×
10.09.2015
216.013.77f9

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА ИЗ НИЗКОСОРТНОГО АЛЮМИНИЙСОДЕРЖАЩЕГО СЫРЬЯ

Вид РИД

Изобретение

№ охранного документа
0002562302
Дата охранного документа
10.09.2015
Аннотация: Изобретение относится к металлургии, в частности к кислотным способам получения глинозема, и может быть использовано при переработке низкосортного алюминийсодержащего сырья. Способ получения глинозема включает обработку алюминийсодержащего сырья соляной кислотой с образованием хлоридной пульпы, разделение пульпы с выделением хлоридного раствора, высаливание гексагидрата хлорида алюминия из хлоридного раствора хлоридом кальция, термическое разложение гексагидрата хлорида алюминия с образованием глинозема. Хлоридную пульпу нейтрализуют оксидом кальция до достижения pH, равного 1,6-2,2, маточный раствор после высаливания гексагидрата хлорида алюминия постадийно упаривают с селективной кристаллизацией хлоридов щелочных металлов и выделением хлорида кальция в виде кристаллов и/или концентрированного водного раствора, причем часть хлорида кальция возвращают на высаливание гексагидрата хлорида алюминия. Технический результат - повышение качества глинозема и снижение энергозатрат. 4 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к металлургии, в частности к кислотным способам получения глинозема, и может быть использовано при переработке низкосортного алюминийсодержащего сырья.

Известен способ получения глинозема из высококремнистых бокситов через солянокислотное выщелачивание, включающий обжиг алюминийсодержащего сырья при температуре до 700°C, обработку его соляной кислотой, высаливание гексагидрата хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлористым водородом, кальцинацию хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлористого водорода на стадии кислотной обработки и высаливания (Eisner D., Jenkins D.H. and Sinha H.N. Alumina via hydrochloric acid leaching of high silica bauxites - process development. Light metals, 1984, p.411-426).

Согласно этому способу гексагидрат хлорида алюминия выделялся из раствора путем высаливания газообразным хлористым водородом, однако содержание фосфора в конечном продукте в 1,5 раза превышало допустимые для металлургического глинозема пределы.

К недостаткам данного способа следует также отнести необходимость получения сухого газообразного хлористого водорода на последующих переделах технологии для возврата его на передел высаливания, что в ряде случаев усложняет процесс и повышает расход тепловой энергии.

Наиболее близким к заявленному способу является солянокислотный способ получения глинозема путем кислотной обработки предварительно обожженного сырья, выпаривания осветленного хлоридного раствора с кристаллизацией гексагидрата хлорида алюминия (AlCl3·6H2O) с последующей кальцинацией его до оксида, который ввиду значительного содержания железа и других примесей (за исключением кремния) назван авторами «черновым глиноземом» (Справочник металлурга по цветным металлам. Производство глинозема. М:, Металлургия, 1970, с.236-237). Далее этот промежуточный продукт перерабатывался по традиционной щелочной схеме Байера для удаления железа, фосфора, прочих примесей и получения глинозема металлургического качества.

Однако при кристаллизации AlCl3·6H2O из раствора, содержащего хлориды железа и других примесных металлов, а также фосфор, практически невозможно обеспечить высокую чистоту целевого продукта. Поэтому приходится растворять в воде и переосаждать гексагидрат хлорида алюминия, что приводит к необходимости расходовать тепловую энергию на упаривание дополнительно введенной в цикл воды.

К недостаткам данного способа получения глинозема относятся также сложность технологической схемы, общие высокие энергозатраты при ее реализации, попадание хлоридов из кислотного цикла в щелочной, и связанные с этим дополнительные потери щелочи, достигавшие 36-37 кг/т глинозема. По перечисленным причинам этот способ не нашел применения в промышленности.

В основу изобретения положена задача, заключающаяся, во-первых, в существенном снижении содержания трехвалентного железа и фосфора в хлоридном растворе и, следовательно, в уменьшении вероятности их попадания в гексагидрат хлорида алюминия и далее в глинозем, и, во-вторых, в обеспечении оборота хлорида кальция, выделенного при упаривании маточного раствора, на высаливание гексагидрата хлорида алюминия, что дает возможность рационального использования высаливающего реагента при переработке бедных высококремнистых руд и отходов.

Техническим результатом является повышение качества глинозема и снижение энергозатрат.

Достижение вышеуказанного технического результата достигается тем, что в способе получения глинозема из низкосортного алюминийсодержащего сырья, включающем обработку алюминийсодержащего сырья соляной кислотой с образованием хлоридной пульпы, разделение пульпы с выделением хлоридного раствора, высаливание гексагидрата хлорида алюминия из хлоридного раствора хлоридом кальция, термическое разложение гексагидрата хлорида алюминия с образованием глинозема, хлоридную пульпу нейтрализуют оксидом кальция до достижения pH, равного 1,6-2,2, маточный раствор после высаливания гексагидрата хлорида алюминия постадийно упаривают с селективной кристаллизацией хлоридов щелочных металлов и выделением хлорида кальция в виде кристаллов и/или концентрированного водного раствора, причем часть хлорида кальция возвращают на высаливание гексагидрата хлорида алюминия.

Кристаллы хлорида кальция перед возвращением на высаливание гексагидрата хлорида алюминия могут быть растворены в воде с получением насыщенного раствора.

Кристаллы хлорида кальция перед возвращением на высаливание гексагидрата хлорида алюминия могут быть подвергнуты термической обработке при температуре не менее 45°C.

Из хлоридов щелочных металлов и оставшейся части хлорида кальция может быть регенерирована соляная кислота и возвращена на обработку алюминийсодержащего сырья.

Соляная кислота может быть регенерирована путем обработки хлоридов щелочных металлов и части хлорида кальция серной кислотой, причем образующиеся сульфаты выводят из процесса.

Нейтрализация хлоридной пульпы после кислотной обработки алюминийсодержащего сырья оксидом кальция до достижения pH, равного 1,6-2,2, позволяет существенно снизить содержание трехвалентного железа и фосфора в хлоридном растворе и таким образом уменьшить вероятность их попадания в гексагидрат хлорида алюминия и далее - в глинозем. Оборот хлорида кальция, выделенного при упаривании маточного раствора, на высаливание гексагидрата хлорида алюминия дает возможность рационального использования высаливающего реагента. В совокупности это дает возможность исключить расход тепла на образование сухого газообразного хлористого водорода и повысить качество продукции.

Сущность изобретения поясняется технологической схемой получения глинозема (см. фиг.1).

Способ получения глинозема осуществляется следующим образом.

Хлоридную пульпу после выщелачивания природного алюминийсодержащего сырья соляной кислотой нейтрализуют оксидом кальция до достижения pH, равного 1,6-2,2. При этом в твердую фазу выделяется трехвалентное железо в виде гематита и фосфор в виде фосфата кальция. Нерастворимый осадок (сиштоф) отделяют. Заявляемый диапазон pH выбран из расчета наиболее полного удаления из раствора железа без нежелательного начала гидролиза хлорида алюминия, который может привести к потерям целевого компонента с сиштофом. В оставшийся осветленный хлоридный раствор вводят хлорид кальция в виде концентрированного раствора или кристаллов (или пересыщенного раствора), что приводит к высаливанию (кристаллизации) гексагидрата хлорида алюминия.

Кристаллы гексагидрата хлорида алюминия промывают не менее чем 30-процентной чистой соляной кислотой для удаления остатков маточного раствора. Далее промывную соляную кислоту возвращают на кислотную обработку алюминийсодержащего сырья. Промытые кристаллы гексагидрата хлорида алюминия подвергают термическому разложению с получением глинозема. Выделяющийся при этом хлористый водород в виде соляной кислоты возвращают на промывку кристаллов гексагидрата хлорида алюминия. В том случае, если для промывки необходима только часть этой соляной кислоты, то оставшуюся часть направляют на кислотную обработку алюминийсодержащего сырья. Маточный раствор подвергают стадийному упариванию с селективной кристаллизацией хлоридов щелочных металлов и выделением хлорида кальция в виде кристаллов или концентрированного водного раствора, или их смеси, то есть пересыщенного раствора, причем часть хлорида кальция возвращают на высаливание гексагидрата хлорида алюминия.

Для удобства транспортировки по трубопроводам кристаллы хлорида кальция перед возвращением на высаливание гексагидрата хлорида алюминия растворяют в воде с получением насыщенного раствора.

В том случае, когда на высаливание гексагидрата хлорида алюминия направляют кристаллы хлорида кальция, их подвергают термической обработке при температуре не менее 45°C с переводом кристаллогидратов в двухводную форму, что повышает эффективность их действия как высаливающего реагента.

Поскольку способ предусматривает введение кальция в виде оксида, в цикле образуется избыток хлорида кальция, поэтому оставшуюся его часть совместно с хлоридами щелочных металлов направляют на регенерацию с получением соляной кислоты, возвращаемой на кислотную обработку алюминийсодержащего сырья.

Регенерацию осуществляют путем обработки оставшейся части хлорида кальция совместно с хлоридами щелочных металлов серной кислотой. Выделившиеся при этом сульфаты выводят из процесса.

Способ получения глинозема иллюстрируется конкретными примерами.

Лабораторные эксперименты проводили в следующих условиях.

Каолиновую глину с содержанием основных компонентов, %: Al2O3 36,4; SiO2 45,3; Fe2O3 0,78; TiO2 0,51; Na2O 0,05; K2O 1,74; CaO 0,96; MgO 0,31; P2O5 0,12; остальное, включая потери при прокаливании, - до 100%, обработали 20-процентным раствором соляной кислоты в лабораторных автоклавах при стехиометрическом отношении, обеспечивающем перевод в хлориды суммы оксидов Al Fe, Ca, Mg, Na, K, равном 1,05, в условиях перемешивания при 170°C в течение 3 ч. В образовавшуюся пульпу при перемешивании и температуре 100°C порционно вводили оксид кальция до достижения pH, равного 1,6-2,2. И далее выдерживали пульпу при перемешивании в течение 1 ч.

По окончании процесса полученную пульпу отфильтровывали. Оставшийся осветленный хлоридный раствор переливали в колбу ротационного испарителя и при 80°C постепенно вводили раствор или кристаллы хлорида кальция, полученные в предыдущих опытах, до полного выделения (высаливания) кристаллов гексагидрата хлорида алюминия, которые отделяли и промывали на фильтре двумя объемами 38-процентной чистой соляной кислоты. Промытые кристаллы помещали в трубчатую лабораторную печь, нагревали ее до 1100°C и выдерживали в течение 3 ч. Полученный таким образом глинозем подвергали анализу на содержание Fe2O3 и P2O5.

Оставшийся маточный раствор упаривали в ротационном испарителе под вакуумом до кристаллизации хлоридов щелочных металлов и отчасти - хлорида кальция. Упаренный раствор использовали в последующих опытах для высаливания гексагидрата хлорида алюминия.

Выделенные кристаллы хлоридов щелочных металлов и хлорида кальция обрабатывали концентрированной серной кислотой при 60°C. После охлаждения полученного раствора скристаллизовавшиеся сульфаты отделяли, а регенерированную таким образом соляную кислоту корректировали до 20-процентной концентрации и использовали для обработки алюминийсодержащего сырья в последующих опытах.

В части опытов выделенные при выпаривании маточного раствора кристаллы хлорида кальция сушили при температуре не менее 45°C, что обеспечивало перевод всех кристаллогидратов кальция в двухводную форму. Помимо повышения эффективности их действия как высаливающего реагента это - упрощение поддержания водного баланса в технологическом цикле, но не влияло на качество получаемого глинозема.

Полученные результаты примеров реализации заявляемого способа, а также опыт по прототипу представлены в таблице.

Из данных таблицы следует, что во всех примерах по заявляемому способу удалось получить требуемое содержание в глиноземе по Fe2O3 (не более 0,015%) и P2O5 (не более 0,001%), в то время как в примере по прототипу эти значения оказались значительно выше.

Заявляемый способ обеспечивает достижение требуемого технического результата по качеству продукции. Выпаривание растворов, содержащих хлорид кальция, происходит с меньшим расходом энергии, поскольку присутствие кальция сдвигает азеотропную точку системы. Кроме того, такие растворы менее агрессивны и снижают требования к коррозионной стойкости оборудования. Сравнительная оценка теплового баланса показала также, что заявляемый способ позволяет экономить до 40% тепловой энергии по сравнению с прототипом.

Таблица
Способ получения глинозема
Пример Реализуемый способ Введение оксида кальция в пульпу после кислотной обработки до значения pH Содержание в глиноземе, %
Fe2O3 P2O5
1 заявляемый 1,6 0,014 <0,001
2 заявляемый 1,7 0,012 <0,001
3 заявляемый 1,8 0,012 <0,001
4 заявляемый 1,9 0,010 <0,001
5 заявляемый 2,0 0,010 <0,001
6 заявляемый 2,1 0,008 <0,001
7 заявляемый 2,2 0,008 <0,001
8 по прототипу нет 0,030 0,003


СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА ИЗ НИЗКОСОРТНОГО АЛЮМИНИЙСОДЕРЖАЩЕГО СЫРЬЯ
Источник поступления информации: Роспатент

Showing 81-90 of 234 items.
10.06.2016
№216.015.4648

Способ производства анодной массы

Изобретение относится к способу изготовления анодной массы для анодов алюминиевых электролизеров. Способ включает приготовление анодной массы смешением зерновых фракций углеродного наполнителя в виде кокса с предварительно подготовленной связующей матрицей (СМ) на основе пылевой фракции кокса...
Тип: Изобретение
Номер охранного документа: 0002586195
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46a1

Способ получения связующего пека

Изобретение относится к коксохимической промышленности, в частности к способу получения связующего пека, который может быть использован в качестве замены каменноугольного пека для производства анодной массы, угольной и графитированной продукции, конструкционных углеграфитовых материалов. Способ...
Тип: Изобретение
Номер охранного документа: 0002586135
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.5498

Способ получения биметаллической заготовки

Изобретение может быть использовано для получения биметалла из меди и низкоуглеродистой стали при изготовлении деталей, применяемых в конструкциях установок для электролиза алюминия. Перед диффузионной сваркой проводят сжатие поверхностей заготовок при комнатной температуре с приложением к ним...
Тип: Изобретение
Номер охранного документа: 0002593242
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.54b4

Способ обжига подины алюминиевого электролизера

Изобретение относится к способу обжига подины алюминиевого электролизера с обожженными анодами. В способе регулируют токовую нагрузку при определении перегрева поверхности подины путем непрерывного измерения температуры и токовой нагрузки по анодам и ниппелями, отключают анододержатели с...
Тип: Изобретение
Номер охранного документа: 0002593253
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55b3

Самоходная машина для обработки алюминиевых электролизеров

Изобретение относится к самоходной машине для обслуживания алюминиевых электролизеров при их технологической обработке. Самоходная машина содержит раму, к которой в передней части шарнирно с возможностью качания закреплен ведомый управляемый мост, два гидромотора, двигатель внутреннего...
Тип: Изобретение
Номер охранного документа: 0002593251
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55fb

Способ футеровки катодного устройства электролизера для получения алюминия

Изобретение относится к способу футеровки катодного устройства электролизера для получения алюминия неформованными материалами. В способе, включающем кладку кирпичной бровки по периметру внутренней боковой поверхности металлического кожуха, засыпку и горизонтальное выравнивание...
Тип: Изобретение
Номер охранного документа: 0002593247
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5626

Способ получения лигатуры алюминий-скандий

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий. Способ включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление...
Тип: Изобретение
Номер охранного документа: 0002593246
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5808

Навеска с прицепным устройством

Изобретение относится к области машиностроения. Навеска с прицепным устройством содержит шкворень, соединенный с гидроцилиндром подъема и опускания, и гидроцилиндр навески, закрепленный на раме самоходной машины и соединенный через рычаг с поворотным валом. Нижняя часть навески выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002588550
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.704c

Подвеска колес самоходной машины

Изобретение относится к подвеске колес тягово-транспортных средств, применяемых в электролитическом производстве алюминия. Подвеска колес содержит раму подвески, выполненную в виде пространственной фигуры коробчатой формы из двух металлических листов, соединенных между собой вертикальными...
Тип: Изобретение
Номер охранного документа: 0002596559
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.70ab

Способ управления подачей глинозема в электролизер при получении алюминия

Изобретение относится к способу управления подачей глинозема в электролизеры для получения алюминия для поддержания концентрации глинозема в электролите, равной или близкой к концентрации насыщения. В способе измеряют приведенное напряжение (U) или псевдосопротивление (R), регистрируют...
Тип: Изобретение
Номер охранного документа: 0002596560
Дата охранного документа: 10.09.2016
Showing 81-90 of 139 items.
10.06.2016
№216.015.46a1

Способ получения связующего пека

Изобретение относится к коксохимической промышленности, в частности к способу получения связующего пека, который может быть использован в качестве замены каменноугольного пека для производства анодной массы, угольной и графитированной продукции, конструкционных углеграфитовых материалов. Способ...
Тип: Изобретение
Номер охранного документа: 0002586135
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.5498

Способ получения биметаллической заготовки

Изобретение может быть использовано для получения биметалла из меди и низкоуглеродистой стали при изготовлении деталей, применяемых в конструкциях установок для электролиза алюминия. Перед диффузионной сваркой проводят сжатие поверхностей заготовок при комнатной температуре с приложением к ним...
Тип: Изобретение
Номер охранного документа: 0002593242
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.54b4

Способ обжига подины алюминиевого электролизера

Изобретение относится к способу обжига подины алюминиевого электролизера с обожженными анодами. В способе регулируют токовую нагрузку при определении перегрева поверхности подины путем непрерывного измерения температуры и токовой нагрузки по анодам и ниппелями, отключают анододержатели с...
Тип: Изобретение
Номер охранного документа: 0002593253
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55b3

Самоходная машина для обработки алюминиевых электролизеров

Изобретение относится к самоходной машине для обслуживания алюминиевых электролизеров при их технологической обработке. Самоходная машина содержит раму, к которой в передней части шарнирно с возможностью качания закреплен ведомый управляемый мост, два гидромотора, двигатель внутреннего...
Тип: Изобретение
Номер охранного документа: 0002593251
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55fb

Способ футеровки катодного устройства электролизера для получения алюминия

Изобретение относится к способу футеровки катодного устройства электролизера для получения алюминия неформованными материалами. В способе, включающем кладку кирпичной бровки по периметру внутренней боковой поверхности металлического кожуха, засыпку и горизонтальное выравнивание...
Тип: Изобретение
Номер охранного документа: 0002593247
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5626

Способ получения лигатуры алюминий-скандий

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий. Способ включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление...
Тип: Изобретение
Номер охранного документа: 0002593246
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5808

Навеска с прицепным устройством

Изобретение относится к области машиностроения. Навеска с прицепным устройством содержит шкворень, соединенный с гидроцилиндром подъема и опускания, и гидроцилиндр навески, закрепленный на раме самоходной машины и соединенный через рычаг с поворотным валом. Нижняя часть навески выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002588550
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.704c

Подвеска колес самоходной машины

Изобретение относится к подвеске колес тягово-транспортных средств, применяемых в электролитическом производстве алюминия. Подвеска колес содержит раму подвески, выполненную в виде пространственной фигуры коробчатой формы из двух металлических листов, соединенных между собой вертикальными...
Тип: Изобретение
Номер охранного документа: 0002596559
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.70ab

Способ управления подачей глинозема в электролизер при получении алюминия

Изобретение относится к способу управления подачей глинозема в электролизеры для получения алюминия для поддержания концентрации глинозема в электролите, равной или близкой к концентрации насыщения. В способе измеряют приведенное напряжение (U) или псевдосопротивление (R), регистрируют...
Тип: Изобретение
Номер охранного документа: 0002596560
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7106

Рабочий орган машины для пробивки корки алюминиевого электролизера

Изобретение относится к рабочему органу машины для пробивки корки электролита в электролизере для производства алюминия. Рабочий орган содержит кривошипно-шатунный механизм пробивки корки с пробойником, закрепленный на стреле, коленчатый вал и механизм отклонения пробойника. Гидромотор соединен...
Тип: Изобретение
Номер охранного документа: 0002596550
Дата охранного документа: 10.09.2016
+ добавить свой РИД