×
10.09.2015
216.013.77f0

Результат интеллектуальной деятельности: МАГНИТНЫЙ РАДИАЛЬНЫЙ ПОДШИПНИК С ТРЕХФАЗНЫМ УПРАВЛЕНИЕМ

Вид РИД

Изобретение

№ охранного документа
0002562293
Дата охранного документа
10.09.2015
Аннотация: Изобретение касается магнитного радиального подшипника и способа управления такого рода магнитным радиальным подшипником. Подшипник включает в себя статор (4), который имеет первую катушку (S1), вторую катушку (S2), третью катушку (S3) и четвертую катушку (S4), из которых первая катушка (S1) и третья катушка (S3) находятся на первой оси (Y), а также вторая (S2) и четвертая (S4) катушки - на второй оси (X) напротив друг друга. Управление катушками (S1, S2, S3, S4) осуществляется с трехфазным током (U, V и W). Амплитуды токов фаз (U, V и W) оцениваются каждая смещенной относительно друг друга на 120° синусоидальной функцией. Управление осуществляется с помощью устройства управления в варьируемой рабочей точке, которая задает для отдельных фаз значение оценки амплитуд каждой синусоидальной функции. Технический результат: создание компактного и надежно управляемого или, соответственно, регулируемого радиального магнитного подшипника с низкими потерями от вихревых токов. 2 н. и 28 з.п. ф-лы, 5 ил.

Настоящее изобретение касается магнитного радиального подшипника, включающего в себя статор, который имеет первую катушку, вторую катушку, третью катушку и четвертую катушку, из которых первая катушка и третья катушка находятся на первой оси, а также вторая и четвертая катушки - на второй оси напротив друг друга. Кроме того, настоящее изобретение касается способа управления такого рода магнитным радиальным подшипником.

Магнитные радиальные подшипники создают во вращающихся валах вихревые токи. Эти токи приводят к нежелательному нагреву вала. Связанная с этим мощность потерь уменьшает коэффициент полезного действия машины. Шихтованное обратное магнитное замыкание на вал, которое снизило бы вихревые токи, уменьшает жесткость вала.

Поэтому до сих пор искали компромисс из наименьших возможных вихревых токов потерь и наибольшей возможной жесткости. За вихревые токи потерь, по существу, ответственны числа полюсов магнитных полей, частота вращения вала и вид шихтовки. Для достижения низких частот перемагничивания стремятся к малому числу полюсов. Но при этом магнитное поле проникает глубоко в ротор и требует, таким образом, шихтовки с высоким ярмом ротора, что приводит тогда к тонкому валу. Когда превышается критическая склонность к самовозбуждению, число полюсов должно увеличиваться, что снова приводит к более высоким частотам и потерям.

На фиг. 1 изображено поперечное сечение традиционного радиального магнитного подшипника. Статор имеет здесь восемь катушек, вставленных в осевые пазы, причем на фиг. 1 схематично обозначены только катушки 1 и сердечники 2 катушек. Внутри статора магнитным полем удерживается ротор 3. Ротор 3 представляет собой вал, который должен устанавливаться на подшипники. Оси катушек 1 проходят здесь по существу радиально относительно оси вращения ротора 3.

Из книги «Magnetic Bearings» Герхарда Швайцера и Эрика Х.Маслена, издательство Шпрингер, Берлин, 2009, XV, страницы 82-84 и 96, известны радиальные магнитные подшипники с осевыми катушками. Это значит, что оси катушек распространяются параллельно оси подшипника. Соответственно этому направление потока как в катушках, так и в роторе проходит по существу в осевом направлении.

Задача настоящего изобретения заключается в том, чтобы предоставить просто и надежно управляемый или, соответственно, регулируемый радиальный магнитный подшипник. Кроме того, должен также предоставляться надлежащий способ управления магнитным радиальным подшипником.

В соответствии с изобретением эта задача решается с помощью магнитного радиального подшипника, включающего в себя:

- статор, который имеет первую катушку, вторую катушку, третью катушку и четвертую катушку, из которых первая катушка и третья катушка находятся на первой оси, а также вторая и четвертая катушки - на второй оси напротив друг друга, и включающего в себя:

- устройство управления для управления катушками статора с 3-фазным током, который имеет фазы U, V и W, при этом

- для управления первой осью

- первый разъем второй катушки и первый разъем четвертой катушки соединены с фазой U,

- второй разъем второй катушки - с фазой W,

а

- второй разъем четвертой катушки - с фазой V,

- для управления второй осью

- первый разъем первой катушки и первый разъем третьей катушки соединены с фазой U,

- второй разъем первой катушки - с фазой W,

а

- второй разъем третьей катушки - с фазой V,

- амплитуды токов фаз U, V и W оценены каждая смещенной по фазе на 120 градусов относительно друг друга синусоидальной функцией, и

- управление с помощью устройства управления для каждой из осей осуществляется всегда в варьируемой рабочей точке, которая для отдельных фаз соответственно каждой синусоидальной функции задает значение для оценки амплитуд.

Кроме того, в соответствии с изобретением предоставляется способ управления магнитным радиальным подшипником, включающим в себя статор, который имеет первую катушку, вторую катушку, третью катушку и четвертую катушку, из которых первая катушка и третья катушка находятся на первой оси, а также вторая и четвертая катушки - на второй оси напротив друг друга, посредством

- управления катушками статора с 3-фазным током, который имеет фазы U, V и W, при этом

- для управления первой осью

- первый разъем второй катушки и первый разъем четвертой катушки соединены с фазой U,

- второй разъем второй катушки - с фазой W,

а

- второй разъем четвертой катушки с фазой V,

- для управления второй осью

- первый разъем первой катушки и первый разъем третьей катушки соединены с фазой U,

- второй разъем первой катушки - с фазой W,

а

- второй разъем третьей катушки - с фазой V,

- амплитуды токов фаз U, V и W оцениваются каждая смещенной по фазе на 120 градусов относительно друг друга синусоидальной функцией, и

- управление для каждой из осей осуществляется в варьируемой рабочей точке, которая для отдельных фаз соответственно каждой синусоидальной функции задает значение для оценки амплитуд.

Предпочтительным образом возможно трехфазное управление катушками радиального подшипника, и может достигаться очень низкое число полюсов, а именно число пар полюсов p=0 для основного возбуждения или, соответственно, предварительного намагничивания. Дополнительное поле может создаваться одной парой полюсов p=1. В целом так могут достигаться очень низкие частоты перемагничивания, так что потери от вихревых токов соответственно малы.

Предпочтительно первая ось располагается перпендикулярно второй оси. При этом могут создаваться ортогональные силы, с помощью которых ротор может удерживаться точно в середине статора.

В одном из предпочтительных вариантов осуществления для варьируемой рабочей точки задана рабочая область, которая лежит между двумя предельными значениями, находящимися на заданном расстоянии от некоторого углового значения, причем это угловое значение предусмотрено для точки пересечения двух из синусоидальных функций. Ограничение рабочей точки рабочей областью обеспечивает, что отдельными катушками всегда создаются желаемые силы.

В частности, эта рабочая область может иметь протяженность, равную π/3. При этой протяженности всегда имеются однозначные условия сил катушек.

Кроме того, предпочтительно, когда катушки статора являются каждая осевыми катушками относительно оси вращения радиального подшипника. Это имеет то преимущество, что радиальный подшипник всегда может строиться очень компактно.

Кроме того, катушки статора должны иметь одинаковое направление намотки обмотки. Благодаря этому управление может выполняться проще.

Как уже было указано выше, в одном из предпочтительных вариантов осуществления основное возбуждение катушек может устанавливаться с помощью устройства управления с числом пар полюсов p=0. Это имеет вышеназванное преимущество низких потерь от вихревых токов.

Кроме того, с помощью устройства управления может устанавливаться дополнительное возбуждение катушек с числом пар полюсов p=1. При этом при очень малом числе пар полюсов может достигаться сила в направлении одной из осей перпендикулярно к оси вращения ротора. Так как число пар полюсов, в свою очередь, очень мало, можно рассчитывать на соответственно низкие потери от вихревых токов.

Настоящее изобретение поясняется подробнее с помощью прилагаемых чертежей, на которых показано:

фиг. 1: поперечное сечение традиционного магнитного радиального подшипника;

фиг. 2: поперечное сечение предлагаемого изобретением магнитного радиального подшипника;

фиг. 3: сечение по одной из осей X, Y магнитного радиального подшипника с фиг. 2;

фиг. 4: схема катушек магнитного радиального подшипника с трехфазным управлением и

фиг. 5: оценка управляющих токов трех фаз.

Изложенные ниже более подробно примеры осуществления представляют собой предпочтительные варианты осуществления настоящего изобретения.

В примере осуществления фиг. 2 изображен магнитный радиальный подшипник, включающий в себя статор 4 и ротор 3. Статор 4 имеет корпус 5, который выполнен в виде полого цилиндра. Внутри корпуса 5 находятся, прилегая к стенке корпуса или по меньшей мере копируя стенку корпуса, четыре катушки S1, S2, S3 и S4. Эти катушки S1-S4 являются аксиальными катушками или, соответственно, осевыми катушками. Это значит, что ось катушки проходит параллельно оси подшипника (перпендикулярно к плоскости чертежа фиг. 2). На изображении сечения фиг. 2 каждая катушка S1-S4 распространяется в одном квадранте внутри корпуса 5. Каждая катушка распространяется почти по всем 90° соответствующего квадранта. При этом наружный участок и внутренний участок всегда проходят концентрически корпусу 5. Внутри подшипника благодаря этому получается свободное пространство, в котором может свободно двигаться ротор 3. Ротор 3 имеет здесь вал 6, который окружен листовой сталью 7 в виде боковой поверхности. Между ротором 3 и статором 4 находится зазор подшипника, который обычно составляет от 2/10 до 3/10 мм.

Катушки S2 и S4 находятся напротив друг друга на одной первой оси X, которая образует биссектрису второго квадранта и четвертого квадранта и проходит через ось подшипника. Кроме того, катушки S1 и S3 находятся напротив друг друга на одной второй оси Y, которая образует биссектрису первого квадранта и третьего квадранта и проходит через ось подшипника. Соответственно этому катушки S2 и S4 создают в первую очередь силы по оси X, а катушки S1 и S3 в первую очередь силы по оси Y.

На фиг. 3 магнитный радиальный подшипник с фиг.2 изображен в осевом сечении по оси X или Y. На этом изображении хорошо различим ротор с валом 6 и листовой сталью 7. Здесь можно различить, что он окружен катушками S2 и S4. Символично на фиг. 3 изображено также направление 8 магнитного потока. Соответственно этому магнитный поток в осевом направлении направляется через катушку, а вне катушки в противоположном направлении направляется обратно через листовую сталь 7. Благодаря четырем осевым катушкам магнитный радиальный подшипник может реализовываться с толстым валом 6 и малой глубиной листовой стали ротора, а также короткой конструкцией.

В частности, при этой конструкции возможно осевое направление потока с наименьшим числом полюсов. Предварительное намагничивание может создаваться полем с числом пар полюсов p=0. При этом по периметру распределены одни только северные полюса N или одни только южные полюса S. Это обозначено на фиг. 3 символами N и S.

Если полюса по периметру выполнены с одинаковой силой, это соответствует основному возбуждению без дополнительной силы. Если, напротив, требуется дополнительная сила (необходимо тянуть вверх вал 6 против силы веса), то полюса в катушках S1 и S2 должны быть выполнены сильнее, чем полюса в катушках S3 и S4. Благодаря этому неодинаковому исполнению полюсов получается в минимальном случае число пар полюсов p=1. С помощью одних и тех же катушек может создаваться как основное возбуждение, так и дополнительное возбуждение.

Вследствие малого числа пар полюсов создается очень низкая частота перемагничивания, так что потери от вихревых токов соответственно низки. Кроме того, благодаря осевому направлению потока достигается малая глубина проникновения.

С помощью фиг. 4 и фиг. 5 теперь поясняется, как может осуществляться управление магнитным радиальным подшипником, чтобы стабильно удерживать ротор в статоре. На фиг. 4 для этого показана схема катушек S1-S4. Каждая из катушек имеет первый разъем и второй разъем. Соответственно этому первая катушка S1 имеет первый разъем S1A и второй разъем S1B. Вторая катушка S2 имеет первый разъем S2A и второй разъем S2B. Третья катушка имеет первый разъем S3A и второй разъем S3B. Наконец, четвертая катушка S4 имеет первый разъем S4A и второй разъем S4B. Катушки S1 и S3 находятся на второй оси Y, а катушки S2 и S4 - на первой оси X напротив друг друга.

В соответствии с настоящим изобретением управление катушками S1-S4 осуществляется с помощью трехфазного тока. Этот ток имеет фазы U, V и W. Для управления или, соответственно, регулирования сил по оси Y (вторая ось) первые разъемы S1A и S3A первой катушки S1 и третьей катушки S3 соединены с фазой U. Второй разъем S1B первой катушки S1 соединен с фазой W, а второй разъем S3B третьей катушки S3 - с фазой V. Аналогично для управления или, соответственно, регулирования сил по оси X (первая ось) первые разъемы S2A и S4A второй катушки S2 и четвертой катушки S4 соединены с фазой U, второй разъем S2B второй катушки S2 - с фазой W, а второй разъем S4B четвертой катушки S4 - с фазой V. Соответственно этому, например, в катушку S1 течет ток IW, а из нее ток IU1, при этом IW=IU1. В катушку S3 течет ток IV, а из нее ток IU2, при этом IV=IU2. Из катушек S1 и S3 течет при этом ток IU=IU1+IU2. Если токи IV и IW фаз V и W одинаковы, то через все катушки течет одинаковый ток. Ротор 3 тогда притягивается всеми четырьмя катушками с одинаковой силой. Это соответствует основному возбуждению.

На фиг. 5 воспроизведена фазовая диаграмма токов фаз U, V и W. В соответствии с изобретением каждая фаза оценивается соответственно изображенным там синусоидальным функциям fu, fv, fw.

Эту оценку и соответствующее управление производит устройство управления, которое подключено к катушкам S1-S4.

Чтобы можно было распознать синусоидальное изменение этих функций fu, fv и fw, в каждом случае изображен целый период (2π) каждой функции. Соответственно этому для одной определенной рабочей точки, которая соответствует углу φ, всегда получается относительное значение тока I/I0. Синусоидальные функции fu, fv и fw смещены каждая по фазе на 120° (2π/3) относительно друг друга.

Как было упомянуто выше, при основном возбуждении через все катушки течет одинаковый ток. В частности, соответственно этому на разъемах S1B и S3B фаз W и V течет одинаковый ток. Но это означает, что синусоидальные функции fv и fw должны пересекаться в рабочей точке основного возбуждения. Точке пересечения на фиг. 5 соответствует рабочая точка ag основного возбуждения. В этой рабочей точке ag получается по величине максимум оценочной или, соответственно, синусоидальной функции fu фазы U. Величина функции fu в этом месте вдвое выше, чем величина функций fv и fw. Соответственно этому ток фазы U вдвое больше, чем токи фазы V или W. В принципе, ток фазы U всегда соответствует сумме токов фаз V или W, что непосредственно вытекает из фиг. 4.

Вокруг рабочей точки ag основного возбуждения может задаваться рабочая область ab. Например, протяженность рабочей области ab составляет π/3. Предельные значения или, соответственно, пределы рабочей области ab составляют соответственно этому +/- π/6. У этих пределов относительно оси X или оси Y создается максимальная сила в одном направлении или в противоположном направлении. Для устройства управления достаточно, таким образом, выбрать рабочую точку (угол φ управления) в рабочей области ab, чтобы создавать необходимые силы или, соответственно, противодействующие силы. Это относится к силам как по оси X, так и по оси Y.

Это можно еще раз пояснить на примере. Если в фазе W не течет ток (левый предел рабочей области ab, то через катушку S1 не течет ток. Тогда ток в фазах U и V одинаков, но имеет противоположное направление. Катушка S1 при этом не создает поля, в то время как катушка S3 производит максимальное поле. Соответственно этому магнитный радиальный подшипник тянет ротор 3 в соответствии с фиг. 2 по оси Y влево вниз. Соответствующее относится ко всем другим рабочим точкам.

Предлагаемая изобретением комбинация осевого поля с трехфазным питанием у магнитного радиального подшипника решает существенные проблемы подшипников такого рода, в частности проблемы потерь от вихревых токов. В целом реализованный таким образом магнитный радиальный подшипник может строиться очень компактно. При этом уменьшается зазор подшипника и повышается частота колебаний изгиба вала. Кроме того, затраты на изготовление могут быть очень низкими.


МАГНИТНЫЙ РАДИАЛЬНЫЙ ПОДШИПНИК С ТРЕХФАЗНЫМ УПРАВЛЕНИЕМ
МАГНИТНЫЙ РАДИАЛЬНЫЙ ПОДШИПНИК С ТРЕХФАЗНЫМ УПРАВЛЕНИЕМ
МАГНИТНЫЙ РАДИАЛЬНЫЙ ПОДШИПНИК С ТРЕХФАЗНЫМ УПРАВЛЕНИЕМ
МАГНИТНЫЙ РАДИАЛЬНЫЙ ПОДШИПНИК С ТРЕХФАЗНЫМ УПРАВЛЕНИЕМ
МАГНИТНЫЙ РАДИАЛЬНЫЙ ПОДШИПНИК С ТРЕХФАЗНЫМ УПРАВЛЕНИЕМ
Источник поступления информации: Роспатент

Showing 871-880 of 1,427 items.
20.01.2018
№218.016.1dee

Аэродинамический профиль и способ его изготовления

Аэродинамический профиль содержит внешнюю и внутреннюю стенки и расположенный между ними охлаждающий канал, служащий для прохождения по нему охлаждающей текучей среды во время работы аэродинамического профиля. На внутренней стенке имеется выступ, отходящий от поверхности внутренней стенки...
Тип: Изобретение
Номер охранного документа: 0002640881
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e2c

Способ охлаждения паровой турбины

Изобретение относится к паротурбинной установке (1) с паровой турбиной (6) и к возможности охлаждения паровой турбины путем принудительного охлаждения. Паротурбинная установка с паровой турбиной, включающей участок впуска пара, участок выпуска пара и размещенную в корпусе турбины аксиально...
Тип: Изобретение
Номер охранного документа: 0002640891
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e34

Изменяемое регулирование предельной мощности газовых турбин

Группа изобретений относится к способу эксплуатации газотурбинной установки, газотурбинной установке и носителю данных. В способе предусмотрены этап определения, по меньшей мере, одного эксплуатационного параметра газотурбинной установки и этап определения предельной величины мощности в...
Тип: Изобретение
Номер охранного документа: 0002640874
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e42

Индуктор для индукционного нагрева

Изобретение относится к индуктору для индукционного нагрева месторождений нефтеносного песка, горючих сланцев или тяжелых фракций нефти. Индуктор (1) для индукционного нагрева посредством токоведущих проводников (2a…f, 4a…f) содержит участки многожильного провода (20, 22, 24, 26),...
Тип: Изобретение
Номер охранного документа: 0002640794
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e76

Электронные модули с жидкостным охлаждением и способы их замены

Изобретение относится к электронному устройству, содержащему электронные модули с жидкостным охлаждением, и способам для быстрого удаления и/или замены электронных модулей. Технический результат - создание электронного модуля с жидкостным охлаждением для электронного устройства, которое может...
Тип: Изобретение
Номер охранного документа: 0002640819
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1eae

Силовой элемент на печатной монтажной плате

Изобретение относится к многоэлементному источнику электропитания и, в частности, к силовому элементу на печатной монтажной плате (100), включающую в себя DC шину, расположенную в пределах печатной монтажной платы. Силовой элемент на печатной монтажной плате включает в себя множество...
Тип: Изобретение
Номер охранного документа: 0002641007
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.1f9e

Размыкатель цепи с механической связью

Изобретение относится к области электротехники, в частности к трехфазному высоковольтному размыкателю цепи с механической связью и направляющим средством. Техническим результатом является повышение надежности и устойчивости. Размыкатель цепи с механической связью содержит поперечную штангу и...
Тип: Изобретение
Номер охранного документа: 0002641308
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.2058

Предохранительное приспособление от выжимания для рельсового транспортного средства

Изобретение относится к рельсовым транспортным средствам, в частности к предохранительным приспособлениям от выжимания. Предохранительное приспособление от выжимания для рельсового транспортного средства с буфером, опорой для которого служит соединенный с рамой рельсового транспортного средства...
Тип: Изобретение
Номер охранного документа: 0002641579
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.212e

Способ заливки катушек и устройство для его осуществления

Изобретение относится к электротехнике. Технический результат состоит в упрощении изготовления. Устройство содержит наружный резервуар (11), заливаемую емкость (5) для размещения по меньшей мере одной заливаемой катушки (9) и устройство (10) для налива заливочного компаунда. Наружный резервуар...
Тип: Изобретение
Номер охранного документа: 0002641669
Дата охранного документа: 19.01.2018
13.02.2018
№218.016.2171

Система управления газотурбинным двигателем

Изобретение относится к способу эксплуатации газотурбинного двигателя. Способ включает этапы регулирования подачи жидкого топлива к горелке с высокой выходной мощностью для обеспечения высокой выходной мощности при наличии предельной температуры на входе в турбину и регулирования подачи жидкого...
Тип: Изобретение
Номер охранного документа: 0002641786
Дата охранного документа: 22.01.2018
Showing 871-880 of 943 items.
19.01.2018
№218.016.0e3a

Лопасть ротора турбомашины, диск ротора турбомашины, ротор турбомашины и газотурбинный двигатель с разными углами контактной поверхности хвостовика и гнезда

Лопасть ротора турбомашины имеет хвостовик елочной формы для закрепления на диске ротора. Хвостовик содержит нижнюю часть хвостовика и боковые стороны хвостовика, причем каждая боковая сторона хвостовика имеет первый, второй и третий выступ, содержащие соответственно первую, вторую и третью...
Тип: Изобретение
Номер охранного документа: 0002633287
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0e74

Локальное улучшение перемешивания воздуха и топлива в горелках, снабженных завихрителями, имеющими скрещенные в наружной области концы лопаток

Изобретение относится к области энергетики. Горелка (1), имеющая выполненный в поперечном сечении по существу кольцевой канал (4) подачи воздуха и предварительного перемешивания, по которому при эксплуатации протекают воздух и топливо, который образован наружной оболочкой (5) и втулкой (6) и в...
Тип: Изобретение
Номер охранного документа: 0002633475
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0e85

Транспортное средство, имеющее телескопическую входную лестницу

Изобретение относится к области транспортного машиностроения. Транспортное средство имеет входную дверь, лестницу, расположенную под входной дверью, и привод. Привод переводит входную лестницу из вдвинутого положения в выдвинутое положение. Для удержания входной лестницы в ее вдвинутом...
Тип: Изобретение
Номер охранного документа: 0002633446
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0eba

Резьбовой хвостовик, соединительный узел, газотурбинный двигатель и способ сборки ротора турбомашины газотурбинного двигателя

Резьбовой хвостовик ротора турбомашины предназначен для взаимодействия с резьбовым дополнительным компонентом ротора турбомашины, имеющим цилиндрическую первую резьбу с постоянным шагом и постоянным углом профиля. Резьбовой хвостовик имеет вторую резьбу с постоянным шагом и постоянным углом...
Тип: Изобретение
Номер охранного документа: 0002633199
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0ec2

Зарядка дорожных автомобилей с приводом от аккумулятора

Изобретение относится к электромобилям. Способ зарядки дорожного автомобиля с приводом от аккумулятора и электромашиной, начинается с заезда автомобиля в зарядную станцию. Управляющее устройство приводит в контакт друг с другом контактную систему и расположенные над дорожным автомобилем...
Тип: Изобретение
Номер охранного документа: 0002633423
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f2d

Крепление и уплотнение отражательных элементов кольца

Настоящее изобретение описывает турбину (100), содержащую опорный конструктивный элемент (101), который проходит вдоль направления (102) по окружности турбины (100), при этом опорный конструктивный элемент (101) имеет канавку (103), через которую может направляться охлаждающий воздух. Канавка...
Тип: Изобретение
Номер охранного документа: 0002633319
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0f33

Трубное соединение для пропускания находящегося под давлением флюида

Изобретение относится к трубному соединению (10) для проведения находящегося под давлением флюида, включающему в себя две трубообразные соединительные детали (12, 14) для конусного зажимного соединения (16), которые с вхождением друг в друга свинчены между собой накидной гайкой (28), причем...
Тип: Изобретение
Номер охранного документа: 0002633231
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0f50

Ротор электрической машины с изготовленной, исходя из гранулята, короткозамкнутой клеткой

Изобретение относится к области электротехники, в частности к ротору и способу изготовления ротора электрической машины. Технический результат - улучшение механических свойств ротора. Ротор имеет расположенный концентрично оси роторный сердечник (1) из материала сердечника, содержащий канавки...
Тип: Изобретение
Номер охранного документа: 0002633382
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f7a

Измерение температуры на потенциале высокого напряжения

Изобретение относится к области термометрии и может быть использовано для измерения температуры оптического преобразователя тока. Предлагается система для измерения температуры на потенциале высокого напряжения. Энергия для измерения температуры оптического преобразователя тока...
Тип: Изобретение
Номер охранного документа: 0002633292
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0fb8

Система кондиционирования для рельсового транспортного средства

Изобретение относится к железнодорожному транспорту. Система кондиционирования для рельсового транспортного средства включает воздухораспределительную коробку (1) с впуском (2) воздуха и по меньшей мере двумя выпусками (5, 6) воздуха для подключения к последующим воздушным каналам. Для каждого...
Тип: Изобретение
Номер охранного документа: 0002633610
Дата охранного документа: 13.10.2017
+ добавить свой РИД