×
10.09.2015
216.013.7976

Результат интеллектуальной деятельности: РЕГАЗИФИКАЦИЯ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА ПО ЦИКЛУ БРАЙТОНА

Вид РИД

Изобретение

№ охранного документа
0002562683
Дата охранного документа
10.09.2015
Аннотация: Группа изобретений относится к регазификации сжиженного природного газа (СПГ), а именно к способам и системам, в которых используются циклы Брайтона для регазификации СПГ. Энергоустановка, включающая устройство для регазификации сжиженного природного газа, содержит: компрессор, предназначенный для сжатия рабочей текучей среды; систему рекуперации тепла, предназначенную для обеспечения тепла для рабочей текучей среды; турбину, предназначенную для производства работы с использованием рабочей текучей среды. Также один или более теплообменников, предназначенных для передачи тепла от рабочей текучей среды к сжиженному природному газу первой стадии, находящемуся при первом давлении, и к одному сжиженному природному газу второй стадии, находящемуся при втором давлении, а также к сжатой рабочей текучей среде. Также описаны способ для осуществления регазификации сжиженного природного газа и способ модификации устройства для регазификации сжиженного природного газа. Группа изобретений позволяет повысить эффективность процесса сжижения, а также общую эффективность цикла выработки электроэнергии с использованием сбрасываемого тепла. 3 н. и 7 з.п. ф-лы, 5 ил.

Настоящее изобретение в общем относится к регазификации сжиженного природного газа (СПГ), а более конкретно к способам и системам, в которых используют циклы Брайтона для регазификации СПГ.

Обычно природный газ транспортируют в сжиженной форме, то есть в виде СПГ, который впоследствии регазифицируют для распределения в виде трубопроводного природного газа или для использования путем сжигания. СПГ обычно транспортируют при температуре примерно минус 1600C, при давлении примерно от 0,1 до 0,2 МПа (от 1 до 2 бар), и перед его потреблением или распределением его необходимо регазифицировать до температуры примерно от 10 до 300°C и давлении примерно от 3 до 25,0 МПа (от 30 до 250 бар).

В некоторых традиционных технологиях в качестве источника тепла для регазификации СПГ применяют морскую воду, и такое применение при некоторых обстоятельствах может оказывать отрицательное влияние на окружающую среду. Например, охлаждение морской воды с использованием способа регазификации СПГ, включающего морскую воду в качестве источника тепла, может оказать непредсказуемое воздействие на морскую флору и фауну и на экосистему в непосредственной близости от установки регазификации СПГ. Что касается других традиционных способов, можно сжигать природный газ для получения тепла, необходимого для регазификации СПГ, что повышает «углеродный след» использования СПГ, например, для получения электроэнергии. Кроме того, в некоторых технологиях, например, согласно документу США №3,992,891, в качестве источника тепла для регазификации СПГ применяют горячие отходящие газы, возникающие в результате основного цикла выработки энергии. В таких системах сбрасываемая горячая рабочая текучая среда, совершив работу в основном цикле, например, пройдя через турбину, не выбрасывается в окружающую среду, а направляется в теплообменник, где является источником тепла для регазификации СПГ. В таких системах регазификация СПГ осуществляется в одну стадию, что не обеспечивает максимальной эффективности процесса сжижения и общей эффективности цикла выработки энергии с использованием сбрасываемого тепла.

Соответственно, существует потребность в улучшенном способе и установке для регазификации СПГ, с помощью которых преодолевают по меньшей мере некоторые из вышеупомянутых проблем, связанных с традиционными способами регазификации СПГ.

Согласно одному из воплощений данного изобретения, энергоустановка, включающая устройство для регазификации сжиженного природного газа (СПГ), включает компрессор, предназначенный для сжатия рабочей текучей среды, систему рекуперации тепла, предназначенную для подачи тепла к рабочей текучей среде, турбину, предназначенную для получения работы с использованием рабочей текучей среды, и один или более теплообменников, предназначенных для переноса тепла от рабочей текучей среды. Теплообменник предназначен для переноса тепла к сжиженному природному газу первой стадии, находящемуся при первом давлении, и по меньшей мере к одному сжиженному газу второй стадии, находящемуся при втором давлении, а также к сжатой рабочей текучей среде.

Согласно другому воплощению данного изобретения, способ регазификации сжиженного природного газа в работающей на СПГ энергоустановке включает извлечение тепла из основного цикла энергоустановки и нагревание рабочей текучей среды дополнительного цикла с использованием извлеченного тепла, для обеспечения нагретой рабочей текучей среды. По меньшей мере часть энергии нагретой рабочей текучей среды высвобождают с получением работы. После получения работы тепло из рабочей текучей среды переносят к сжиженному природному газу первой стадии, находящемуся при первом давлении, и по меньшей мере к одному сжиженному природному газу второй стадии, находящемуся при втором давлении, а также к сжатой рабочей текучей среде.

В соответствии с другим воплощением данного изобретения, способ модификации устройства для регазификации сжиженного природного газа в работающей на СПГ энергоустановке включает обеспечение одного или двух теплообменников, предназначенных для переноса тепла от рабочей текучей среды к сжиженному природному газу первой стадии, находящемуся при первом давлении, и по меньшей мере к одному сжиженному природному газу второй стадии, находящемуся при втором давлении, а также к сжатой рабочей текучей среде. Обеспечены также по меньшей мере один насос СПГ первой стадии, предназначенный для получения сжиженного природного газа первой стадии при первом давлении, и по меньшей мере один насос СПГ второй стадии, предназначенный для обеспечения сжиженного природного газа второй стадии при втором давлении. Один или более теплообменников, насос СПГ первой стадии и насос СПГ второй стадии формируют часть модифицированного дополнительного цикла Брайтона с использованием сбрасываемого тепла работающей на СПГ энергоустановки.

Список чертежей

Эти и другие признаки, аспекты и преимущества данного изобретения станут более понятны при ознакомлении с последующим подробным описанием со ссылкой на сопровождающие чертежи, в которых одинаковые номера позиций обозначают одинаковые части во всех чертежах, на которых:

Фиг. 1 представляет собой схему, иллюстрирующую основной цикл и дополнительный цикл Брайтона, с двухстадийной газификацией СПГ, согласно одному из воплощений данного изобретения;

Фиг. 2 представляет собой график зависимости температуры от энтропии, иллюстрирующий интегрированный каскадный цикл Брайтона, с использованием азота в качестве рабочей текучей среды, с двумя уровнями давления регазификации СПГ, согласно одному из воплощений данного изобретения;

Фиг. 3 представляет собой схему, иллюстрирующую основной цикл и дополнительный цикл Брайтона, с двухстадийной газификацией СПГ, согласно другому воплощению данного изобретения;

Фиг. 4 представляет собой схему, иллюстрирующую основной цикл и дополнительный цикл Брайтона, с рекуперацией и с одностадийной газификацией СПГ, согласно другому воплощению данного изобретения;

Фиг. 5 представляет собой схему, иллюстрирующую основной цикл и гибридный дополнительный цикл Брайтона, с рекуперацией и с двухстадийной газификацией СПГ, согласно другому воплощению данного изобретения.

Как используют здесь, элемент или функцию, упомянутые в единственном числе, следует понимать как не исключающие наличия множественного числа указанных элементов или функций, если такое исключение ясно не оговорено. Кроме того, ссылки на «одно воплощение» заявленного изобретения не следует интерпретировать, как исключающие существование дополнительных воплощений, которые также включают упомянутые признаки.

Как отмечено, в одном воплощении данное изобретение обеспечивает энергоустановку, включающую устройство для регазификации сжиженного природного газа (СПГ), причем устройство включает: (а) компрессор, предназначенный для сжатия рабочей текучей среды; (b) систему рекуперации тепла, предназначенную для обеспечения тепла для рабочей текучей среды; (с) турбину, предназначенную для получения работы с использованием рабочей текучей среды, и (d) один или более теплообменников, предназначенных для переноса энергии от рабочей текучей среды к сжиженному природному газу первой стадии, находящемуся при первом давлении, и по меньшей мере к одному сжиженному природному газу второй стадии, находящемуся при втором давлении, а также к сжатой рабочей текучей среде.

В различных воплощениях энергоустановка включает насос для СПГ первой стадии, который можно применять для получения сжиженного природного газа первой стадии, находящегося при первом давлении, и насос для СПГ второй стадии для получения сжиженного природного газа второй стадии, находящегося при втором давлении.

Рабочую текучую среду используют для улавливания тепла, вырабатываемого энергоустановкой, и постадийного переноса его к газифицируемому СПГ. В различных воплощениях рабочую текучую среду нагревают в системе рекуперации тепла, предназначенной для обеспечения тепла для рабочей текучей среды. В одном из воплощений рабочую текучую среду нагревают в системе рекуперации тепла до температуры примерно от 300 до 700°С. В одном из воплощений система рекуперации тепла предназначена для извлечения тепла из горячих отходящих газов, производимых применяемой для выработки энергии турбиной. В другом воплощении система рекуперации тепла предназначена для извлечения тепла из внешнего теплового цикла. В одном воплощении внешний тепловой цикл представляет собой основной цикл работающей на СПГ энергоустановки.

В различных воплощениях перенос тепла от рабочей текучей среды к СПГ осуществляют в теплообменнике. В одном воплощении теплообменник предназначен для обеспечения нагретого сжиженного природного газа первой стадии, находящегося при температуре примерно от -140°С до -110°С.

В одном из воплощений теплообменник предназначен для приема сжиженного природного газа второй стадии, находящегося при температуре примерно от -130°С до -100°С и давлении примерно от 5 до 70 МПа (от 50 до 700 бар). В одном из воплощений теплообменник предназначен для обеспечения нагретого сжиженного природного газа второй стадии при температуре примерно от 0°С до 40°С.

В одном из воплощений присутствуют по меньшей мере два теплообменника: первый теплообменник и второй теплообменник. В одном из таких воплощений первый теплообменник предназначен для обеспечения нагретого сжиженного природного газа первой стадии, а второй теплообменник предназначен для обеспечения нагретого сжиженного природного газа второй стадии.

В одном из воплощений теплообменник предназначен для переноса тепла к сжиженному природному газу второй стадии и к сжатой рабочей текучей среде. В одном из воплощений сжатую рабочую текучую среду выпускают в теплообменник при температуре примерно от -30°С до 50°С и давлении примерно от 10 до 20 МПа (от 100 до 200 бар). При таких условиях можно сказать, что теплообменник предназначен для приема сжатой рабочей текучей среды при температуре примерно от -30°С до 50°С и давлении примерно от 10 до 20 МПа (от 100 до 200 бар).

В одном из воплощений данное изобретение обеспечивает способ регазификации сжиженного природного газа в работающей на СПГ энергоустановке; способ включает: (а) рекуперацию тепла из основного цикла энергоустановки и нагревание рабочей текучей среды дополнительного цикла энергоустановки, для обеспечения нагретой рабочей текучей среды; (b) высвобождение по меньшей мере части энергии, содержащейся в нагретой рабочей текучей среде, с получением работы, и (с) перенос тепла от рабочей текучей среды после получения работы к сжиженному природному газу первой стадии, находящемуся при первом давлении, и по меньшей мере к одному сжиженному природному газу второй стадии, находящемуся при втором давлении, а также к сжатой рабочей текучей среде.

В одном из воплощений, в способе используют рабочую текучую среду, которую выбирают из группы, состоящей из аргона, гелия, диоксида углерода и азота. В другом воплощении, в способе используют рабочую текучую среду, которая включает по меньшей мере один из следующих газов: аргон, гелий, диоксид углерода и азот. В одном из воплощений рабочей текучей средой является азот.

В одном из воплощений рабочую текучую среду нагревают в системе рекуперации тепла, связанной с основным циклом энергоустановки, до температуры примерно от 300°С до 700°С. В другом воплощении рабочую текучую среду нагревают в системе рекуперации тепла, связанной с основным циклом энергоустановки, до температуры примерно от 350°С до 650°С. В еще одном воплощении рабочую текучую среду нагревают в системе рекуперации тепла, связанной с основным циклом энергоустановки, до температуры примерно от 400°С до 600°С.

В одном из воплощений способа по данному изобретению сжиженный природный газ первой стадии имеет температуру примерно от -160°С до -140°С и давление примерно от 0,1 до 5,0 МПа (от 1 до 50 бар). В другом воплощении сжиженный природный газ первой стадии имеет температуру примерно от -160°С до -140°С и давление примерно от 0,2 до 1,5 МПа (от 2 до 15 бар).

В одном из воплощений способа по данному изобретению сжиженный природный газ первой стадии вводят в теплообменник, где он поглощает тепло из рабочей текучей среды, с обеспечением на выходе из теплообменника нагретого сжиженного природного газа первой стадии, имеющего температуру примерно от -140°С и -110°С.

В одном из воплощений способа по данному изобретению сжиженный природный газ второй стадии вводят в теплообменник при температуре примерно от -130°С до -100°С и давлении примерно от 5 до 70 МПа (от 50 до 700 бар). Сжиженный природный газ второй стадии поглощает тепло из рабочей текучей среды, вводимой в теплообменник, с обеспечением на выходе из теплообменника нагретого сжиженного природного газа первой стадии, имеющего температуру примерно от 0°С до 40°С.

В одном из воплощений способа по данному изобретению тепло переносят от рабочей текучей среды к сжиженному природному газу первой стадии в первом теплообменнике, а от рабочей текучей среды к сжиженному природному газу второй стадии во втором теплообменнике, чтобы получить нагретый сжиженный природный газ первой стадии и нагретый сжиженный природный газ второй стадии.

В одном из воплощений способа по данному изобретению для переноса тепла от рабочей текучей среды к сжиженному природному газу первой стадии и к сжиженному природному газу второй стадии используют один теплообменник. Таким образом, тепло переносят от рабочей текучей среды к сжиженному природному газу первой стадии в первом теплообменнике, и от рабочей текучей среды к сжиженному природному газу второй стадии в том же первом теплообменнике, чтобы получить нагретый сжиженный природный газ первой стадии и нагретый сжиженный природный газ второй стадии.

Как указано, в одном из воплощений способа по данному изобретению тепло извлекают из основного цикла энергоустановки и используют для нагревания рабочей текучей среды дополнительного цикла энергоустановки, чтобы обеспечить нагретую рабочую текучую среду. Рабочую текучую среду можно нагревать в системе рекуперации тепла, входящей в состав энергоустановки. Обычно рабочую текучую среду вводят в теплообменник в точке, расположенной перед устройством для извлечения энергии, например, турбиной, которая использует часть энергии, которая содержится в нагретой рабочей текучей среде, для получения работы. В одном из воплощений рабочую текучую среду вводят в теплообменник в точке, расположенной перед устройством для извлечения энергии, и переносят тепло к сжиженному природному газу первой стадии для обеспечения нагретого сжиженного природного газа первой стадии. Рабочую текучую среду, выходящую из теплообменника, можно затем подвергнуть стадии сжатия, с получением сжатой рабочей текучей среды. Из этой сжатой рабочей текучей среды можно извлечь дополнительное тепло, пропуская сжатую рабочую текучую среду через один или более теплообменников, в контакте или со сжиженным природным газом первой стадии, или со сжиженным природным газом второй стадии, или с ними обоими. В одном из воплощений температура сжатой рабочей текучей среды является достаточно низкой, чтобы в процессе ее прохождения через теплообменник тепло переходило к сжатой рабочей текучей среде. При таких обстоятельствах говорят, что теплообменник предназначен для переноса тепла к сжатой рабочей текучей среде. В одном из воплощений сжатую рабочую текучую среду вводят в теплообменник при температуре примерно от -30°С до 50°С и давлении примерно от 10 до 20 МПа (от 100 до 200 бар).

На Фиг.1 показана энергоустановка, или система, 100, включающая устройство для регазификации сжиженного природного газа (СПГ), согласно одному из воплощений данного изобретения. Система 100 включает основной цикл 110, в котором используют топливо (например, регазифицированный СПГ), для сжигания с окислителем (например, воздухом из окружающей среды), чтобы получить энергию и, кроме того, горячие отходящие газы. В соответствии с несколькими воплощениями изобретения, представленными здесь, основной цикл 110 представляет собой открытый цикл Брайтона. Горячие отходящие газы из основного цикла 110 направляют по трубопроводу через систему 112 рекуперации тепла, предназначенную для поглощения тепла из отходящих газов и передачи его рабочей текучей среде дополнительного цикла 132 Брайтона. Система 100 обеспечивает как выработку электрической энергии, так и эффективную регазификацию сжиженного природного газа на двух уровнях давления. Система 100 включает два расположенных каскадом цикла Брайтона, то есть основной цикл 110 Брайтона и закрытый дополнительный цикл 132 Брайтона. Специалисты понимают, что основной цикл 100 показан как цикл Брайтона просто в качестве иллюстрации, а не в качестве ограничения. В воплощении данного изобретения, проиллюстрированном на Фиг.1, основной цикл 110 Брайтона основан на простом открытом цикле газовой турбины, а дополнительный цикл 132 основан на простом закрытом цикле Брайтона, работающем с соответствующей рабочей текучей средой. В воплощении, проиллюстрированном на Фиг.1, дополнительный цикл 132 Брайтона предназначен для двухстадийной регазификации СПГ.

Дополнительный цикл 132 включает турбину 114 для получения работы посредством рабочей текучей среды; теплообменник 118 для переноса тепла от рабочей текучей среды к СПГ для проведения регазификации и компрессор 116 для сжатия рабочей текучей среды. В проиллюстрированных воплощениях рабочей текучей средой дополнительного цикла является любая подходящая текучая среда, которая относительно инертна при нормальных условиях и может быть выбрана для подавления пожара, взрыва или других обстоятельств, представляющих угрозу безопасности. В общем, подходящие рабочие текучие среды включают, не ограничиваясь этим, инертные газы, такие как аргон, гелий, азот, диоксид углерода и пр. В то время как в обсуждаемых здесь воплощениях в качестве рабочей текучей среды предполагают азот, специалисты легко могут предположить, что в пределах сущности и объема защиты данного изобретения можно использовать и другие известные рабочие текучие среды. Система 100 дополнительно включает насос для СПГ первой стадии для подачи сжиженного природного газа первой стадии в теплообменник 118, и насос для СПГ второй стадии для подачи сжиженного природного газа второй стадии в теплообменник 118. Как показано на Фиг.1, теплообменник 118 представляет собой теплообменник с тремя потоками, предназначенный для теплообмена между рабочей текучей средой и сжиженным природным газом первой и второй стадии. Теплообменник 118 с тремя потоками включает поток 140 нагретой рабочей текучей среды, поток 142 СПГ первой стадии и поток 144 СПГ второй стадии.

Согласно воплощению, приведенному на Фиг.1, при эксплуатации система 112 рекуперации тепла нагревает рабочую текучую среду (или повышает ее энергию) перед тем, как рабочая текучая среда поступает в турбину 114. Турбина 114 производит работу (используемую, например, для получения электроэнергии) и выпускает рабочую текучую среду, которая отдала турбине по меньшей мере некоторое количество энергии, и затем рабочая текучая среда проходит через теплообменник 118 в качестве потока 140 нагретой рабочей текучей среды. Теплообменник 118 обеспечивает регазификацию сжиженного природного газа в две стадии. В показанном воплощении система 100, например, включает основной цикл 110 газовой турбины и дополнительный цикл 132 Брайтона (с азотом в качестве рабочей текучей среды), в котором СПГ регазифицируют путем переноса тепла от рабочей текучей среды к СПГ на двух уровнях давления. В этом примере сжиженный природный газ регазифицируют, и регазифицированный природный газ можно направлять в трубопровод или другую установку, которой необходим природный газ в газообразном состоянии. В одном воплощении регазифицированный природный газ получают при давлении примерно от 8 до 25 МПа (от 80 до 250 бар). В другом воплощении регазифицированный природный газ получают при давлении примерно от 5 до 70 МПа (от 50 до 700 бар). В одном воплощении регазифицированный природный газ получают при температуре примерно от 10°С до 30°С. На первой стадии регазификации насос 120 для СПГ первой стадии обеспечивает повышение давления сжиженного природного газа первой стадии примерно до 0,1-5 МПа (1-50 бар), при температуре примерно от -160°С до -140°С. Сжатый СПГ поступает в теплообменник 118, и он показан на Фиг.1 как поток 142 СПГ первой стадии. Сжиженный природный газ первой стадии поглощает тепло от рабочей текучей среды и выходит из теплообменника 118 в жидком состоянии, при температуре примерно от -140°С до -110°С. После этого, на второй стадии, насос 122 для СПГ второй стадии обеспечивает повышение давления сжиженного природного газа второй стадии до давления испарения, примерно от 5 до 70 МПа (от 50 до 700 бар) (в зависимости от требуемого давления поставки), и при температуре примерно от -130°С до -100°С. Сжиженный природный газ второй стадии поступает в теплообменник 118 и показан на Фиг.1 как поток 144 СПГ второй стадии. Сжиженный природный газ второй стадии поглощает тепло из рабочей текучей среды и выходит из теплообменника 118 по существу в полностью газообразном состоянии, обычно под давлением примерно от 5 до 70 МПа (от 50 до 700 бар) и при температуре примерно от 0°С до 40°С. Соответственно, сжиженный природный газ регазифицируют, посредством использования двухстадийного сжатия, с более высокой эффективностью по сравнению, например, с 2-каскадным циклом Брайтона с одностадийной регазификацией.

Вкратце, теплообменник 118 с тремя потоками работает таким образом, что сжиженный природный газ первой стадии, сжатый до промежуточного давления (преимущественно как можно более низкого), направляют в поток 142 СПГ первой стадии при очень низкой температуре. Сжиженный природный газ первой стадии поглощает тепло из рабочей текучей среды и выходит в виде потока 142 СПГ первой стадии в жидком состоянии. Этот сжиженный природный газ, выходящий из теплообменника, затем сжимают до более высокого давления (вторая стадия) и снова вводят в теплообменник 118 в виде потока 144 СПГ второй стадии, который должен полностью перейти в газообразное состояние при втором термическом контакте с рабочей текучей средой, имеющей относительно высокую температуру (примерно 50-250°С, при которой рабочая текучая среда выходит из турбины) по сравнению с обрабатываемым сжиженным природным газом. Однако специалисты могут понять, что концепции, описанные здесь в отношении различных примеров, не ограничены теплообменником с тремя потоками, таким как 118, и включают другие варианты, хорошо известные специалистам. Например, согласно одному из воплощений (описанному далее в связи с Фиг.3), для регазификации СПГ с использованием способа, обеспечиваемого данным изобретением, можно применять два отдельных теплообменника.

Было обнаружено, что снижение минимальной температуры применяемой рабочей текучей среды оказывает благоприятный эффект на общую эффективность процесса ожижения СПГ и повышает электрическую эффективность дополнительного цикла. В воплощении данного изобретения, скомпонованном, как показано на Фиг.1, температуру сжиженного природного газа первой стадии, входящего в теплообменник 118, поддерживают как можно более низкой, и избегают резкого возрастания давления (и температуры) СПГ, что является признаками, характерными для одностадийных систем регазификации. Преимущественно, сжиженный природный газ регазифицируют (и перекачивают) в две стадии, вместо одной. Нагнетание (и, таким образом, повышение давления) сжиженного природного газа в несколько стадий дает возможность лучше регулировать температуру (как можно более низкую) сжиженного природного газа, подаваемого в теплообменник 118 в ходе нескольких стадий, и преимущественно обеспечивает повышение общей эффективности дополнительного цикла и процесса сжижения в целом.

Фиг.2 представляет собой зависимость 200 температуры от энтропии для каскадного цикла Брайтона с использованием азота в качестве рабочей текучей среды (смоделированного), в котором регазификацию СПГ проводят на двух уровнях давления, например, как в системе 100, описанной на Фиг.1. В смоделированных результатах, приведенных в зависимости 200, с целью моделирования были сделаны различные допущения. Так, предположили, что эффективность основного цикла равна 42%, температура отходящего газа равна 460°С, температура СПГ равна -162°С, а регазифицированный СПГ имеет температуру 10-15°С и давление 20 МПа (200 бар). В результате моделирования было установлено, и это можно заключить из графика 200, что общая эффективность возросла с 53,8% до 55%, а общая выработка электроэнергии возросла примерно на 2%, для примера с использованием способа по данному изобретению. Достигаемая эффективность по меньшей мере частично является результатом эффективной передачи тепла от азота (рабочая текучая среда) к сжиженному природному газу. Согласно примеру, поскольку располагаемое тепло, содержащееся в отходящем газе основного цикла, не изменяется, и характеристики рабочей текучей среды, поступающей в систему 112 рекуперации тепла и выходящей из нее, остаются такими же, как и при обычной конфигурации процесса регазификации СПГ на одном уровне давления, массовый поток рабочей текучей среды дополнительного цикла может оставаться неизменным независимо от конструкции и характеристик системы 112 рекуперации тепла. Соответственно, различные воплощения данного изобретения легко можно скомпоновать, или модифицировать, на существующих энергоустановках, и, таким образом, повысить связанную с этим эффективность энергоустановки.

На Фиг.3 показана энергоустановка, или система, 300, включающая устройство для регазификации сжиженного природного газа (СПГ), сходная с системой 100, в соответствии с другим воплощением данного изобретения. Система 300 включает основной цикл 310, систему 312 рекуперации тепла, для извлечения тепла из основного цикла 310 и передачи его рабочей текучей среде дополнительного цикла 332, турбину 314, компрессор 316, первый теплообменник 318, содержащий поток 340 нагретой рабочей текучей среды и поток 342 СПГ первой стадии, второй теплообменник 320, содержащий поток 341 нагретой рабочей текучей среды и поток 344 СПГ второй стадии, насос 322 для СПГ первой стадии и насос 324 для СПГ второй стадии. Как первый, так и второй теплообменники 318, 320 являются теплообменниками с двумя потоками. Сжиженный природный газ на первой стадии закачивают в виде потока 342 СПГ первой стадии с использованием насоса 322 для СПГ первой стадии, при давлении примерно от 0,1 до 5,0 МПа (от 1 до 50 бар) и температуре примерно от -160°С до -140°С. Сжиженный природный газ первой стадии выходит из первого теплообменника 318 при температуре примерно от -140°С до -110°С. После этого, на второй стадии, во второй теплообменник 320 закачивают сжиженный природный газ в виде потока 344 СПГ второй стадии с использованием насоса 324 для СПГ второй стадии, при давлении примерно от 5 до 70 МПа (от 50 до 700 бар) (в зависимости от требуемого давления поставки) и температуре примерно от -130°С до -100°С. Сжиженный природный газ второй стадии выходит из второго теплообменника 320 при давлении примерно от 5 до 70 МПа (от 50 до 700 бар), в одном воплощении, примерно от 8 до 25 МПа (от 80 до 250 бар). Температура природного газа, выходящего из второго теплообменника 320, обычно составляет примерно от 0°С до 40°С.

На Фиг.4 показана энергоустановка, или система, 400, включающая устройство для регазификации сжиженного природного газа (СПГ), согласно другому воплощению данного изобретения. Система 400 включает основной цикл 410, систему 412 рекуперации тепла для получения тепла из основного цикла и передачи его рабочей текучей среде дополнительного цикла 432, турбину 414, компрессор 416, теплообменник 418 с тремя потоками и насос 420 для СПГ первой стадии. Теплообменник 418 с тремя потоками включает поток 440 нагретой рабочей текучей среды, поток 442 СПГ первой стадии и рекуперационный поток 444 рабочей текучей среды. Система 400 работает подобно, например, системе 100 на Фиг.1, и дополнительно, система 400 включает одностадийную регазификацию СПГ, и рабочая текучая среда, выходящая из компрессора 416 соединена с теплообменником 418 для рекуперации дополнительного цикла 432 Брайтона. Соответственно, дополнительный цикл 432 Брайтона включает одностадийную газификацию СПГ и стадию рекуперации для рабочей текучей среды. Рабочая текучая среда поступает в теплообменник 418 в рекуперационном потоке 444 рабочей текучей среды при давлении примерно от 10 до 20 МПа (от 100 до 200 бар) и температуре примерно от -50°С до 50°С, поглощает тепло из потока 440 нагретой рабочей текучей среды и выходит из теплообменника 418 примерно при таком же давлении и температуре примерно от 50°С до 200°С. Сжиженный природный газ на первой стадии закачивают в поток 442 СПГ первой стадии с использованием насоса 420 для СПГ первой стадии, примерно при 0,1-5 МПа (1-50 бар,) и при температуре примерно от -160°С до -140°С. В воплощении, показанном на Фиг.4, сжиженный природный газ первой стадии выходит из первого теплообменника 418 при температуре примерно от 0°С до 40°С.

На Фиг.5 показана энергоустановка, или система, 500, включающая устройство для регазификации сжиженного природного газа (СПГ), согласно другому воплощению данного изобретения. Система 500 включает основной цикл 510, систему 512 рекуперации тепла, для извлечения тепла из основного цикла 510 и передачи его рабочей текучей среде дополнительного цикла 532, турбину 514, компрессор 516, теплообменник 518 с четырьмя потоками, насос 520 для СПГ первой стадии и насос 522 для СПГ второй стадии. Теплообменник 518 с четырьмя потоками включает поток 540 нагретой рабочей текучей среды, поток 542 СПГ первой стадии, поток 544 СПГ второй стадии и рекуперационный поток 546 рабочей текучей среды. Система 500 работает, например, подобно системе 100 на Фиг.1, и дополнительно, рабочая текучая среда, которая выходит из компрессора 516, соединена с теплообменником 518 для рекуперации дополнительного цикла 532 Брайтона. Соответственно, дополнительный цикл 532 Брайтона включает двухстадийную регазификацию СПГ и стадию рекуперации для рабочей текучей среды. Рабочая текучая среда поступает в теплообменник 518 в рекуперационном потоке 546 рабочей текучей среды при давлении примерно от 10 до 20 МПа (от 100 до 200 бар) и температуре примерно от -50°С до 50°С, поглощает тепло из потока 540 нагретой рабочей текучей среды и выходит из теплообменника 518 при температуре примерно от 50°С и 200°С. Далее, на первой стадии газификации, насос 520 для СПГ первой стадии обеспечивает повышение давления сжиженного природного газа первой стадии до величины примерно от 0,1 до 5 МПа (от 1 до 50 бар), при температуре примерно от -160°С до -140°С. Затем сжиженный природный газ первой стадии поступает в теплообменник 518 в виде потока 542 СПГ первой стадии. Сжиженный природный газ первой стадии поглощает тепло из рабочей текучей среды и выходит из первого теплообменника 518, все еще в жидком состоянии, при температуре примерно от -140°С до -110°С. После этого, на второй стадии, насос 522 для СПГ второй стадии обеспечивает повышение давления сжиженного природного газа второй стадии до давления испарения, примерно от 5 до 70 МПа (от 50 до 700 бар), в одном воплощении примерно от 8 до 25 МПа (от 80 до 250 бар) (в зависимости от требуемого давления поставки), при температуре примерно от -130°С до -100°С. Затем сжиженный природный газ второй стадии поступает в теплообменник 518 в виде потока 544 СПГ второй стадии. Сжиженный природный газ второй стадии поглощает тепло из рабочей текучей среды и выходит из теплообменника 518 по существу в полностью газообразном состоянии, при давлении примерно от 5 до 70 МПа (от 50 до 700 бар) и температуре примерно от 0°С до 40°С.

В цикле Брайтона с рекуперацией, после прохождения через систему рекуперации тепла, нагретую рабочую текучую среду расширяют посредством турбины, а затем направляют в теплообменник 518 с четырьмя потоками, который обеспечивает регазификацию сжиженного природного газа и одновременно работает как рекуператор для подогрева рабочей текучей среды высокого давления, выходящей из компрессора 516. Поскольку азот подогревают, на выходе компрессора получают более низкие температуры и, следовательно, компрессор работает при более низких соотношениях давления по сравнению с циклом Брайтона без рекуперации. Таким образом, для циклов Брайтона с рекуперацией можно получить более высокие значения электрического кпд по сравнению с воплощениями без рекуперации.

Как обсуждено здесь, возможны разнообразные варианты данного изобретения. Например, здесь были подробно обсуждены различные модификации воплощения данного изобретения, проиллюстрированного системой 100 Фиг.1. В одном воплощении рекуператор, используемый в дополнительном цикле Брайтона, может включать как теплообменник с четырьмя потоками (как это проиллюстрировано воплощением, изображенным на Фиг.5 как система 500), так и теплообменник с тремя потоками и отдельный рекуператор (не показан), или два отдельных теплообменника для СПГ и рекуператор. В другом воплощении перекачивание СПГ первой и второй стадии можно осуществить одним насосом, имеющим две ступени давления. В одном воплощении каждая ступень давления смонтирована на общем ведущем валу двухступенчатого насоса. Такие изменения, перестановки и сочетания воплощений, описанных здесь, находятся в пределах объема и сущности данного изобретения.

Кроме того, следует принимать во внимание, что, в то время как различные воплощения проиллюстрированы в тексте данного описания для дополнительного цикла Брайтона, где в качестве рабочей текучей среды применяют азот, можно использовать и другие рабочие текучие среды. Как отмечено, при реализации данного изобретения можно использовать любую пригодную рабочую текучую среду. Обычно рабочая текучая среда является либо инертной, либо нереакционноспособной по отношению к среде энергоустановки. Подходящие рабочие текучие среды включают, например, аргон, гелий, диоксид углерода и их смеси. В зависимости от конкретной применяемой рабочей текучей среды, могут соответственно изменяться различные диапазоны температур и давлений, как это ясно специалистам в данной области, ознакомленным с этим описанием.

Воплощения данного изобретения обеспечивают ряд преимуществ по сравнению с известными техническими решениями. Например, путем перекачивания СПГ при двух различных уровнях давления можно получить очень низкое связанное с этим увеличение температуры СПГ на первой стадии сжатия. Кроме того, минимальная полезная температура рабочей текучей среды уменьшается. Кроме того, значительно возрастает электрический кпд дополнительного цикла по сравнению с конфигурацией регазификации СПГ на одном уровне давления. В различных воплощениях возрастает гибкость системы для удовлетворения требований к регазифицированному СПГ в отношении поставки/хранения, так как можно достичь очень высокого давления испарения СПГ. Более того, перекачивание можно проводить с использованием одного насоса с многочисленными ступенями давления. Преимущественно, различные воплощения, раскрытые здесь, можно легко осуществить в результате модификации существующих энергоустановок. Конкретные компоненты существующих энергоустановок можно соответствующим образом модифицировать или заменить для обеспечения энергоустановок, соответствующих различным описанным здесь воплощениям. Далее, преобразование СПГ из жидкого состояния в газообразное состояние можно осуществить с такой же или более высокой надежностью, как и в простых каскадных конфигурациях, поскольку в некоторых воплощениях может не потребоваться никакого дополнительного оборудования. Наконец, объем теплообменника с тремя потоками можно увеличить по сравнению с сопоставимым теплообменником с двумя потоками, и, следовательно, в результате можно получить более высокую удельную мощность на единицу объема. Можно достичь более низкого выделения СО2 на единицу электричества, полученного на единицу потребленного топлива, поскольку при использовании воплощений данного изобретения можно достичь более высокого электрического кпд и более высокого выхода по мощности (по сравнению с сопоставимыми известными системами).

Если не указано другое, технические и научные термины, используемые здесь, имеют такое же значение, которое обычно подразумевают специалисты в области, к которой относится данное изобретение. Термины «первый», «второй» и т.п., как их используют здесь, не обозначают какого-либо порядка, количества или важности, а их используют для того, чтобы отличить один элемент от другого. Также и термины, употребляемые в единственном числе, не обозначают ограничения по количеству, а обозначают наличие по меньшей мере одного из упомянутых объектов; и термины «передний», «задний», «нижний» и/или «верхний», если не указано иначе, используют просто для удобства описания, и они не ограничены каким-либо положением или ориентацией в пространстве. Если приведены диапазоны, то конечные значения всех диапазонов, относящихся к одному и тому же компоненту или свойству, включены в диапазон, и их можно независимо сочетать (например, диапазоны «примерно до 25% масс. или, более конкретно, примерно от 5% масс. до 20% масс.» включают в себя конечные точки и все промежуточные значения диапазонов «примерно от 5% масс. до 25% масс.», и т.д.). Также, например, температуру, обозначенную выражением «примерно от -130°С до -100°С» следует интерпретировать, как включающую каждую из названных температур -130°С и -100°С. Определение «примерно», используемое в связи с количеством, подразумевает включение указанного численного значения и имеет смысл, определяемый контекстом (например, включает степень погрешности, связанной с измерением конкретной величины).

Поскольку только некоторые признаки изобретения были проиллюстрированы и описаны в тексте данного описания, специалисты могут предложить многие модификации и изменения. Таким образом, следует понимать, что прилагаемая формула изобретения охватывает все такие модификации и изменения, как попадающие в область защиты данного изобретения.

Список обозначений

110 Основной цикл

112 Система рекуперации тепла

114 Турбина

116 Компрессор

118 Теплообменник

120 Насос СПГ первой стадии

122 Насос СПГ второй стадии

140 Поток нагретой рабочей текучей среды

142 Поток СПГ первой стадии

144 Поток СПГ второй стадии

200 График зависимости температуры от энтропии

310 Основной цикл

312 Система рекуперации тепла

314 Турбина

316 Компрессор

318 Первый теплообменник

320 Второй теплообменник

322 Насос СПГ первой стадии

324 Насос СПГ второй стадии

340 Поток нагретой рабочей текучей среды первого теплообменника 318

341 Поток нагретой рабочей текучей среды второго теплообменника 320

342 Поток СПГ первой стадии

344 Поток СПГ второй стадии

410 Основной цикл

412 Система рекуперации тепла

414 Турбина

416 Компрессор

418 Теплообменник

420 Насос СПГ первой стадии

440 Поток нагретой рабочей текучей среды

442 Поток СПГ первой стадии

444 Рекуперационный поток рабочей текучей среды

510 Основной цикл

512 Система рекуперации тепла

514 Турбина

516 Компрессор

518 Теплообменник

520 Насос СПГ первой стадии

522 Насос СПГ второй стадии

540 Поток нагретой рабочей текучей среды

542 Поток СПГ первой стадии

544 Поток СПГ второй стадии

546 Рекуперационный поток рабочей текучей среды


РЕГАЗИФИКАЦИЯ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА ПО ЦИКЛУ БРАЙТОНА
РЕГАЗИФИКАЦИЯ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА ПО ЦИКЛУ БРАЙТОНА
РЕГАЗИФИКАЦИЯ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА ПО ЦИКЛУ БРАЙТОНА
РЕГАЗИФИКАЦИЯ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА ПО ЦИКЛУ БРАЙТОНА
РЕГАЗИФИКАЦИЯ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА ПО ЦИКЛУ БРАЙТОНА
Источник поступления информации: Роспатент

Showing 41-50 of 353 items.
20.10.2014
№216.012.fee6

Газотурбинная установка и установка, содержащая лопатки-форсунки (варианты)

Газотурбинная установка содержит компрессор, выполненный с возможностью приема и сжатия рабочей текучей среды, камеру сгорания, турбину. Камера сгорания выполнена с возможностью приема сжатой рабочей текучей среды из компрессора и топлива и с возможностью сжигания смеси сжатой рабочей текучей...
Тип: Изобретение
Номер охранного документа: 0002531110
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.04d7

Осевой объемный компонент газотурбинного двигателя (варианты), осевой объемный компрессор газотурбинного двигателя и осевой объемный расширитель газотурбинного двигателя

Осевой объемный компонент (3) газотурбинного двигателя, такой как компрессор, или турбина, или расширитель (88), содержит роторный узел (15), проходящий от полностью осевого впуска (20) до находящегося ниже по потоку и отстоящего по оси осевого выпуска (22). Указанный роторный узел (15)...
Тип: Изобретение
Номер охранного документа: 0002532637
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.077c

Схема и топология высоконадежной системы силовой электроники

Изобретение относится к силовой электронике. Технический результат заключается в упрощении схемы резервирования системы силовой электроники при сохранении ее надежности. Для этого предложена система силовой электроники, содержащая набор одинаковых полупроводниковых переключающих устройств,...
Тип: Изобретение
Номер охранного документа: 0002533317
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0add

Камера сгорания для газовой турбины(варианты) и способ эксплуатации газовой турбины

Камера сгорания для газовой турбины содержит группу радиально внешних сопел, по меньшей мере центральное сопло, первую и вторую камеры сгорания. Внешние сопла расположены по существу по кольцевой схеме и выпускной конец каждого из них расположен с возможностью подачи топлива и/или воздуха в...
Тип: Изобретение
Номер охранного документа: 0002534189
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0fb3

Устройство для электроэрозионного объемного копирования (варианты)

Изобретение относится к электроэрозионной обработке. Устройство 100 для электроэрозионного объемного копирования содержит бак 110 для размещения текучей среды 112 и электроды 104, 106, устанавливаемые в баке 110 и имеющие формы 120, задающие формы участкам 122, 162 заготовки 102. Держатель 130...
Тип: Изобретение
Номер охранного документа: 0002535436
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1047

Установка, содержащая вращательный механизм, и установка, содержащая ротор

Уплотнительный узел (86), расположенный между вращающимся компонентом (82) и неподвижным компонентом (84) вращательного механизма, содержит зубцы (94) и гребешки (96). Зубцы (94) расположены в первых осевых местах (89) на расстоянии друг от друга вдоль оси вращения вращающегося компонента (82)....
Тип: Изобретение
Номер охранного документа: 0002535589
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.10fe

Приводная система и устройство для подъема

Группа изобретений относится к подъемным механизмам. Установка для применения в качестве буровой лебедки содержит двигатель, второй двигатель, планетарную трансмиссию, соединенную с двигателями, и катушку, соединенную с трансмиссией и имеющую внутренний объем для размещения двигателей и...
Тип: Изобретение
Номер охранного документа: 0002535773
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.112d

Устройство для электроимпульсной обработки

Изобретение относится к электроимпульсной обработке. Устройство содержит дисковый нож, двигатель, соединенный с указанным ножом с обеспечением его вращения, систему управления электрическим разрядом, функционально соединенную с дисковым ножом и заготовкой и обеспечивающую резание заготовки...
Тип: Изобретение
Номер охранного документа: 0002535820
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.117a

Турбинная установка, содержащая роторную машину, и турбинная установка, содержащая балансировочный груз

Турбинная установка содержит роторную машину (12, 14, 24) и балансировочный груз (78). Роторная машина содержит вращающийся компонент (62) с канавкой (76), имеющей основание (84) и пару наклонных сторон (86), сходящихся друг к другу в первом направлении (66) от основания (84) с образованием...
Тип: Изобретение
Номер охранного документа: 0002535897
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.126d

Газификатор (варианты)

Изобретение относится к газификаторам, а более конкретно к узлу охлаждающей камеры для газификатора. Газификатор (10) содержит камеру (14) сгорания, в которой обеспечивается сгорание горючего топлива для производства синтетического горючего газа, охлаждающую камеру (16), содержащую жидкий...
Тип: Изобретение
Номер охранного документа: 0002536140
Дата охранного документа: 20.12.2014
Showing 41-50 of 295 items.
10.10.2014
№216.012.fa89

Система управления с обратной связью для управления сгоранием в двигателях

Изобретение может быть использовано в системах управления с обратной связью для управления сгоранием в двигателях внутреннего сгорания. Система (10) двигателя внутреннего сгорания содержит многоцилиндровый двигатель (12), нагрузку (14), соединенную с двигателем посредством коленчатого вала...
Тип: Изобретение
Номер охранного документа: 0002529983
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fa8d

Камера сгорания и способ эксплуатации камеры сгорания

Камера сгорания содержит торцевую крышку, камеру воспламенения, расположенную за торцевой крышкой, форсунки, расположенные радиально в торцевой крышке и содержащие первое подмножество форсунок и второе подмножество форсунок. Камера сгорания содержит также закрепленный колпак, окружающий каждую...
Тип: Изобретение
Номер охранного документа: 0002529987
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd47

Структуры ударного воздействия для систем охлаждения

Структура ударного воздействия в системе ударного охлаждения имеет отверстия для ударного воздействия, выполненные с обеспечением пропускания потока охладителя и направления полученных струй охладителя на целевую поверхность, расположенную напротив указанной структуры, через образованную между...
Тип: Изобретение
Номер охранного документа: 0002530685
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe88

Противоточная паровая турбина с частями высокого и низкого давления

Противоточная паровая турбина содержит паровую турбину высокого и низкого давления, общий роторный вал, первый паровой тракт, второй паровой тракт и средства направления первого парового тракта из паровой турбины высокого давления в противоположном направлении через паровую турбину низкого...
Тип: Изобретение
Номер охранного документа: 0002531016
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fecd

Стопорная втулка для предотвращения поворота и стопорный узел из фланца и трубы

Изобретение относится к конструкции стопорной втулки для использования с узлами из фланца и трубы. Указанная конструкция содержит стопорную втулку, расположенную между трубой и фланцем для обеспечения предотвращения поворота трубы относительно фланца. На первом конце стопорной втулки выполнены,...
Тип: Изобретение
Номер охранного документа: 0002531085
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fee6

Газотурбинная установка и установка, содержащая лопатки-форсунки (варианты)

Газотурбинная установка содержит компрессор, выполненный с возможностью приема и сжатия рабочей текучей среды, камеру сгорания, турбину. Камера сгорания выполнена с возможностью приема сжатой рабочей текучей среды из компрессора и топлива и с возможностью сжигания смеси сжатой рабочей текучей...
Тип: Изобретение
Номер охранного документа: 0002531110
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.04d7

Осевой объемный компонент газотурбинного двигателя (варианты), осевой объемный компрессор газотурбинного двигателя и осевой объемный расширитель газотурбинного двигателя

Осевой объемный компонент (3) газотурбинного двигателя, такой как компрессор, или турбина, или расширитель (88), содержит роторный узел (15), проходящий от полностью осевого впуска (20) до находящегося ниже по потоку и отстоящего по оси осевого выпуска (22). Указанный роторный узел (15)...
Тип: Изобретение
Номер охранного документа: 0002532637
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.077c

Схема и топология высоконадежной системы силовой электроники

Изобретение относится к силовой электронике. Технический результат заключается в упрощении схемы резервирования системы силовой электроники при сохранении ее надежности. Для этого предложена система силовой электроники, содержащая набор одинаковых полупроводниковых переключающих устройств,...
Тип: Изобретение
Номер охранного документа: 0002533317
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0add

Камера сгорания для газовой турбины(варианты) и способ эксплуатации газовой турбины

Камера сгорания для газовой турбины содержит группу радиально внешних сопел, по меньшей мере центральное сопло, первую и вторую камеры сгорания. Внешние сопла расположены по существу по кольцевой схеме и выпускной конец каждого из них расположен с возможностью подачи топлива и/или воздуха в...
Тип: Изобретение
Номер охранного документа: 0002534189
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0fb3

Устройство для электроэрозионного объемного копирования (варианты)

Изобретение относится к электроэрозионной обработке. Устройство 100 для электроэрозионного объемного копирования содержит бак 110 для размещения текучей среды 112 и электроды 104, 106, устанавливаемые в баке 110 и имеющие формы 120, задающие формы участкам 122, 162 заготовки 102. Держатель 130...
Тип: Изобретение
Номер охранного документа: 0002535436
Дата охранного документа: 10.12.2014
+ добавить свой РИД