×
10.09.2015
216.013.78ab

Результат интеллектуальной деятельности: АДДУКТЫ ДОДЕКАГИДРО-КЛОЗО-ДОДЕКАБОРАТА ХИТОЗАНА С СОЛЯМИ-ОКИСЛИТЕЛЯМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химии соединений додекагидро-клозо-додекаборатного , хитозана, солей переходных металлов, а именно к аддуктам додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами переходных металлов, в частности Cu(II), или Со(II), или Ni(II), или Zn(II), или Мn(II), и способу их получения. Полученные аддукты могут найти применение в качестве энергоемких воспламеняющих добавок различных составов, например, пиротехнических и инициирующих взрывчатых веществ. 2 н.п. ф-лы, 3 ил., 10 прим.

Изобретение относится к химии соединений додекагидро-клозо-додекаборатного В12Н122--аниона, хитозана и солей переходных металлов, а именно к аддуктам додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами переходных металлов, в частности Cu(II), или Со(II), или Ni(II), или Zn(II), или Mn(II), и способу их получения. Полученные аддукты могут найти применение в качестве энергоемких воспламеняющих добавок различных составов, например, пиротехнических и инициирующих взрывчатых веществ.

Элементный состав аниона В12Н122- открывает определенные перспективы для получения соединений, пригодных в качестве энергоемких компонентов энергонасыщенных материалов различного назначения.

Недостатком многих солей В12Н122--аниона является их высокая термоустойчивость, низкая горючесть и неполнота сгорания, что в итоге не только затрудняет их воспламенение, но и не позволяет полностью реализовать их высокую энергоемкость. Это объясняется образованием защитного расплава оксида бора на поверхности горящей частицы, затрудняющей доступ к ее внутренним слоям кислороду воздуха или окислителям, в сочетании с которыми используется боргидридное соединение.

Известны двойные додекагидро-клозо-додекаборат-нитраты рубидия и цезия состава M2B12H12×MNO3, где М - Rb, Cs. Сочетание в их структуре на молекулярном уровне горючего (В12Н122--анионы) и окислителя (NO3--анионы) приводит к повышенной реакционной способности этих двойных солей. Горение частиц двойного соединения происходит изнутри и возникает меньше препятствий для более глубокого окисления боргидридного компонента, по сравнению с механическими смесями (композитами). В них, даже при очень тонком помоле частиц горючего и окислителя и их равномерном распределении по композиту, по мере взаимодействия на границе между частицами возникает слой защитного расплава.

Благодаря воспламеняемости и относительно высокому экзоэффекту их сгорания M2B12H12×MNO3 предложено использовать в качестве воспламеняющего вещества (Пат. США №3184286, опубл. 18.05.1965).

Соединения M2B12H12×MNO3, где М - Rb, Cs, получают взаимодействием в водном растворе веществ, содержащих в своем составе анионы В12Н122-, NO3-- и катионы Rb+, Cs+. Образовавшийся труднорастворимый осадок двойной соли M2B12H12×MNO3 отфильтровывают и, с целью очистки от примесей, проводят перекристаллизацию (Канаева О.А., Кузнецов Н.Т., Сосновская О.О., Гоева Л.В. // Журн. неорг. хим. 1980. №9. С. 2380-2383).

Недостатком соединений M2B12H12×MNO3, где М - Rb, Cs при использовании их в качестве воспламеняющих веществ является дороговизна входящих в их состав рубидия и цезия. Кроме того, их трудно воспламенить. Температура вспышки соединений M2B12H12×MNO3 лежит выше 600°С.

Известна соль додекагидро-клозо-додекаборатной кислоты Н2В12Н12 и хитозана C6O4H9NH2 - додекагидро-клозо-додекаборат хитозана (C6O4H9NH3)2B12H12 (Пат. РФ №2158221, опубл. 27.10.2000 г. ). Благодаря особенностям структуры этого соединения, а именно тонкому на молекулярном уровне распределению горючего (В12Н122--анионы) и окислителя (кислородсодержащие группировки хитозана), свободному доступу кислорода воздуха к центрам горения, а также вспучиванию при нагревании с резким увеличением объема горящего материала и образованием пористой высокоплавкой углеродистой фазы, создаются благоприятные условия для быстрого и полного протекания твердогазофазного горения. Температура вспышки (C6O4H9NH3)2B12H12 около 300°С, а его сгорание происходит с образованием черного остатка, представляющего собой смесь сажи и борного ангидрида и/или борной кислоты.

Соединение (C6O4H9NH3)2B12H12 получают взаимодействием хитозана с кислотой Н2В12Н12 или солей хитозана с Н2В12Н12 или ее солями. Образовавшийся нерастворимый (C6O4H9NH3)2B12H12 отделяют фильтрованием или центрифугированием, отмывают от остатков маточного раствора и сушат при температуре около 105°С до постоянной массы. В результате получают твердый компактный продукт (в виде пленок, пластин, объемных материалов), который может быть измельчен в порошок. Недостатком додекагидро-клозо-додекабората хитозана является невысокое содержание кислорода в его составе (26,3 мас.%), что приводит к неполному сгоранию углерода.

Наиболее близким техническим решением к заявляемому изобретению являются аддукты додекагидро-клозо-додекабората хитозана с хлорной кислотой и перхлоратом аммония состава (C6O4H9NH3)2B12H12×nMClO4, где М - Н, NH4; 0<n<8 (Пат. РФ №2394840, опубл. 20.07.2010 г.). Их образование объясняется тем, что помимо донорных атомов азота аминогрупп в структуре (C6O4H9NH3)2B12H12 (см. фиг. 1) присутствуют 4 неравнозначные пары атомов кислорода, которые, в принципе, тоже являются потенциальными донорами электронов. Первая пара атомов кислорода (I) представлена гидроксильными ОН--группами атомов углерода, присоединенных к глюкозаминовому звену хитозана. Вторая пара атомов кислорода (II) находится в виде двух концевых ОН--групп, связанных с кольцевыми атомами углерода глюкозаминового звена хитозана. Третья пара атомов кислорода (III), так называемого тетрагидропиранового, находится в гексагональных кольцах хитозана. И, наконец, есть еще четвертая пара мостиковых атомов кислорода (IV), которые соединяют два соседних глюкозаминовых звена хитозана. Как отмечается в работе (Скоробогатова Е.В., Трактина Е.П., Гринвальд И.И. и др. // Журн. прикл. хим. 2008. Т. 81, №4. С. 672), наиболее подходящими для этого являются атомы кислорода тетрагидропирановой группы и мостикового звена, не только благодаря более высоким донорным свойствам, но и по стерической доступности.

Непосредственное введение окислителя в структуру (C6O4H9NH3)2B12H12 увеличивает реакционноспособность этих аддуктов и они разлагаются намного активнее по сравнению с исходным додекагидро-клозо-додекаборатом хитозана (см. фиг. 2). Например, аддукты состава (C6O4H9NH3)2B12H12×0,25NH4ClO4 разлагаются в виде взрыва с образованием борной кислоты, при этом отсутствует недогоревший углеродистый остаток. Кроме того, более полному сгоранию аддуктов способствует повышенное содержание в их составе кислорода. Для сравнения, в аддукте состава (C6O4H9NH3)2B12H12×NH4ClO4 оно равно 31,7 мас.%, что существенно выше, чем в исходном (C6O4H9NH3)2B12H12 (26,3 мас.%).

Аддукты (C6O4H9NH3)2B12H12×nHClO4 получают совместным концентрированием смеси додекагидро-клозо-додекабората хитозана и хлорной кислоты, взятых в заданном соотношении, и последующей сушкой над осушающим агентом, например Р2О5. Аддукты (C6O4H9NH3)2B12H12×nNH4ClO4 получают обработкой аддуктов (C6O4H9NH3)2B12H12×nHClO4 газообразным аммиаком и последующей сушкой при 100-105°С.

Недостатком аддуктов с хлорной кислотой является их очень высокая гигроскопичность, что существенно ограничивает их использование как энергоемкого компонента. Аддукты с перхлоратом аммония содержат недостаточное количество кислорода.

Задачей изобретения является получение нового высоко реакционноспособного химического соединения В12Н122--аниона с более высоким содержанием кислорода.

Поставленная задача решается аддуктами следующего состава (C6O4H9NH3)2B12H12×nMA2, где 0<n<8; М - Cu(II), или Со(II), или Ni(II), или Zn(II), или Mn(II); A - NO3- или ClO4-.

На фиг. 3 показан фрагмент модели структуры аддукта состава (C6O4H9NH3)2B12H12×M(ClO4)2.

Обзор патентной и научной литературы не выявил соединений заявляемого состава. В результате проведенных исследований разработаны способы получения вышеназванных аддуктов, изучены их свойства и найдены оптимальные соотношения между додекагидро-клозо-додекаборатом хитозана и окислителями, которые обеспечивают их энергичное и полное окисление.

Новые аддукты состава (C6O4H9NH3)2B12H12×MA2 получают взаимодействие водного геля (C6O4H9NH3)2B12H12 и водного раствора МА2, взятых в заданном мольном соотношении, где М - Cu(II), или Со(II), или Ni(II), или Zn(II), или Mn(II); А - NO3- или ClO4-, с последующей сушкой смеси над осушающим агентом, например Р2О5, до постоянной массы.

Преимуществом заявляемых аддуктов по сравнению с прототипом является более высокое содержание в них кислорода. Например, при присоединении к одному донорному атому кислорода глюкозаминового звена хитозана одной молекулы перхлората меди содержание кислорода в аддукте составляет 34,2%. Аналогичное присоединение к одному донорному атому кислорода глюкозаминового звена хитозана одной молекулы перхлората аммония обеспечивает 31,7%-ное содержание кислорода в аддукте. Связано это с тем, что в первом случае катион меди вводит с собой 2 моля перхлорат-аниона. В случае же присоединения аммонийного катиона вводится только 1 моль перхлорат-аниона. Кроме того, присутствие в продуктах сгорания заявляемых аддуктов высокоплавкой фазы оксидов переходных металлов катализирует процесс горения.

Проведенными исследованиями установлено, что аддукты додекагидро-клозо-додекабората хитозана с перхлоратами переходных металлов разлагаются в виде взрыва, а с нитратами переходных металлов - в виде вспышки с образованием в твердом остатке борной кислоты и оксидов переходных металлов. Показано, что количество введенного окислителя должно быть достаточным для активного разложения аддуктов. В этом случае теплота, выделившаяся в результате внутримолекулярного окисления боргидридного аниона кислородом введенного окислителя, прогревает продукты полураспада аддуктов до высоких температур, достаточных для вовлечения кислорода воздуха в процесс их полного окисления. При меньшем количестве введенного МА2, выделившейся теплоты недостаточно для вовлечения кислорода воздуха в процесс их полного окисления. Большее количество окислителя заметно повышает чувствительность аддуктов к механическому воздействию.

Образование аддуктов, а не механической смеси, подтверждают рентгенофазовым анализом. В дифрактограммах аддуктов отсутствуют отражения введенных солей переходных металлов. В случае механической смеси они проявлялись бы отдельной фазой.

Для определения качественного состава проводят анализ ИК-спектров аддуктов. Наличие полос поглощения хитозана в совокупности с основными полосами поглощения В12Н122--аниона (2480 см-1), -NO3- (1385 см-1) и ClO4- (1080 см-1) подтверждает отсутствие окислительно-восстановительного взаимодействия между компонентами аддуктов.

Химический анализ аддуктов на переходные металлы (Cu(II), или Со(II), или Ni(II), или Zn(II), или Mn(II) проводят следующим образом. К навеске аддукта добавляют 100 мл 0,05 N азотной кислоты, перемешивают при 40-50°С для более полной экстракции соли окислителя в раствор и фильтруют. Осадок промывают таким же раствором до полного исчезновения в фильтрате катионов указанных переходных металлов. Фильтраты объединяют и определяют содержание металла методом атомно-адсорбционной спектроскопии (ААС).

Содержание В12Н122--аниона в аддуктах определяют его осаждением в виде малорастворимого Ag2B12H12 (Кузнецов Н.Т., Куликова Л.Н. // Журн. аналит. хим. 1976. Т. 31, №7. С. 1312). Для этого к навеске аддукта приливают 100 мл 0,05 N раствора NaOH. При этом в осадок выпадает гидроксид соответствующего металла и хитозан, а в раствор переходит Na2B12H12, который отделяют от осадка. Полноту отмывки осадка от Na2B12H12 контролируют методом ААС. Промывной раствор объединяют с маточным и доводят до метки в мерной колбе. Далее к аликвоте раствора Na2B12H12 добавляют азотную кислоту до рН 3-4 и создают небольшой избыток 2 N раствора AgNO3. Белый осадок Ag2B12H12 отфильтровывают на взвешенном стеклянном пористом фильтре, промывают водой и сушат при 105-110°С до постоянной массы.

Таким образом, техническим результатом заявляемого изобретения являются новые аддукты додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами меди, или никеля, или кобальта, или цинка, или марганца общей формулы (C6O4H9NH3)2B12H12×nMA2, где 0<n<8, М - Cu(II), или Со(II), или Ni(II), или Zn(II), или Mn(II); A - NO3- или ClO4-.

Изобретение иллюстрируется следующими примерами.

Пример 1. Для получения исходного додекагидро-клозо-додекабората хитозана используют хитозан со степенью дезацетилирования 75%, имеющий следующий элементный состав, мас.%: С - 45,5; Н - 6,8; N - 8,1; О - 39,6. Это соответствует брутто-формуле C6,5O4,25H9,5NH2 и его относительной молекулярной массе 171,7 а.е.м. Соответственно, додекагидро-клозо-додекаборат хитозана имеет брутто-формулу (С6,5O4,25H9,5NH3)2B12H12 и относительную молекулярную массу 487,26 а.е.м.

К 6,15460 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 0,94735 г (1,94 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 0,09190 г (0,49 мг-моль) Cu(NO3)2, что соответствует мольному соотношению 1 к 0,25. Смесь перемешивают в гомогенную массу и сушат при комнатной температуре, периодически измельчая смесь. Затем еще влажный продукт (25-30% воды) перетирают в порошок и сушат в эксикаторе над Р2О5 до постоянной массы. Получают 1,03405 г продукта, что соответствует 99,5%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·0,25Cu(NO3)2, мас.%: Cu - 3,0; В12Н12 - 26,6.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·0,25Cu(NO3)2, мас.%: Cu - 2,9; В12Н12 - 26,6.

Пример 2. К 5,80250 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 0,89315 г (1,83 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 0,06770 г (0,37 мг-моль) Со(NO3)2, что соответствует мольному соотношению 1 к 0,20. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 1, 0,95605 г продукта, что соответствует 99,5%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·0,20Co(NO3)2, мас.%: Со - 2,2; В12Н12 - 27,1.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·0,20Co(NO3)2, мас.%: Со - 2,2; B12H12 - 27,0.

Пример 3. К 6,41445 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 0,98735 г (2,03 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 0,08590 г (0,47 мг-моль) Ni(NO3)2, что соответствует мольному соотношению 1 к 0,23. Последующие операции выполняют, как подробно описано в примере 1. В результате получают, как подробно описано в примере 1, 1,06790 г продукта, что соответствует 99,5%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·0,20Ni(NO3)2, мас.%: Ni - 2,5; В12Н12 - 27,0.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·0,20Ni(NO3)2, мас.%: Ni - 2,4; В12Н12 - 27,1.

Пример 4. К 6,59640 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 1,01535 г (2,16 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 0,09100 г (0,48 мг-моль) Zn(NO3)2, что соответствует мольному соотношению 1 к 0,22. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 1,10305 г продукта, что соответствует 99,7%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·0,22Zn(NO3)2, мас. %: Zn - 2,7; В12Н12 - 26,8.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·0,22Zn(NO3)2, мас. %: Zn - 2,8; В12Н12 - 26,8.

Пример 5. К 8,10385 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 1,31670 г (2,70 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 0,12170 г (0,68 мг-моль) Mn(NO3)2, что соответствует мольному соотношению 1 к 0,25. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 1,42305 г продукта, что соответствует 99,0%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·0,25Mn(NO3)2, мас.%: Mn - 2,6; В12Н12 - 26,7.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·0,25Mn(NO3)2, мас.%: Mn - 2,5; В12Н12 - 26,7.

Пример 6. К 7,49585 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 1,15380 г (2,37 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 0,14930 г (0,57 мг-моль) Cu(ClO4)2, что соответствует мольному соотношению 1 к 0,24. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 1,29660 г продукта, что соответствует 99,5%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·0,24Cu(ClO4)2, мас.%: Cu - 2,8; В12Н12 - 25,8.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·0,24Cu(ClO4)2, мас.%: Cu - 2,7; В12Н12 - 25,9.

Пример 7. К 7,35130 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 1,13155 г (2,32 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 0,12635 г (0,49 мг-моль) Со(ClO4)2, что соответствует мольному соотношению 1 к 0,21. Последующие операции выполняют, как подробно описано в примере 1. В результате получают, как подробно описано в примере 1, 1,25285 г продукта, что соответствует 99,6%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·0,21Co(ClO4)2, мас.%: Со - 2,3; В12Н12 - 26,3.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·0,21Co(ClO4)2, мас.%: Со - 2,4; В12Н12 - 26,2.

Пример 8. К 6,45670 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 0,99385 г (2,04 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 0,13135 г (0,51 мг-моль) Ni(ClO4)2, что соответствует мольному соотношению 1 к 0,25. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 1,11845 г продукта, что соответствует 99,4%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·0,25Ni(ClO4)2, мас.%: Ni - 2,7; В12Н12 - 25,7.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·0,25Ni(ClO4)2, мас.%: Ni - 2,8; В12Н12 - 25,8.

Пример 9. К 5,94610 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 0,91525 г (1,88 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 0,08935 г (0,34 мг-моль) Zn(ClO4)2, что соответствует мольному соотношению 1 к 0,18. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 1,00160 г продукта, что соответствует 99,7%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·0,18Zn(ClO4)2, мас.%: Zn - 2,2; В12Н12 - 26,5.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·0,18Zn(ClO4)2, мас.%: Zn - 2,3; В12Н12 - 26,4.

Пример 10. К 7,31625 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 1,12615 г (2,31 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 0,13455 г (0,53 мг-моль) Mn(ClO4)2, что соответствует мольному соотношению 1 к 0,23. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 1,25190 г продукта, что соответствует 99,3%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·0,23Mn(ClO4)2, мас.%: Mn - 2,3; В12Н12 - 26,0.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·0,23Mn(ClO4)2, мас.%: Mn - 2,4; В12Н12 - 26,0.

Пример 11. К 5,35435 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 0,82420 г (1,69 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 0,31720 г (0,69 мг-моль) Cu(NO3)2, что соответствует мольному соотношению 1 к 1. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 1,13340 г продукта, что соответствует 99,3%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·Cu(NO3)2, мас.%: Cu - 9,4; B12H12 - 21,0.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·Cu(NO3)2, мас.%: Cu - 9,3; В12Н12 - 21,0.

Пример 12. К 5,77150 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 0,88840 г (1,82 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 0,66595 г (3,64 мг-моль) Со(NO3)2, что соответствует мольному соотношению 1 к 2. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 1,54035 г продукта, что соответствует 99,1%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·2Co(NO3)2, мас.%: Со - 13,8; В12Н12 - 16,6.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·2Co(NO3)2, мас.%: Со - 13,9; B12H12 - 16,5.

Пример 13. К 6,14150 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 0,94535 г (1,94 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 1,45775 г (7,76 мг-моль) Ni(NO3)2, что соответствует мольному соотношению 1 к 4. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 2,38385 г продукта, что соответствует 99,2%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·4Ni(NO3)2, мас.%: Ni - 19,0; В12Н12 - 11,5.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·4Ni(NO3)2, мас.%: Ni - 19,2; В12Н12 - 11,5.

Пример 14. К 6,27685 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 0,96615 г (1,98 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 15 мл водного раствора, содержащего 1,87505 г (9,90 мг-моль) Zn(NO3)2, что соответствует мольному соотношению 1 к 5. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 2,82415 г продукта, что соответствует 99,4%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·5Zn(NO3)2, мас.%: Zn 22,8; В12Н12 - 9,9.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·5Zn(NO3)2, мас.%: Zn - 22,6; В12Н12 - 9,9.

Пример 15. К 6,13775 г влажного додекагидро-клозо-додекабората хитозана, содержащего 0,94490 г (1.94 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 10 мл раствора, содержащего 2,74330 г (15,33 мг-моль) Mn(NO3)2, что соответствует мольному соотношению 1 к 7,90. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 3,66975 г продукта, что соответствует 99,5%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·7,90Mn(NO3)2, мас.%: Mn - 22,8; В12Н12 - 7,5.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·7,90Mn(NO3)2, мас.%: Mn - 22,9; В12Н12 - 7,5.

Пример 16. К 7,00345 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 1,07800 г (2,21 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 4,06010 г (15,47 мг-моль) Cu(ClO4)2, что соответствует мольному соотношению 1 к 7. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 5,11240 г продукта, что соответствует 99,5%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·7Cu(ClO4)2, мас.%: Cu - 19,7; В12Н12 - 6,3.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·7Cu(ClO4)2, мас.%: Cu - 19,5; В12Н12 - 6,3.

Пример 17. К 7,87325 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 1,21190 г (2,49 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 1,92600 г (7,47 мг-моль) Со(ClO4)2, что соответствует мольному соотношению 1 к 3. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 3,12220 г продукта, что соответствует 99,5%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·3Co(ClO4)2, мас.%: Со - 14,0; В12Н12 - 11,3.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·3Co(ClO4)2, мас.%: Со - 13,8; В12Н12 - 11,2.

Пример 18. К 6,00315 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 0,92405 г (1,90 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 2,93665 г (11,40 мг-моль) Ni(ClO4)2, что соответствует мольному соотношению 1 к 6. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 3,84910 г продукта, что соответствует 99,7%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·6Ni(ClO4)2, мас.%: Ni - 17,3; В12Н12 - 7,0.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·6Ni(ClO4)2, мас.%: Ni - 17,0; В12Н12 - 7,0.

Пример 19. К 5,15875 г влажного додекагидро-клозо-додекабората хитозана, содержащего 0,79405 г (1,63 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл раствора, содержащего 3,42505 г (12,96 мг-моль) Zn(ClO4)2, что соответствует мольному соотношению 1 к 7.95. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 4,19800 г продукта, что соответствует 99,5%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·7,95Zn(ClO4)2, мас.%: Zn - 20,1; В12Н12 - 5,5.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·7,95Zn(ClO4)2, мас.%: Zn - 20,2; В12Н12 - 5,5.

Пример 20. К 6,87880 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 1,05882 г (2,17 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 10 мл водного раствора, содержащего 2,75415 г (10,85 мг-моль) Mn(ClO4)2, что соответствует мольному соотношению 1 к 5. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 3,78630 г продукта, что соответствует 99,3%-ному выходу от суммы исходных компонентов.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·5Mn(ClO4)2, мас.%: Mn - 15,6; В12Н12 - 8,1.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·5Mn(ClO4)2, мас.%: Mn - 15,2; В12Н12 - 8,2.

Пример 21. К 6,15185 г водного геля додекагидро-клозо-додекабората хитозана, содержащего 0,94695 г (1,94 мг-моль) (С6,5O4,25H9,5NH3)2B12H12, приливают 5 мл водного раствора, содержащего 2,91110 г (15,52 мг-моль) Cu(NO3)2, что соответствует мольному соотношению 1 к 8. Последующие операции выполняют, как подробно описано в примере 1. В результате получают 3,83775 г продукта, что соответствует 99,5%-ному выходу от суммы исходных компонентов. Соединение очень трудно высушить, а на воздухе оно сильно обводняется из-за высокой гигроскопичности, что делает его неудобным для практического использования.

Рассчитано для (С6,5O4,25H9,5NH3)2B12H12·8Cu(NO3)2, мас.%: Cu - 25,6; В12Н12 - 7,1.

Найдено для (С6,5O4,25H9,5NH3)2B12H12·8Cu(NO3)2, мас.%: Cu - 25,8; В12Н12 - 7,1.


АДДУКТЫ ДОДЕКАГИДРО-КЛОЗО-ДОДЕКАБОРАТА ХИТОЗАНА С СОЛЯМИ-ОКИСЛИТЕЛЯМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ
АДДУКТЫ ДОДЕКАГИДРО-КЛОЗО-ДОДЕКАБОРАТА ХИТОЗАНА С СОЛЯМИ-ОКИСЛИТЕЛЯМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ
АДДУКТЫ ДОДЕКАГИДРО-КЛОЗО-ДОДЕКАБОРАТА ХИТОЗАНА С СОЛЯМИ-ОКИСЛИТЕЛЯМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ
АДДУКТЫ ДОДЕКАГИДРО-КЛОЗО-ДОДЕКАБОРАТА ХИТОЗАНА С СОЛЯМИ-ОКИСЛИТЕЛЯМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 31-40 of 126 items.
10.02.2016
№216.014.c540

Способ получения нанодисперсных танталатов редкоземельных элементов

Изобретение относится к синтезу гептатанталатов европия EuTaO или тербия TbTaO, которые могут быть использованы в качестве рентгеноконтрастных веществ, люминофоров, покрытий рентгеновских экранов, оптоматериалов, материалов для электроники. Для получения нанодисперсных танталатов редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002574773
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.e8a3

Способ получения композиционного магнитного материала на основе оксидов кремния и железа

Изобретение относится к получению магнитного материала, содержащего диоксид кремния и оксид железа, и может быть использовано в производстве магнитных сорбентов. Способ получения композиционного магнитного материала в виде частиц с магнитным железосодержащим ядром и сорбционно-активной...
Тип: Изобретение
Номер охранного документа: 0002575458
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2e3e

Способ изготовления композиционных силовых панелей

Способ предназначен для изготовления композиционных силовых панелей. Способ включает формирование системы ребер силового набора каркаса намоткой гибкого волокнистого материала, пропитанного связующим, на матрицу, размещенную на оправке, последующее формирование обшивочного слоя панели намоткой...
Тип: Изобретение
Номер охранного документа: 0002579779
Дата охранного документа: 10.04.2016
27.08.2016
№216.015.5077

Способ получения волластонита

Изобретение относится к технологии переработки кальций- и кремнийсодержащих техногенных отходов борного производства (борогипса) и может быть использовано при производстве игольчатого волластонита для применения в цветной металлургии, в шинной, асбоцементной и лакокрасочной промышленности, в...
Тип: Изобретение
Номер охранного документа: 0002595682
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5104

Способ получения пористой биоактивной керамики на основе оксида циркония

Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани. Диоксид циркония смешивают с химически стойким стеклом марки ХС-2 №29 и...
Тип: Изобретение
Номер охранного документа: 0002595703
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.6eb1

Способ получения катодного материала для химических источников тока

Изобретение может быть использовано в промышленном синтезе катодных материалов для литиевых химических источников тока высокой энергоемкости. Древесину измельчают до размера частиц менее 2 мм и сушат в потоке сухого азота при 120-130°С. Затем реактор с измельченной и высушенной древесиной...
Тип: Изобретение
Номер охранного документа: 0002597607
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71ac

Аддукты додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами магния или алюминия и способ их получения

Изобретение относится к химии соединений додекагидро-клозо-додекаборатного , хитозана, солей магния и алюминия, а именно к аддуктам додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами магния или алюминия и способу их получения. Синтезированные новые продукты могут найти...
Тип: Изобретение
Номер охранного документа: 0002596741
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7cdd

Способ получения микропористого слоя на поверхности изделий из титана или его сплава

Изобретение относится к получению пористых структур на поверхности изделий из титана или его сплава и может быть использовано при изготовлении эндопротезов и зубных имплантатов на титановой основе, для подготовки поверхности титановых имплантатов под нанесение биосовместимых покрытий, а также...
Тип: Изобретение
Номер охранного документа: 0002600294
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8128

Способ очистки зольного графита

Изобретение может быть использовано при изготовлении конструкционных материалов для атомной энергетики, теплотехники, а также как исходное сырье для получения коллоидного графита, окиси графита и расширенного графита. Способ очистки зольного графита включает обработку графита водным раствором...
Тип: Изобретение
Номер охранного документа: 0002602124
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8279

Способ комплексной переработки борогипса

Изобретение относится к технологии переработки кальцийсодержащих техногенных отходов борного производства. Способ включает обработку отходов борного производства раствором гидроксида щелочного металла с образования гидросиликата кальция. Обработку осуществляют при соотношении твердой и жидкой...
Тип: Изобретение
Номер охранного документа: 0002601608
Дата охранного документа: 10.11.2016
Showing 31-40 of 69 items.
10.02.2016
№216.014.c540

Способ получения нанодисперсных танталатов редкоземельных элементов

Изобретение относится к синтезу гептатанталатов европия EuTaO или тербия TbTaO, которые могут быть использованы в качестве рентгеноконтрастных веществ, люминофоров, покрытий рентгеновских экранов, оптоматериалов, материалов для электроники. Для получения нанодисперсных танталатов редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002574773
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.e8a3

Способ получения композиционного магнитного материала на основе оксидов кремния и железа

Изобретение относится к получению магнитного материала, содержащего диоксид кремния и оксид железа, и может быть использовано в производстве магнитных сорбентов. Способ получения композиционного магнитного материала в виде частиц с магнитным железосодержащим ядром и сорбционно-активной...
Тип: Изобретение
Номер охранного документа: 0002575458
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2e3e

Способ изготовления композиционных силовых панелей

Способ предназначен для изготовления композиционных силовых панелей. Способ включает формирование системы ребер силового набора каркаса намоткой гибкого волокнистого материала, пропитанного связующим, на матрицу, размещенную на оправке, последующее формирование обшивочного слоя панели намоткой...
Тип: Изобретение
Номер охранного документа: 0002579779
Дата охранного документа: 10.04.2016
27.08.2016
№216.015.5077

Способ получения волластонита

Изобретение относится к технологии переработки кальций- и кремнийсодержащих техногенных отходов борного производства (борогипса) и может быть использовано при производстве игольчатого волластонита для применения в цветной металлургии, в шинной, асбоцементной и лакокрасочной промышленности, в...
Тип: Изобретение
Номер охранного документа: 0002595682
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5104

Способ получения пористой биоактивной керамики на основе оксида циркония

Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани. Диоксид циркония смешивают с химически стойким стеклом марки ХС-2 №29 и...
Тип: Изобретение
Номер охранного документа: 0002595703
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.6eb1

Способ получения катодного материала для химических источников тока

Изобретение может быть использовано в промышленном синтезе катодных материалов для литиевых химических источников тока высокой энергоемкости. Древесину измельчают до размера частиц менее 2 мм и сушат в потоке сухого азота при 120-130°С. Затем реактор с измельченной и высушенной древесиной...
Тип: Изобретение
Номер охранного документа: 0002597607
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71ac

Аддукты додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами магния или алюминия и способ их получения

Изобретение относится к химии соединений додекагидро-клозо-додекаборатного , хитозана, солей магния и алюминия, а именно к аддуктам додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами магния или алюминия и способу их получения. Синтезированные новые продукты могут найти...
Тип: Изобретение
Номер охранного документа: 0002596741
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7cdd

Способ получения микропористого слоя на поверхности изделий из титана или его сплава

Изобретение относится к получению пористых структур на поверхности изделий из титана или его сплава и может быть использовано при изготовлении эндопротезов и зубных имплантатов на титановой основе, для подготовки поверхности титановых имплантатов под нанесение биосовместимых покрытий, а также...
Тип: Изобретение
Номер охранного документа: 0002600294
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8128

Способ очистки зольного графита

Изобретение может быть использовано при изготовлении конструкционных материалов для атомной энергетики, теплотехники, а также как исходное сырье для получения коллоидного графита, окиси графита и расширенного графита. Способ очистки зольного графита включает обработку графита водным раствором...
Тип: Изобретение
Номер охранного документа: 0002602124
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8279

Способ комплексной переработки борогипса

Изобретение относится к технологии переработки кальцийсодержащих техногенных отходов борного производства. Способ включает обработку отходов борного производства раствором гидроксида щелочного металла с образования гидросиликата кальция. Обработку осуществляют при соотношении твердой и жидкой...
Тип: Изобретение
Номер охранного документа: 0002601608
Дата охранного документа: 10.11.2016
+ добавить свой РИД