В процессе нанесения покрытия возникают флуктуации парциальных и общего давления газов за счет нагрева элементов конструкции, десорбции газов в результате взаимодействия плазмы с поверхностью элементов конструкции вакуумной камеры и других факторов. Это приводит к изменению толщины образовавшегося на поверхности мишени оксидного слоя и коэффициента вторичной ион-электронной эмиссии с поверхности мишени, что в свою очередь приводит к непостоянству скорости осаждения и состава получаемого покрытия. Для обеспечения необходимой равномерности и повторяемости оптико-физических свойств получаемых пленок необходимо обеспечить постоянство скорости осаждения. При непостоянстве скоростей осаждения даже при одинаковых значениях светопропускания образцов на выбранной длине волны поверхностное сопротивление может существенно различаться.

Таким образом, возникает необходимость поддерживать давление газовой смеси на протяжении всего процесса осаждения покрытия постоянным, что обеспечивается за счет регулирования расхода кислорода.

Примеры осуществления

Пример 1

В рабочей камере разместили металлическую мишень из сплава индий-олово (90 мас. % индия и 10 мас. % олова). Создали магнитное поле с величиной индукции на распыляемой поверхности металлической мишени в середине замкнутого магнитного зазора, равной 0,08 Тл, с помощью магнитной системы магнетронного типа с постоянными магнитами. Разместили полиэтилентерефталатную (ПЭТФ) пленку со стороны распыляемой поверхности металлической мишени на устройстве перемещения подложек. Установили между металлической мишенью и подложкой заслонку. Создали в рабочей камере давление не более 5·10-3 Па и стали напускать в нее с помощью системы дозированной подачи газов смесь аргона и кислорода со скоростью 40 см3/мин и 20 см3/мин соответственно. Замерили показание вакуумметра Рнач, которое составило 0,254 Па. Подали на металлическую мишень отрицательный потенциал величиной - 600 В относительно стенок рабочей камеры с помощью источника электропитания, включенного по схеме со стабилизацией тока. После возбуждения над поверхностью металлической мишени магнетронного разряда установили стабилизированный ток разряда 4,0 А и провели предварительную подготовку металлической мишени в течение 1-2 минут при установленной заслонке. Убрали заслонку и провели нанесение прозрачного электропроводящего покрытия оксида индия, легированного оловом, (ITO), поддерживая разницу между начальным давлением Рнач и рабочим давлением Робщ, равную 0,020 Па с точностью до 0,001 Па, в течение 15 минут, перемещая ПЭТФ пленку со скоростью вращения 2 об/мин.

Ток магнетронного разряда поддерживали постоянным за счет включения источника питания магнетронного разряда по схеме со стабилизацией тока. Скорость осаждения покрытия поддерживали постоянной за счет изменения расхода кислорода. Для этого при изменении показаний вакуумметра на регулятор расхода кислорода подавалась команда, корректирующая значение расхода, на величину, рассчитанную по пропорционально-интегрально-дифференциальному (ПИД) алгоритму, по следующей формуле:

Где Kp- коэффициент пропорциональности, см3/(мин Па),

Ki - интегральный коэффициент, 1/с,

Kd - дифференциальный коэффициент, с,

e(t)=ΔРзад-(Рначобщ(t)) - ошибка регулирования, Па,

u(t) - расчетная величина напуска реактивного газа, см3/мин.

Покрытия по примерам 2-5 наносили способом, аналогичным примеру 1.

Покрытия по примерам 6-8 наносили по прототипу.

Параметры процесса нанесения прозрачных электропроводящих покрытий и значения оптико-физических характеристик покрытий представлены в таблице 1.

Поверхностное сопротивление покрытия RS контролировали методом четырехточечного зонда. Потенциал металлической мишени контролировали с помощью цифрового вольтметра. Интегральный коэффициент светопропускания в видимой области спектра определяли на оптическом спектрофотометре. Расчетное соотношение парциальных давлений в газовой смеси вычислялось по формуле: k=Ро2/PAr=общ - PAr/PAr, где PO2 - расчетное парциальное давление кислорода, PAr - парциальное давление аргона, Робщ - давление по показаниям вакуумметра при нанесении. При скорости подачи в рабочую камеру аргона 40 см3/мин давление составляло 0,180 Па.

Как показали полученные данные, использование предлагаемого способа позволяет уменьшить разброс оптико-физических характеристик прозрачных электропроводящих покрытий, полученных в разных технологических циклах.

Использование предлагаемого способа также позволяет уменьшить себестоимость процесса получения высококачественных прозрачных электропроводящих покрытий на полимерных пленках с минимальными значениями поглощения видимого света и удельного сопротивления за счет уменьшения разброса значений их оптико-физических характеристик.

Способ нанесения электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления, включающий реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси инертного и реактивного газов с осаждением упомянутого покрытия на полимерную пленку, отличающийся тем, что в качестве металлической мишени используют мишень из сплава индия и олова, проводят осаждение на полимерную пленку покрытия из оксида индия, легированного оловом, с постоянной скоростью, которую обеспечивают за счет поддержания разницы между суммарным давлением упомянутой газовой смеси до начала реактивного магнетронного распыления металлической мишени и суммарным давлением газовой смеси в процессе осаждения покрытия постоянной путем регулирования расхода реактивного газа, в качестве которого используют газ, выбранный из группы, включающей кислород, воздух и углекислый газ.
Источник поступления информации: Роспатент

Showing 291-300 of 369 items.
19.04.2019
№219.017.2dc0

Способ защиты стальных деталей машин от солевой коррозии

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбиностроении, преимущественно для защиты деталей компрессора газотурбинного двигателя от солевой коррозии. Способ включает последовательное нанесение на поверхность детали...
Тип: Изобретение
Номер охранного документа: 0002344198
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2de0

Способ защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных...
Тип: Изобретение
Номер охранного документа: 0002349678
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2de1

Состав для получения покрытия

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты деталей из сталей, никелевых и титановых сплавов от солевой и фреттинг-коррозии и контактного износа. Состав для получения покрытия на деталях,...
Тип: Изобретение
Номер охранного документа: 0002349681
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2e20

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам и может быть использовано в авиационной технике и машиностроении при изготовлении теплонагруженных деталей газотурбинных установок и двигателей газо-, нефтеперекачивающих, энергетических и транспортных систем и др., эксплуатируемых...
Тип: Изобретение
Номер охранного документа: 0002397969
Дата охранного документа: 27.08.2010
19.04.2019
№219.017.2e2a

Припой на основе никеля

Изобретение может найти применение при изготовлении деталей из деформированных и литых жаропрочных никелевых сплавов, в частности, для горячего тракта газотурбинных двигателей, таких как направляющие аппараты компрессоров и сопловые аппараты турбин. Припой имеет следующий состав, мас.%: Cr...
Тип: Изобретение
Номер охранного документа: 0002393074
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e2f

Способ получения отливок

Изобретение относится к литейному производству. Способ включает заливку расплава в форму с последующим его охлаждением, предварительную механическую обработку отливок. Для создания разрежения отливку подвергают вакуумной обработке в автоклаве. Затем отливку под давлением 0,1-0,8 МПа пропитывают...
Тип: Изобретение
Номер охранного документа: 0002393053
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.2ebd

Способ нанесения цинковых покрытий

Изобретение относится к области электрохимического нанесения покрытий, в частности к локальному осаждению цинковых покрытий на токопроводящую поверхность деталей, например, для ремонта поврежденных цинковых покрытий. Способ включает электролитическое натирание поверхности анодом, к которому...
Тип: Изобретение
Номер охранного документа: 0002389828
Дата охранного документа: 20.05.2010
Showing 291-300 of 336 items.
29.04.2019
№219.017.4540

Сплав на основе интерметаллида nial

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической и направленной столбчатой структурами, таким как, например, сопловые лопатки, блоки сопловых лопаток,...
Тип: Изобретение
Номер охранного документа: 0002405851
Дата охранного документа: 10.12.2010
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a54

Состав для удаления лакокрасочных покрытий с внешних металлических поверхностей

Изобретение относится к области материалов для лакокрасочной промышленности. Описан состав для удаления полимерных лакокрасочных покрытий с внешних металлических поверхностей, включающий растворитель метиленхлорид, загуститель, замедлитель испарения и разрыхлитель, который дополнительно...
Тип: Изобретение
Номер охранного документа: 0002686928
Дата охранного документа: 06.05.2019
18.05.2019
№219.017.5447

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения деталей турбин авиационного и энергетического назначения. Устройство содержит вакуумную камеру, загрузочную шлюзовую камеру, направляющие для перемещения литейных форм, печь подогрева форм и плавильно-заливочную печь, расположенные в вакуумной...
Тип: Изобретение
Номер охранного документа: 0002267380
Дата охранного документа: 10.01.2006
18.05.2019
№219.017.5683

Полиимидное связующее для армированных пластиков, препрег на его основе и изделие, выполненное из него

Изобретение относится к области получения полиимидов, а именно к области получения полиимидного связующего для армированных пластиков. Полиимидное связующее представляет собой продукт взаимодействия диангидрида бензофенон-3,3′-4,4′-тетракарбоновой кислоты и м-фенилендиамина и модифицирующую...
Тип: Изобретение
Номер охранного документа: 0002394857
Дата охранного документа: 20.07.2010
18.05.2019
№219.017.56b8

Способ получения пористо-волокнистого металлического материала

Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций горячего тракта газотурбинного двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002311262
Дата охранного документа: 27.11.2007
18.05.2019
№219.017.576d

Устройство для получения отливок из жаропрочных сплавов с монокристаллической структурой

Изобретение относится к области литейного производства. Устройство содержит керамическую форму, в основании которой выполнены затравочная полость с размещенной в ней монокристаллической затравкой, полость кристалловода и коническая стартовая полость, соединенная с полостью формы, образующей...
Тип: Изобретение
Номер охранного документа: 0002353471
Дата охранного документа: 27.04.2009
18.05.2019
№219.017.5826

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к созданию титановых сплавов, предназначенных для изготовления деталей и узлов авиакосмической и ракетной техники: баллонов, шпангоутов, лонжеронов, стрингеров, нервюр, деталей крепления и др. Сплав имеет следующий химический состав, мас.%: алюминий 4,3-6,8; ванадий...
Тип: Изобретение
Номер охранного документа: 0002304178
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5828

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой. Изделиями могут быть сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие детали ГТД...
Тип: Изобретение
Номер охранного документа: 0002304179
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5849

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие и сопловые лопатки газотурбинных двигателей, используемых в авиационной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002308499
Дата охранного документа: 20.10.2007
+ добавить свой РИД