×
10.10.2015
216.013.8059

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ РАДИОГОЛОГРАММ ПОДПОВЕРХНОСТНЫХ ПРОВОДЯЩИХ ОБЪЕКТОВ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области подповерхностной радиолокации, а именно к определению расположения и формы неоднородностей и включений в конденсированных средах. Сущность: способ заключается в ступенчатом изменение сигнала, в заданном диапазоне частот с равномерным шагом от до где k=0,72, k=0,81,D - диаметр антенны, с - скорость света. Количество отдельных частот в диапазоне от f до f не менее пяти. Сканируется исследуемый участок поверхности. Радиоголограмма исследуемого участка фокусируется и определяется ориентация проводящего заглубленного цилиндра. Сначала антенна ориентируется по отношению к оси заглубленного цилиндра так, что вектор напряженности электрического поля располагается перпендикулярно оси цилиндра, и сканируется поверхность при перпендикулярной поляризации. Затем антенна ориентируется по отношению к оси цилиндра так, что вектор напряженности электрического поля располагается параллельно оси заглубленного цилиндра, и сканируется поверхность при параллельной поляризации. Производится фокусировка радиоголограмм цилиндра при перпендикулярной и параллельной поляризациях. Определяется глубина фокусировки изображений заглубленного цилиндра при перпендикулярной и параллельной поляризациях, радиус r заглубленного цилиндра и глубина заложения h находятся из выражений: где l - глубина фокусировки изображений заглубленного цилиндра при перпендикулярной поляризации, l - глубина фокусировки изображений заглубленного цилиндра при параллельной поляризации. Способ позволяет косвенным методом определить диаметр арматуры и других проводящих цилиндрических предметов в конденсированных средах. 9 ил.
Основные результаты: Способ получения радиоголограмм подповерхностных проводящих объектов цилиндрической формы, включающий в себя ступенчатое изменение сигнала в заданном диапазоне частот с равномерным шагом:от ;до ,где:k=0,72;k=0,81;D - диаметр антенны;с - скорость света, количество отдельных частот в диапазоне от f до f не менее пяти, отличающийся тем, что сканируется исследуемый участок поверхности, радиоголограмма исследуемого участка фокусируется и определяется ориентация проводящего заглубленного цилиндра, сначала антенна ориентируется по отношению к оси заглубленного цилиндра так, что вектор напряженности электрического поля располагается перпендикулярно оси цилиндра, сканируется поверхность при перпендикулярной поляризации, затем антенна ориентируется по отношению к оси цилиндра так, что вектор напряженности электрического поля располагается параллельно оси заглубленного цилиндра, и сканируется поверхность при параллельной поляризации, производится фокусировка радиоголограмм цилиндра при перпендикулярной и параллельной поляризациях, определяется глубина фокусировки изображений заглубленного цилиндра при перпендикулярной и параллельной поляризациях, радиус заглубленного цилиндра и глубина заложения находятся из выражений:r=l-l;h=l,где r - радиус заглубленного цилиндра, h - глубина заложения, l - глубина фокусировки изображений заглубленного цилиндра при перпендикулярной поляризации, l - глубина фокусировки изображений заглубленного цилиндра при параллельной поляризации.

1. Область техники.

Изобретение относится к области подповерхностной радиолокации, а именно к способам определения расположения и формы неоднородностей и включений в конденсированных средах.

2. Уровень техники.

Известен способ подповерхностного зондирования (Финкельштейн М.И., Кутев В.А., Золотарев В.П. Применение радиолокационного подповерхностного зондирования в инженерной геологии. М.: Недра, 1986, с.46). Он основано на использовании непрерывного сигнала с изменением частоты по симметричному или несимметричному пилообразному закону. Частота биений между опорным /прямым/ и отраженным сигналами является функцией расстояния до объекта.

Известен также способ зондирования конденсированных сред (Journal of Applied Physics, v.56, №9, 1984, p.2575) со ступенчатым изменением частоты в заданном диапазоне. Недостатком аналогов является невозможность определения глубины залегания объекта и его геометрических размеров.

Наиболее близким аналогом (прототипом) является способ зондирования конденсированных сред (заявка на изобретение RU 2000103678, G01V 3/12, G01N 22/00, от 17.02.2000) со ступенчатым изменением сигнала в заданном диапазоне частот при этом частоты зондирующего сигнала выбираются с равномерным шагом в диапазоне

от ;

до ,

где:

kmin=0,72;

kmax=0,81;

D - диаметр антенны;

с - скорость света, при этом количество отдельных частот в диапазоне от fmin до fmax должно быть не менее пяти. Недостатком прототипа является невозможность определения глубины залегания объекта и его геометрических размеров.

3. Сущность изобретения.

3.1. Задача.

Техническая задача состоит в устранении указанного недостатка за счет сканирования исследуемого участка поверхности, фокусировки радиоголограммы исследуемого объекта и определения ориентации проводящего заглубленного цилиндра, при этом сначала антенна ориентируется по отношению к оси цилиндра так, что вектор напряженности электрического поля, излучаемого антенной, располагается перпендикулярно оси заглубленного цилиндра и сканируется поверхность при перпендикулярной поляризации, антенна ориентируется по отношению к оси цилиндра так, что вектор напряженности электрического поля располагается параллельно оси цилиндра и сканируется поверхность при параллельной поляризации, в заключение производится фокусировка радиоголограмм цилиндра при перпендикулярной и параллельной поляризации и определяется глубина фокусировки изображений заглубленного цилиндра при перпендикулярной и параллельной поляризациях.

3.2. Отличительные признаки.

В отличие от известного способа, включающего в себя ступенчатое изменение сигнала в заданном диапазоне частот с равномерным шагом в диапазоне

от ;

до ,

где:

kmin=0,72;

kmax=0,81;

D - диаметр антенны;

с - скорость света, количество отдельных частот в диапазоне от fmin до fmax не меньше пяти, дополнительно фокусируется радиоголограмма исследуемого участка и определяется ориентация проводящего заглубленного цилиндра, при этом сначала антенна ориентируется по отношению к оси заглубленного цилиндра так, что вектор напряженности электрического поля располагается перпендикулярно оси цилиндра, сканируется поверхность при перпендикулярной поляризации, затем антенна ориентируется по отношению к оси цилиндра так, что вектор напряженности электрического поля располагается параллельно оси заглубленного цилиндра, сканируется поверхность при параллельной поляризации, в заключение производится фокусировка радиоголограмм цилиндра при перпендикулярной и параллельной поляризациях, определяется глубина фокусировки изображений заглубленного цилиндра при перпендикулярной поляризации и параллельной поляризации, радиус заглубленного цилиндра и глубина заложения находится из выражений:

r=l-l||;

h=l,

где r - радиус заглубленного цилиндра, h - глубина заложения, l - глубина фокусировки изображений заглубленного цилиндра при перпендикулярной поляризации, l|| - глубина фокусировки изображений заглубленного цилиндра при параллельной поляризации

3.3. Сущность способа.

Сущность способа состоит в том, что определяется глубина фокусировки изображений заглубленного цилиндра при перпендикулярной поляризации и параллельной поляризации, радиус заглубленного цилиндра и глубина заложения находится из выражений:

r=l-l||;

h=l,

где r - радиус заглубленного цилиндра, h - глубина заложения, l - глубина фокусировки изображений заглубленного цилиндра при перпендикулярной поляризации, l|| - глубина фокусировки изображений заглубленного цилиндра при параллельной поляризации

4. Перечень фигур, чертежей и иных материалов.

Фиг.1. Антенный блок радиоголографического локатора RASKAN (1 - передатчик; 2 - приемник; 3 - антенна; 4 - цилиндрический объект).

Фиг.2. График зависимости фазы отраженного сигнала от расстояния между антенной и осью цилиндра при перпендикулярной поляризации зондирующего сигнала.

Фиг.3. Положение фазовых центров при перпендикулярной поляризации зондирующего сигнала.

Фиг.4. График зависимости фазы отраженного сигнала от расстояния между антенной и осью цилиндра при параллельной поляризации зондирующего сигнала.

Фиг.5. Положение фазовых центров при параллельной поляризации зондирующего сигнала.

Фиг.6. Положения фазовых центров для арматуры диаметром 36 мм.

Фиг.7. Результаты сканирования цилиндрического образца диаметром 28 мм (среда - воздух).

Фиг.8. Результаты измерений для образцов арматуры в воздухе.

Фиг.9. Результаты измерений для арматуры, помещенной в бетон.

5. Сведения, подтверждающие возможность осуществления изобретения.

Экспериментальные исследования проводились в два этапа. На первом этапе исследований в воздушной среде использовались стандартная антенна локатора RASCAN и векторный анализатор цепей. Эксперименты проводились на нескольких образцах арматуры разных диаметров. Измерения проводились векторным анализатором цепей «Vector Network Analyzer R&S ZVA24 1145.1110.26» фирмы Rohde&Schwarz с диапазоном частот от 10 МГц до 24 ГГц. В качестве излучающей антенны использовался полуоткрытый волновой резонатор. На фиг.1 представлено схематическое изображение антенного блока радиоголографического локатора RASCAN.

Выход передатчика анализатора подключен к излучающему электроду передатчика 1, а вход приемника 2 подключен к диагностическому электроду 2. Оба электрода изолированы от корпуса антенны 3 и расположены на расстоянии l2 от проводящего донышка излучателя и на расстоянии l2 от объекта. Изменение поляризации падающей волны достигается поворотом цилиндрического объекта 4 на 90° относительно оси антенны.

С учетом обозначений, принятых на фиг.1, можно определить величину принимаемого приемником сигнала. Если пренебречь емкостной связью между электродами излучателя, то принимаемый сигнал можно рассматривать как суперпозицию волн, отраженных от объекта и проводящего донышка излучателя. При малом значении модуля коэффициента отражения от объекта (порядка 0,1) будем считать вклад второго отражения от объекта малым. Считаем, что коэффициент отражения от донышка равен единице по модулю и имеет фазу минус π. Комплексный коэффициент отражения волны от объекта Г будем считать по модулю меньше единицы и с некоторой фазой φ. Для настроенного резонатора примем l2=λ/4, где λ длина волны в резонаторе.

С учетом того, что

получим сигнал в приемнике Unp:

При резонансе показатель степени экспоненты в выражении (8) равен нулю или кратен 2 π. Обозначим расстояние l1, соответствующее резонансному значению принимаемого сигнала, как lphc=(2πn-φ)/2k.

Изменение значения фазы отраженного сигнала при этом может быть измерено по изменению расстояния lphc. Таким образом, расстояние lphc характеризует положение усредненного фазового центра рассеиваемого сигнала.

Определение положения резонанса осуществлялось экспериментально путем перемещения облучаемого предмета при неподвижной антенне до получения максимального сигнала в приемнике. Были проведены резонансные исследования для образцов арматуры диаметром 36, 24, 12, 10 мм. Частота передатчика 1 изменялась от 2,8 до 3,8 ГГц с шагом 0,2 ГГц. Облучение объекта проводилось при параллельной и перпендикулярной поляризациях падающей волны. Из измерений следовало, что при параллельной поляризации положение фазового центра определяется минимальным расстоянием до объекта, а при перпендикулярной поляризации - положением оси облучаемого цилиндра.

Тогда разность положений фазовых центров равна радиусу облучаемого цилиндра:

На фиг.2 и фиг.4 представлена теоретическая зависимость фазы отраженного сигнала от расстояния между антенной и осью цилиндра при двух ортогональных поляризациях для цилиндров разного радиуса. Соответствующее расположение цилиндров и положение фазовых центров рассеяния показано на фиг.3 и фиг.5.

Как видно из графиков, при перпендикулярной поляризации для цилиндров различных диаметров значение фазы отраженного сигнала практически совпадает и определяется положением оси цилиндра. Для параллельной поляризации положения резонансов для цилиндров разных радиусов отличаются на величину, пропорциональную разности радиусов.

Графики экспериментальных зависимостей положения фазовых центров от частоты падающей волны при двух ее ортогональных поляризациях для арматуры диаметром 36 мм представлены на фиг.6.

После усреднения по всем частотам получаем, что rэксп=21,83±1,83 мм при истинном значении r=18 мм.

На втором этапе экспериментальные исследования проводились с помощью радиоголографического локатора RASCAN в полосе частот 6,4-6,8 ГГц для образцов арматуры в воздухе и в бетоне. Полученные в результате сканирования радиоголограммы обрабатывались стандартным пакетом обработки локатора RASCAN, основанным на разложении функции апертуры по плоским волнам и обратном преобразовании Фурье.

Фокусировка изображения в радиолокаторе RASCAN осуществляется по критерию максимальной яркости. И при смещении положения фазового центра при изменении поляризации изображение фокусируется на разной глубине.

Результаты эксперимента для образца арматуры диаметром 28 мм представлены на фиг.7. Данные получены для параллельной и перпендикулярной поляризации падающей волны в воздухе.

При параллельной поляризации фокусировка производилась на глубину l||=49 мм. При перпендикулярной поляризации фокусировка производилась на глубину l=62 мм, таким образом, получаем радиус арматуры rэксп=l- l||=13 мм, при истинном значении r=14 мм.

Аналогично получим радиусы для других образцов арматуры (фиг.8).

Аналогичные эксперименты были проведены с арматурой, помещенной в бетон, диэлектрическая проницаемость бетона была принятой ε=3.

Полученные после обработки данных результаты приведены на фиг.9.

Полученные результаты позволяют косвенным методом определить диаметр арматуры по разности глубины фокусировки изображений при двух ортогональных поляризациях зондирующей волны.

Анализ, проведенный заявителем по известному ему уровню техники, показал, что предлагаемое изобретение, обладающее новизной и промышленной применимостью, отвечает в отношении совокупности его существенных признаков требованию критерия «изобретательский уровень», из уровня техники не известен также механизм достижения технического результата, раскрытого в материалах заявки.

Способ получения радиоголограмм подповерхностных проводящих объектов цилиндрической формы, включающий в себя ступенчатое изменение сигнала в заданном диапазоне частот с равномерным шагом:от ;до ,где:k=0,72;k=0,81;D - диаметр антенны;с - скорость света, количество отдельных частот в диапазоне от f до f не менее пяти, отличающийся тем, что сканируется исследуемый участок поверхности, радиоголограмма исследуемого участка фокусируется и определяется ориентация проводящего заглубленного цилиндра, сначала антенна ориентируется по отношению к оси заглубленного цилиндра так, что вектор напряженности электрического поля располагается перпендикулярно оси цилиндра, сканируется поверхность при перпендикулярной поляризации, затем антенна ориентируется по отношению к оси цилиндра так, что вектор напряженности электрического поля располагается параллельно оси заглубленного цилиндра, и сканируется поверхность при параллельной поляризации, производится фокусировка радиоголограмм цилиндра при перпендикулярной и параллельной поляризациях, определяется глубина фокусировки изображений заглубленного цилиндра при перпендикулярной и параллельной поляризациях, радиус заглубленного цилиндра и глубина заложения находятся из выражений:r=l-l;h=l,где r - радиус заглубленного цилиндра, h - глубина заложения, l - глубина фокусировки изображений заглубленного цилиндра при перпендикулярной поляризации, l - глубина фокусировки изображений заглубленного цилиндра при параллельной поляризации.
СПОСОБ ПОЛУЧЕНИЯ РАДИОГОЛОГРАММ ПОДПОВЕРХНОСТНЫХ ПРОВОДЯЩИХ ОБЪЕКТОВ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ
СПОСОБ ПОЛУЧЕНИЯ РАДИОГОЛОГРАММ ПОДПОВЕРХНОСТНЫХ ПРОВОДЯЩИХ ОБЪЕКТОВ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ
СПОСОБ ПОЛУЧЕНИЯ РАДИОГОЛОГРАММ ПОДПОВЕРХНОСТНЫХ ПРОВОДЯЩИХ ОБЪЕКТОВ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ
СПОСОБ ПОЛУЧЕНИЯ РАДИОГОЛОГРАММ ПОДПОВЕРХНОСТНЫХ ПРОВОДЯЩИХ ОБЪЕКТОВ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ
СПОСОБ ПОЛУЧЕНИЯ РАДИОГОЛОГРАММ ПОДПОВЕРХНОСТНЫХ ПРОВОДЯЩИХ ОБЪЕКТОВ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ
СПОСОБ ПОЛУЧЕНИЯ РАДИОГОЛОГРАММ ПОДПОВЕРХНОСТНЫХ ПРОВОДЯЩИХ ОБЪЕКТОВ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ
СПОСОБ ПОЛУЧЕНИЯ РАДИОГОЛОГРАММ ПОДПОВЕРХНОСТНЫХ ПРОВОДЯЩИХ ОБЪЕКТОВ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ
СПОСОБ ПОЛУЧЕНИЯ РАДИОГОЛОГРАММ ПОДПОВЕРХНОСТНЫХ ПРОВОДЯЩИХ ОБЪЕКТОВ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ
СПОСОБ ПОЛУЧЕНИЯ РАДИОГОЛОГРАММ ПОДПОВЕРХНОСТНЫХ ПРОВОДЯЩИХ ОБЪЕКТОВ ЦИЛИНДРИЧЕСКОЙ ФОРМЫ
Источник поступления информации: Роспатент

Showing 1-10 of 12 items.
20.05.2013
№216.012.4234

Способ получения радиоголограмм подповерхностных объектов

Изобретение относится к области подповерхностной радиолокации, а именно к устройствам определения расположения и формы неоднородностей и включений в конденсированных средах. Способ включает в себя ступенчатое изменение сигнала в заданном диапазоне частот с равномерным шагом в диапазоне от до...
Тип: Изобретение
Номер охранного документа: 0002482518
Дата охранного документа: 20.05.2013
20.07.2013
№216.012.57b7

Пневматическое оружие

Изобретение относится к пневматическому оружию. Пневматическое оружие содержит ствол с пулей, камеру сжатия с поршнем, камеру расширения с поршнем, шток, соединяющий оба поршня в систему, резервуар с запасенным газом, устройство, регулирующее подачу запасенного газа из резервуара в камеру...
Тип: Изобретение
Номер охранного документа: 0002488063
Дата охранного документа: 20.07.2013
10.08.2013
№216.012.5c76

Способ оптического определения неровностей и дефектов рельсового пути

Изобретение относится к области железнодорожного транспорта, а именно к способам определения неровностей и других дефектов рельсового пути. Способ заключается в том, что определяют уровень электромагнитного излучения поверхности контролируемого участка железнодорожного пути путем...
Тип: Изобретение
Номер охранного документа: 0002489291
Дата охранного документа: 10.08.2013
20.04.2014
№216.012.bb2a

Система контроля вибрации и температуры с беспроводными датчиками и узел крепления пьезокерамического элемента в беспроводном датчике

(57) Заявленная группа изобретений относится к области измерительной техники. Система характеризуется наличием базовой станции и беспроводных датчиков, выполненных с возможностью обмена информацией по радиоканалам в цифровом формате благодаря использованию уникальных серийных номеров,...
Тип: Изобретение
Номер охранного документа: 0002513642
Дата охранного документа: 20.04.2014
10.06.2014
№216.012.cc53

Оптический способ определения скорости железнодорожного состава

Изобретение относится к области железнодорожного транспорта, а именно к способам определения скорости железнодорожного состава. Способ заключается в том, что регистраторы, представляющие собой два расположенные на заданной высоте от железнодорожного полотна видеорегистратора, производят съемку...
Тип: Изобретение
Номер охранного документа: 0002518078
Дата охранного документа: 10.06.2014
10.11.2014
№216.013.03f8

Способ дефектоскопии теплозащитных и теплоизоляционных покрытий изделий

Изобретение относится к области дефектоскопии с использованием сверхвысоких частот, а именно к способам определения дефектов теплозащитных и теплоизоляционных покрытий изделий ракетно-космической техники. Повышение точности определения глубины залегания дефекта является техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002532414
Дата охранного документа: 10.11.2014
20.12.2014
№216.013.1083

Анемометр

Предложенное изобретение относится к микромеханическим системам для измерения потоков жидкостей и газов и определения направления данных потоков. Заявленный анемометр, предназначенный для измерения указанных величин, содержит цилиндр, датчики, расположенные на его поверхности, и блок съема и...
Тип: Изобретение
Номер охранного документа: 0002535650
Дата охранного документа: 20.12.2014
20.02.2015
№216.013.2825

Скважинный гамма-детектор

Изобретение относится к устройствам для регистрации гамма-излучения, предназначено для определения положения бурового инструмента относительно кровли и подошвы разбуриваемого пласта и может быть использовано в скважинных приборах телеметрических систем. Скважинный гамма-детектор содержит...
Тип: Изобретение
Номер охранного документа: 0002541734
Дата охранного документа: 20.02.2015
10.10.2015
№216.013.8148

Способ досмотра скрытых предметов под одеждой и в переносимом багаже человека, передвигающегося естественно

Использование: для досмотра скрытых предметов под одеждой и в переносимом багаже человека. Сущность изобретения заключается в том, что осуществляют облучение СВЧ-излучением контролируемой области с помощью одного или более элементарных излучателей, региструют отраженный от контролируемой...
Тип: Изобретение
Номер охранного документа: 0002564693
Дата охранного документа: 10.10.2015
25.08.2017
№217.015.ba52

Способ увеличения эффективного времени накопления сигнала в системах досмотра, формирующих изображение скрытых предметов

Способ увеличения эффективного времени накопления сигнала дополнительно используют видеоизображение от видеоканала оптического диапазона с известным соответствием между пикселями каналов собственного электромагнитного излучения досматриваемого лица и видеоизображения от видеоканала оптического...
Тип: Изобретение
Номер охранного документа: 0002615516
Дата охранного документа: 05.04.2017
Showing 1-10 of 13 items.
20.05.2013
№216.012.4234

Способ получения радиоголограмм подповерхностных объектов

Изобретение относится к области подповерхностной радиолокации, а именно к устройствам определения расположения и формы неоднородностей и включений в конденсированных средах. Способ включает в себя ступенчатое изменение сигнала в заданном диапазоне частот с равномерным шагом в диапазоне от до...
Тип: Изобретение
Номер охранного документа: 0002482518
Дата охранного документа: 20.05.2013
20.07.2013
№216.012.57b7

Пневматическое оружие

Изобретение относится к пневматическому оружию. Пневматическое оружие содержит ствол с пулей, камеру сжатия с поршнем, камеру расширения с поршнем, шток, соединяющий оба поршня в систему, резервуар с запасенным газом, устройство, регулирующее подачу запасенного газа из резервуара в камеру...
Тип: Изобретение
Номер охранного документа: 0002488063
Дата охранного документа: 20.07.2013
10.08.2013
№216.012.5c76

Способ оптического определения неровностей и дефектов рельсового пути

Изобретение относится к области железнодорожного транспорта, а именно к способам определения неровностей и других дефектов рельсового пути. Способ заключается в том, что определяют уровень электромагнитного излучения поверхности контролируемого участка железнодорожного пути путем...
Тип: Изобретение
Номер охранного документа: 0002489291
Дата охранного документа: 10.08.2013
20.04.2014
№216.012.bb2a

Система контроля вибрации и температуры с беспроводными датчиками и узел крепления пьезокерамического элемента в беспроводном датчике

(57) Заявленная группа изобретений относится к области измерительной техники. Система характеризуется наличием базовой станции и беспроводных датчиков, выполненных с возможностью обмена информацией по радиоканалам в цифровом формате благодаря использованию уникальных серийных номеров,...
Тип: Изобретение
Номер охранного документа: 0002513642
Дата охранного документа: 20.04.2014
10.06.2014
№216.012.cc53

Оптический способ определения скорости железнодорожного состава

Изобретение относится к области железнодорожного транспорта, а именно к способам определения скорости железнодорожного состава. Способ заключается в том, что регистраторы, представляющие собой два расположенные на заданной высоте от железнодорожного полотна видеорегистратора, производят съемку...
Тип: Изобретение
Номер охранного документа: 0002518078
Дата охранного документа: 10.06.2014
10.11.2014
№216.013.03f8

Способ дефектоскопии теплозащитных и теплоизоляционных покрытий изделий

Изобретение относится к области дефектоскопии с использованием сверхвысоких частот, а именно к способам определения дефектов теплозащитных и теплоизоляционных покрытий изделий ракетно-космической техники. Повышение точности определения глубины залегания дефекта является техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002532414
Дата охранного документа: 10.11.2014
20.12.2014
№216.013.1083

Анемометр

Предложенное изобретение относится к микромеханическим системам для измерения потоков жидкостей и газов и определения направления данных потоков. Заявленный анемометр, предназначенный для измерения указанных величин, содержит цилиндр, датчики, расположенные на его поверхности, и блок съема и...
Тип: Изобретение
Номер охранного документа: 0002535650
Дата охранного документа: 20.12.2014
20.02.2015
№216.013.2825

Скважинный гамма-детектор

Изобретение относится к устройствам для регистрации гамма-излучения, предназначено для определения положения бурового инструмента относительно кровли и подошвы разбуриваемого пласта и может быть использовано в скважинных приборах телеметрических систем. Скважинный гамма-детектор содержит...
Тип: Изобретение
Номер охранного документа: 0002541734
Дата охранного документа: 20.02.2015
10.10.2015
№216.013.8148

Способ досмотра скрытых предметов под одеждой и в переносимом багаже человека, передвигающегося естественно

Использование: для досмотра скрытых предметов под одеждой и в переносимом багаже человека. Сущность изобретения заключается в том, что осуществляют облучение СВЧ-излучением контролируемой области с помощью одного или более элементарных излучателей, региструют отраженный от контролируемой...
Тип: Изобретение
Номер охранного документа: 0002564693
Дата охранного документа: 10.10.2015
25.08.2017
№217.015.ba52

Способ увеличения эффективного времени накопления сигнала в системах досмотра, формирующих изображение скрытых предметов

Способ увеличения эффективного времени накопления сигнала дополнительно используют видеоизображение от видеоканала оптического диапазона с известным соответствием между пикселями каналов собственного электромагнитного излучения досматриваемого лица и видеоизображения от видеоканала оптического...
Тип: Изобретение
Номер охранного документа: 0002615516
Дата охранного документа: 05.04.2017
+ добавить свой РИД