×
10.09.2015
216.013.7877

Результат интеллектуальной деятельности: СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В НЕПРЕРЫВНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ НА ОСНОВЕ СМЕНЫ ПОЗИЦИИ ВХОДНОГО СИГНАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к контролю и диагностированию систем автоматического управления. Технический результат - улучшение помехоустойчивости. Он достигается тем, что в дополнение к известному способу определяют n параметров интегрирования сигналов, кратных ; определяют интегральные оценки выходных сигналов системы и выходных сигналов модели для каждой из k контрольных точек и n параметров интегрирования, для чего поочередно для каждого блока динамической системы перемещают место подачи входного сигнала на выход каждого блока, подают через сумматор входной сигнал и находят интегральные оценки выходных сигналов системы для n параметров α и тестового сигнала; определяют деформации интегральных оценок выходных сигналов модели; определяют нормированные значения деформаций интегральных оценок выходных сигналов модели; для k контрольных точек контролируемой системы и n параметров интегрирования определяют интегральные оценки выходных сигналов, деформации интегральных оценок выходных сигналов, нормированные значения деформаций интегральных оценок выходных сигналов контролируемой системы; определяют диагностические признаки, по минимуму которых определяют неисправный блок. 1 ил.
Основные результаты: Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала, основанный на том, что фиксируют число m динамических элементов, входящих в состав системы, определяют время контроля Т≥Т, используют параметр интегрирования сигналов α, используют тестовый сигнал на интервале t∈[0, Т], в качестве динамических характеристик системы используют интегральные оценки, полученные для вещественных значений α переменной Лапласа, фиксируют число k контрольных точек системы, регистрируют реакцию объекта диагностирования и модели, регистрируют реакцию заведомо исправной системы f(t), j=1, …, k, на интервале t∈[0, Т] в k контрольных точках и определяют интегральные оценки выходных сигналов системы, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы управления в каждой из k контрольных точек с весами e путем подачи на первые входы k блоков перемножения выходных сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал e, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Т, полученные в результате интегрирования оценки выходных сигналов регистрируют, определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, полученные в результате смены позиции входного сигнала после каждого из m блоков, для чего поочередно для каждого блока динамической системы перемещают место подачи входного сигнала на выход каждого блока, подают через сумматор входной сигнал и находят интегральные оценки выходных сигналов системы для параметра α и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждой из m моделей с различной (зафиксированной на выходах разных блоков) позицией входного сигнала регистрируют, определяют деформации интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков, определяют нормированные значения деформаций интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков, замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек для параметра α, определяют деформации интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений, определяют нормированные значения деформаций интегральных оценок выходных сигналов контролируемой системы, определяют диагностические признаки, по минимуму диагностического признака определяют неисправный блок, отличающийся тем, что определяют n параметров интегрирования сигналов, кратных , в качестве динамических характеристик системы используют интегральные оценки, полученные для n вещественных значений α, и определяют интегральные оценки выходных сигналов F(α), j=1, …, k, l=1, …, n, системы, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы управления в каждой из k контрольных точек для n параметров интегрирования с весами , l=1, …, n, путем подачи на первые входы k·n блоков перемножения выходных сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальные сигналы , l=1, …, n, выходные сигналы k·n блоков перемножения подают на входы k·n блоков интегрирования, интегрирование завершают в момент времени Т, полученные в результате интегрирования оценки выходных сигналов F(α), j=1, …, k; l=1, …, n, регистрируют, определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек и n параметров интегрирования, полученные в результате смены позиции входного сигнала после каждого из m блоков, для чего поочередно для каждого блока динамической системы перемещают место подачи входного сигнала на выход каждого блока, подают через сумматор входной сигнал и находят интегральные оценки выходных сигналов системы для n параметров α и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек каждой из m моделей с различной (зафиксированной на выходах разных блоков) позицией входного сигнала Y(α), j=1, …, k; i=1, …, m; l=1, …, n, регистрируют, определяют деформации интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоковΔY(α)=Y(α)-F(α), j=1, …, k; i=1, …, m; l=1, …, n,определяют нормированные значения деформаций интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков из соотношения: , определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек и n параметров интегрирования F(α), j=1, …, k; l=1, …, n, определяют деформации интегральных оценок выходных сигналов контролируемой системы для k контрольных точек и n параметров интегрирования от номинальных значений ΔF(α)=F(α)-F(α), j=1, …, k; l=1, …, n, определяют нормированные значения деформаций интегральных оценок выходных сигналов контролируемой системы из соотношения: , определяют диагностические признаки из соотношения: , i=1, …, m, по минимуму диагностического признака определяют неисправный блок.

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов.

Известен способ поиска неисправного блока в динамической системе (Способ поиска неисправного блока в динамической системе: пат. РФ 2439648, МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2010142159/08; заявл. 13.10.2010; опубл. 10.01.2012, Бюл. №1).

Недостатком этого способа является то, что он использует задание величин относительных отклонений параметров передаточных функций для моделей с пробными отклонениями.

Наиболее близким техническим решением (прототипом) является способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала (Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала: пат. РФ 2528135, МПК7 G05B 23/02 (2006.01) / Шалобанов С.С. - №2013144231/08; заявл. 01.10.2013; опубл. 10.09.2014, Бюл. №25).

Недостатком этого способа является то, что он обеспечивает определение дефектов с невысокой различимостью, то есть обладает невысокой помехоустойчивостью.

Технической задачей, на решение которой направлено изобретение, является улучшение помехоустойчивости способа диагностирования непрерывных систем автоматического управления путем улучшения различимости дефектов. Это достигается путем применения многократного вычисления интегральных оценок динамических характеристик для нескольких различных значений параметра интегрирования α1, α2…αn.

Поставленная задача достигается тем, что регистрируют реакцию заведомо исправной системы fjном(t), j=1,…, k, на интервале t ∈ [0, ТК] в k контрольных точках и многократно определяют (одновременно) интегральные оценки выходных сигналов Fjномl), j=1,…, k; l=1,…, n, системы для n значений параметра интегрирования αl, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы управления для n параметров интегрирования в каждой из k контрольных точек с весами путем подачи на первые входы k·n блоков перемножения выходных сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальные сигналы для n блоков интегрирования, выходные сигналы k·n блоков перемножения подают на входы k·n блоков интегрирования, интегрирование завершают в момент времени ТК, полученные в результате интегрирования оценки выходных сигналов Fjномl), j=1,…, k; l=1,…, n, регистрируют, определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, n параметров интегрирования и каждой из m позиций входного сигнала, полученные в результате смены позиции входного сигнала после каждого из m блоков, для чего поочередно для каждого блока динамической системы перемещают место подачи входного сигнала на выход каждого блока, подают через сумматор входной сигнал и находят интегральные оценки выходных сигналов системы для n параметров αl и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек каждой из m моделей с различной (зафиксированной на выходах разных блоков) позицией входного сигнала Yjil), j=1,…, k; i=1,…, m; l=1,…, n, регистрируют, определяют деформации интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков ΔYjil)=Yjil)-Fjномl), j=1,…, k; i=1,…, m; l=1,…, n, определяют нормированные значения деформаций интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков из соотношения

замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки сигналов контролируемой системы для k контрольных точек и для n параметров интегрирования αl: Fjl), j=1,…, k; l=1,…, n, определяют деформации интегральных оценок сигналов контролируемой системы для k контрольных точек и n параметров интегрирования от номинальных значений ΔFjl)=Fjl)-Fjномl), j=1,…, k; l=1,…, n, определяют нормированные значения деформаций интегральных оценок сигналов контролируемой системы для n параметров интегрирования из соотношения

определяют диагностические признаки при n параметрах интегрирования из соотношения:

по минимуму значения диагностического признака определяют неисправный блок.

Таким образом, предлагаемый способ поиска неисправного блока сводится к выполнению следующих операций:

1. В качестве динамической системы рассматривают систему, состоящую из произвольно соединенных m динамических элементов.

2. Предварительно определяют время контроля ТК≥ТПП, где ТПП - время переходного процесса системы. Время переходного процесса оценивают для номинальных значений параметров динамической системы.

3. Определяют n параметров кратных 5/ТК многократного интегрирования сигналов.

4. Фиксируют число контрольных точек k.

5. Предварительно определяют нормированные векторы ΔYil) деформаций интегральных оценок выходных сигналов модели, полученные в результате смены позиции входного сигнала на позицию после i-го блока каждого из m блоков для номинальных значений параметров передаточных функций блоков и n определенных выше параметров αl для чего выполняют пункты 6-10.

6. Подают тестовый сигнал x(t) (единичный ступенчатый, линейно возрастающий, прямоугольный импульсный и т.д.) на вход системы управления с номинальными характеристиками. Принципиальных ограничений на вид входного тестового воздействия предлагаемый способ не предусматривает.

7. Регистрируют реакцию системы fjном(t), j=1,…, k на интервале t ∈ [0, ТК] в k контрольных точках и определяют интегральные оценки выходных сигналов Fjномl), j=1,…, k; l=1,…, n системы. Для этого в момент подачи тестового сигнала на вход системы управления с номинальными характеристиками одновременно начинают интегрирование (при n параметрах αl) выходных сигналов системы управления в каждой из k контрольных точек с весами , для чего выходные сигналы системы управления подают на первые входы k·n блоков перемножения, на вторые входы блоков перемножения подают экспоненциальные сигналы , выходные сигналы k·n блоков перемножения подают на входы k·n блоков интегрирования, интегрирование завершают в момент времени ТК, полученные в результате интегрирования оценки выходных сигналов Fjномl), j=1,…, k; l=1,…, n, регистрируют.

8. Определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек и каждого из n значений параметра интегрирования, αl, полученные в результате перемещения позиции входного сигнала на позицию после каждого из m блоков, для чего поочередно для каждого блока динамической системы перемещают позицию входного сигнала на выход блока, подают через сумматор входной сигнал и выполняют пункты 6 и 7 для одного и того же входного сигнала x(t). Полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждой из m моделей с перемещенной позицией входного сигнала Yjil), j=1,…, k; i=1,…, m; l=1,…, n, регистрируют.

9. Определяют деформации интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала от входа на позицию после каждого из соответствующих блоков ΔYjil)=Yjil)-Fjномl), j=1,…, k; i=1,…, m;l=1,…, n.

10. Определяют нормированные значения деформаций интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после соответствующих блоков по формуле:

.

11. Замещают систему с номинальными характеристиками контролируемой. На вход системы подают аналогичный тестовый сигнал x(t).

12. Определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек и n параметров интегрирования Fjl), j=1,…, k; l=1,…, n, осуществляя операции, описанные в пунктах 6 и 7, применительно к контролируемой системе.

13. Определяют деформации интегральных оценок выходных сигналов контролируемой системы для k контрольных точек и n параметров интегрирования от номинальных значений ΔFjl)=Fjl)-Fjномl), j=1,…, k; l=1,…, n.

14. Вычисляют нормированные значения деформаций интегральных оценок выходных сигналов контролируемой системы по формуле:

.

15. Вычисляют диагностические признаки наличия неисправного блока (при n параметрах интегрирования) по формуле (3).

16. По минимуму значения диагностического признака определяют дефектный блок.

Рассмотрим реализацию предлагаемого способа поиска одиночного дефекта для системы, структурная схема которой представлена на чертеже.

Передаточные функции блоков: ; ; ,

где номинальные значения параметров: Т1=5 с; k1=l; k2=l; Т2=1 с; k3=1; Т3=5 с.

При моделировании в качестве входного сигнала будем использовать единичное ступенчатое воздействие. Время контроля ТК выберем равным 10 с.

Моделирование процессов поиска дефектов в первом блоке (в виде уменьшения параметра T1 на 20%) приводит к вычислению диагностических признаков при двух параметрах интегрирования (α1=0,1 и α2=2,5) по формуле (3): J1=0,0005, J2=0,8258, J3=0,1086. Различимость дефекта: ΔJ=J3-J1=0,108.

Для сравнения приведем диагностические признаки наличия неисправного блока при одном параметре интегрирования α=0,5 (Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала: пат. РФ 2528135, МПК7 G05B 23/02 (2006.01) / Шалобанов С.С. - №2013144231/08; заявл. 01.10.2013; опубл. 10.09.2014, Бюл. №25): J1=0, J2=0,78, J3=0,074. Различимость дефекта ΔJ=J3-J1=0,074.

Приведенные результаты показывают, что фактическая различимость нахождения дефектов этим способом выше, следовательно, выше будет и помехоустойчивость способа.

Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала, основанный на том, что фиксируют число m динамических элементов, входящих в состав системы, определяют время контроля Т≥Т, используют параметр интегрирования сигналов α, используют тестовый сигнал на интервале t∈[0, Т], в качестве динамических характеристик системы используют интегральные оценки, полученные для вещественных значений α переменной Лапласа, фиксируют число k контрольных точек системы, регистрируют реакцию объекта диагностирования и модели, регистрируют реакцию заведомо исправной системы f(t), j=1, …, k, на интервале t∈[0, Т] в k контрольных точках и определяют интегральные оценки выходных сигналов системы, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы управления в каждой из k контрольных точек с весами e путем подачи на первые входы k блоков перемножения выходных сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал e, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Т, полученные в результате интегрирования оценки выходных сигналов регистрируют, определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, полученные в результате смены позиции входного сигнала после каждого из m блоков, для чего поочередно для каждого блока динамической системы перемещают место подачи входного сигнала на выход каждого блока, подают через сумматор входной сигнал и находят интегральные оценки выходных сигналов системы для параметра α и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждой из m моделей с различной (зафиксированной на выходах разных блоков) позицией входного сигнала регистрируют, определяют деформации интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков, определяют нормированные значения деформаций интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков, замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек для параметра α, определяют деформации интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений, определяют нормированные значения деформаций интегральных оценок выходных сигналов контролируемой системы, определяют диагностические признаки, по минимуму диагностического признака определяют неисправный блок, отличающийся тем, что определяют n параметров интегрирования сигналов, кратных , в качестве динамических характеристик системы используют интегральные оценки, полученные для n вещественных значений α, и определяют интегральные оценки выходных сигналов F(α), j=1, …, k, l=1, …, n, системы, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы управления в каждой из k контрольных точек для n параметров интегрирования с весами , l=1, …, n, путем подачи на первые входы k·n блоков перемножения выходных сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальные сигналы , l=1, …, n, выходные сигналы k·n блоков перемножения подают на входы k·n блоков интегрирования, интегрирование завершают в момент времени Т, полученные в результате интегрирования оценки выходных сигналов F(α), j=1, …, k; l=1, …, n, регистрируют, определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек и n параметров интегрирования, полученные в результате смены позиции входного сигнала после каждого из m блоков, для чего поочередно для каждого блока динамической системы перемещают место подачи входного сигнала на выход каждого блока, подают через сумматор входной сигнал и находят интегральные оценки выходных сигналов системы для n параметров α и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек каждой из m моделей с различной (зафиксированной на выходах разных блоков) позицией входного сигнала Y(α), j=1, …, k; i=1, …, m; l=1, …, n, регистрируют, определяют деформации интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоковΔY(α)=Y(α)-F(α), j=1, …, k; i=1, …, m; l=1, …, n,определяют нормированные значения деформаций интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков из соотношения: , определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек и n параметров интегрирования F(α), j=1, …, k; l=1, …, n, определяют деформации интегральных оценок выходных сигналов контролируемой системы для k контрольных точек и n параметров интегрирования от номинальных значений ΔF(α)=F(α)-F(α), j=1, …, k; l=1, …, n, определяют нормированные значения деформаций интегральных оценок выходных сигналов контролируемой системы из соотношения: , определяют диагностические признаки из соотношения: , i=1, …, m, по минимуму диагностического признака определяют неисправный блок.
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В НЕПРЕРЫВНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ НА ОСНОВЕ СМЕНЫ ПОЗИЦИИ ВХОДНОГО СИГНАЛА
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В НЕПРЕРЫВНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ НА ОСНОВЕ СМЕНЫ ПОЗИЦИИ ВХОДНОГО СИГНАЛА
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В НЕПРЕРЫВНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ НА ОСНОВЕ СМЕНЫ ПОЗИЦИИ ВХОДНОГО СИГНАЛА
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В НЕПРЕРЫВНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ НА ОСНОВЕ СМЕНЫ ПОЗИЦИИ ВХОДНОГО СИГНАЛА
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В НЕПРЕРЫВНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ НА ОСНОВЕ СМЕНЫ ПОЗИЦИИ ВХОДНОГО СИГНАЛА
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В НЕПРЕРЫВНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ НА ОСНОВЕ СМЕНЫ ПОЗИЦИИ ВХОДНОГО СИГНАЛА
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В НЕПРЕРЫВНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ НА ОСНОВЕ СМЕНЫ ПОЗИЦИИ ВХОДНОГО СИГНАЛА
Источник поступления информации: Роспатент

Showing 81-90 of 143 items.
10.09.2015
№216.013.76ba

Водоочиститель

Изобретение относится к устройствам для доочистки питьевой воды. Водоочиститель для получения талой питьевой воды включает зону подачи воды, зону замораживания с морозильной камерой 1 и зону перехода воды из твердого состояния в жидкое с отделяющим лед элементом, раздельные патрубки 2 для...
Тип: Изобретение
Номер охранного документа: 0002561983
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7878

Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала

Изобретение относится к контролю и диагностированию систем автоматического управления и их элементов. Технический результат - расширение функциональных возможностей способа путем применения рабочего диагностирования (без использования тестового воздействия) и уменьшение программных или...
Тип: Изобретение
Номер охранного документа: 0002562429
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7ac1

Смеситель

Изобретение относится к устройству для смешивания жидких и вязких материалов. Смеситель содержит цилиндрический неподвижный корпус в виде стакана с размещенным внутри него перемешивающим устройством с валом и приводом вращения и крышку, при этом перемешивающее устройство выполнено в виде поршня...
Тип: Изобретение
Номер охранного документа: 0002563014
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7afc

Гидроцилиндр

Изобретение относится к машиностроению и предназначено для перемещения составных частей манипуляторов, выдвижных секций стрелы, выдвижных выносных опор и других рабочих органов лесозаготовительной, строительной, горнодобывающей и др. техники. Гидроцилиндр содержит корпус, поршень, шток,...
Тип: Изобретение
Номер охранного документа: 0002563081
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bb4

Способ формирования короткой комбинированной забойки взрывных скважин с каменным материалом и устройство для его осуществления

Изобретение относится к области буровзрывных работ. Способ формирования короткой комбинированной забойки взрывных скважин включает формирование нижней засыпной части из инертных мелкодисперсных материалов высотой 1,0-1,5 диаметра скважины над воздушным промежутком и формирование на неё верхней...
Тип: Изобретение
Номер охранного документа: 0002563265
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bb5

Способ формирования короткой комбинированной забойки взрывных скважин и устройство для его осуществления

Изобретение относится к области буровзрывных работ. Способ формирования короткой комбинированной забойки включает формирование нижней засыпной части из инертных мелкодисперсных материалов высотой 1,5-2 диаметра над воздушным промежутком и формирование на нижнюю засыпную часть верхней части из...
Тип: Изобретение
Номер охранного документа: 0002563266
Дата охранного документа: 20.09.2015
27.10.2015
№216.013.8806

Водоочиститель для получения талой питьевой воды

Изобретение относится к устройствам для доочистки питьевой воды. Водоочиститель для получения талой питьевой воды включает зону подачи воды, зону замораживания с морозильной камерой 1 и зону перехода воды из твердого состояния в жидкое с отделяющим лед элементом, разделительные патрубки для...
Тип: Изобретение
Номер охранного документа: 0002566425
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.880a

Смеситель

Изобретение относится к устройству для смешивания жидких и вязких материалов и может найти применение в химической, пищевой, фармацевтической, строительной и других отраслях промышленности. Смеситель содержит цилиндрический неподвижный корпус в виде стакана с размещенным внутри него...
Тип: Изобретение
Номер охранного документа: 0002566429
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.881c

Прибор для измерения угловых параметров пил

Изобретение относится к деревообрабатывающей промышленности, в частности к измерению угловых параметров пил. Прибор для измерения угловых параметров пил включает основание, два поворотных сектора и крышку. Основание имеет подвижную ось, предназначенную для насадки, центрирования и базирования...
Тип: Изобретение
Номер охранного документа: 0002566447
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8849

Гвоздь

Изобретение относится к строительной технике, а более конкретно к средствам крепежа тонколистовых материалов. Гвоздь включает шляпку, стержень, острие и фиксаторы, установленные на стержне, при этом фиксаторы выполнены в виде упругих лепестков, загнутых вверх в направлении шляпки и...
Тип: Изобретение
Номер охранного документа: 0002566492
Дата охранного документа: 27.10.2015
Showing 81-90 of 206 items.
27.10.2014
№216.013.018f

Устройство для изготовления подшипника скольжения намоткой

Изобретение относится к устройствам для изготовления намоткой слоистых армированных изделий из полимерных композиций и может быть использовано для изготовления подшипников скольжения. Устройство для изготовления подшипника скольжения методом намотки ленты армирующего материала с пропиткой...
Тип: Изобретение
Номер охранного документа: 0002531797
Дата охранного документа: 27.10.2014
10.12.2014
№216.013.0cd1

Способ ремонта гидравлических двигателей

Изобретение относится к машиностроению и может быть использовано при ремонте гидравлических двигателей, используемых в различных отраслях промышленного производства, например в подъемно-транспортных машинах - гидравлических кранах-манипуляторах. В способе выполняют операции разборки,...
Тип: Изобретение
Номер охранного документа: 0002534698
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d32

Защитная композиция для деревянных строительных конструкций

Изобретение относится к составу эмали для антикоррозийной и гидроизоляционной защиты деревянных строительных конструкций, в частности складов минеральных удобрений. Состав защитной композиции эмали включает, мас.ч.: лак этиноль - 1, латекс дивинилстирольный СКС-65 - 0,15-0,2, порошкообразный...
Тип: Изобретение
Номер охранного документа: 0002534795
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e6a

Способ ремонта гидравлических двигателей

Изобретение относится к машиностроению и может быть использовано при ремонте гидравлических двигателей, используемых в различных отраслях промышленного и лесозаготовительного производства, например в подъемно-транспортных машинах - гидравлических кранах-манипуляторах, гидростатических...
Тип: Изобретение
Номер охранного документа: 0002535107
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e6d

Способ переработки медного гальваношлама

Изобретение относится к переработке техногенных отходов. Готовят шихту путем смешивания медного гальваношлама с карбонатом натрия, хлоридом натрия и с углем или углем и касситеритовым концентратом. Проводят восстановление окисленных металлов шлама в реакционной емкости расплавлением шихты при...
Тип: Изобретение
Номер охранного документа: 0002535110
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.114b

Антикоррозионное защитное полимерное покрытие

Изобретение относится к составам полимерных композиций и может быть использовано для антикоррозионной изоляции элементов тепловых сетей. Aнтикоррозионное защитное полимерное покрытие выполнено из композиции, содержащей пленкообразующее лак этиноль, пластификатор дивинилстирольный латекс...
Тип: Изобретение
Номер охранного документа: 0002535850
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11d8

Самоходный перегрузочный бункер

Изобретение относится к транспортным загрузочным устройствам для открытых горных работ, преимущественно в комплекте с фрезерными комбайнами для приема породы с выносной консоли комбайна, погрузки ее в секции бункера и с последующей выгрузкой в автотранспортные средства. В самоходном...
Тип: Изобретение
Номер охранного документа: 0002535991
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1236

Способ автоматической фокусировки камеры

Изобретение относится к оптико-электронным приборам, предназначенным для осуществления автоматической фокусировки объективов. Способ заключается в вычислении значения параметра резкости, при котором для каждого пикселя изображения выполняется преобразование RGB сигналов основных цветов в...
Тип: Изобретение
Номер охранного документа: 0002536085
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.12d1

Устройство для тушения лесных пожаров

Изобретение относится к лесопользованию и, в частности, к охране леса от пожаров. Устройство для тушения лесных пожаров, включающее агрегат, начиненный огнегасящим составом, сбрасываемый с летательного аппарата, в качестве агрегата используют кассету с малогабаритными элементами, согласно...
Тип: Изобретение
Номер охранного документа: 0002536240
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1ce5

Способ заготовки древесины на крутых склонах с использованием валочно-пакетирующей машины и аэростатно-канатной системы

Изобретение относится к заготовке леса с использованием воздушной трелевки древесины, в частности, на крутых склонах свыше 20° с плотно растущим древостоем, где запрещено использование обычных трелевочных тракторов, а также на склонах с частым перепадом высот и соответственно с меняющимися...
Тип: Изобретение
Номер охранного документа: 0002538825
Дата охранного документа: 10.01.2015
+ добавить свой РИД