×
27.08.2015
216.013.7536

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ КРУПНОГАБАРИТНЫХ СЛИТКОВ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ ИЗ ВЫСОКОПРОЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ СИСТЕМЫ Al-Zn-Mg-Cu-Zr

Вид РИД

Изобретение

№ охранного документа
0002561581
Дата охранного документа
27.08.2015
Аннотация: Изобретение относится к металлургии. Лигатуру алюминий-цирконий, технический алюминий и отходы загружают в центральную часть печного пространства с температурой 740-750°C. В расплав вводят лигатуру алюминий-бериллий при температуре 730-740°C, магний и цинк с температурой 710-730°C и после выдержки расплава 10-20 минут при температуре 710-730°C вводят медь, лигатуры алюминий-железо, алюминий-хром-магний. Осуществляют нагрев расплава до 720-740°C и перемешивание. За 15-25 минут до перелива расплав модифицируют лигатурой алюминий-титан в объеме 50% от расчетного количества. Перелитый в ковш расплав обрабатывают флюсом при температуре 710-730°C. Расплав из ковша переливают в миксер с предварительно загруженными и нагретыми до 750-770°C 20-40 минут лигатурами алюминий-титан в объеме 50% от расчетного количества и алюминий-титан-бор. Осуществляют вакуумную обработку 30-60 минут при температуре 710-730°C и остаточном давлении 1,3-2,0 кПа. Литье осуществляют с использованием фильтрующего элемента. Слиток охлаждают водой, подаваемой под давлением 100-150 кПа на широкие грани слитка, и под давлением 10-30 кПа - на узкие грани слитка. Обеспечивается получение слитков с однородной мелкой структурой, низким газосодержанием, равномерным распределением интерметаллидных фаз. 4 табл.
Основные результаты: Способ изготовления крупногабаритных слитков прямоугольного сечения из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr, включающий загрузку и плавление шихты в плавильных отражательных электрических печах сопротивления, обработку расплава флюсом в ковше, вакуумную обработку расплава в миксере, фильтрацию и литье слитков, отличающийся тем, что загрузку шихты производят поэтапно, лигатуру алюминий-цирконий загружают в центральную часть печного пространства одновременно с техническим алюминием и отходами в плавильную печь с температурой 740-750°C, после чего при температуре 730-740°C в расплав вводят лигатуру алюминий-бериллий, далее в расплав с температурой 710-730°C вводят магний и цинк, затем после выдержки расплава в течение 10-20 минут при температуре 710-730°C вводят медь, лигатуры алюминий-железо, алюминий-хром-магний, после чего осуществляют нагрев расплава до 720-740°C и дальнейшее перемешивание, за 15-25 минут до перелива в литейный миксер расплав модифицируют лигатурой алюминий - титан в объеме 50% от расчетного количества, переливают расплав в ковш и осуществляют обработку расплава флюсом при температуре 710-730°C, при этом расплав из ковша переливают в миксер с предварительно загруженными и нагретыми до 750-770°C в течение 20-40 минут лигатурами алюминий-титан в объеме 50% от расчетного количества и алюминий-титан-бор, осуществляют вакуумную обработку в течение 30-60 минут при температуре 710-730°C и остаточном давлении 1,3-2,0 кПа, а литье осуществляют с использованием фильтрующего элемента на основе базальтовой ткани с поверхностной плотностью не менее 300 г/м, причем слиток охлаждают водой, подаваемой под давлением 100-150 кПа на широкие грани слитка, и под давлением 10-30 кПа - на узкие грани слитка.

Изобретение относится к непрерывному литью металлов и может быть использовано для изготовления слитков из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr.

Высокопрочные алюминиевые сплавы системы Al-Zn-Mg-Cu-Zr, разработаны для изготовления деформированных полуфабрикатов, в том числе и прокаткой, и предназначенных для сварки. Сплавы отличается высокой жидкотекучестью, быстро кристаллизуются, что вызывает появление неслитин. Кроме того, сплавы содержат большое количество легирующих элементов, в том числе и тугоплавких, соответственно, при изготовлении крупногабаритных слитков возникают сложности получения равномерного химического состава, однородной структуры слитка, обеспечения отсутствия металлических и неметаллических соединений, снижающих качество слитков и изготовленных из него полуфабрикатов. Поэтому для достижения всех требуемых показателей качества необходимы индивидуальные способы изготовления крупногабаритных слитков из сплавов данной системы.

Известен способ непрерывного литья крупногабаритных слитков из легких модифицированных сплавов, преимущественно на основе алюминия, включающий подачу расплава в кристаллизатор, его обработку ультразвуком и вытягивание формируемого слитка (а.с. СССР №701000, публ. 27.03.1996).

Недостатками известного способа является необходимость наличия специализированного оборудования и отдельного помещения для отливки слитков, а также вредное воздействие ультразвука на организм человека.

Известен способ непрерывного литья цилиндрических слитков из алюминиевых сплавов, включающий струйную подачу расплава в кристаллизатор через распределительную воронку под мениск в горизонтальном направлении с заданной скоростью и вытягивание слитка, при этом площадь поперечного сечения отверстия цилиндрической распределительной воронки рассчитывают по определенным формулам (Патент РФ №2414324, публ. 20.03.2011).

Недостатком известного способа является узкая область применения, т.к. он предназначен для изготовления только цилиндрических слитков.

Известен способ получения слитков из алюминиевых сплавов, содержащих литий, включающий приготовление расплава, перелив расплава в вакуумный миксер, вакуумирование в две стадии, отстаивание расплава и разливку в слитки (Патент РФ №2463364, публ. 10.10.2012) - прототип. Недостатком известного способа является то, что способ разработан для изготовления слитков из сплавов системы Al-Li-Mg и не учитывает особенностей сплавов системы Al-Zn-Mg-Cu-Zr.

Задачей, на решение которой направлено изобретение, является разработка способа изготовления слитков, позволяющего осуществлять бездефектную отливку крупногабаритных слитков прямоугольного сечения из сплавов системы Al-Zn-Mg-Cu-Zr с высокими показателями качества.

Техническим результатом, достигаемым при осуществлении изобретения, является получение слитков с однородной мелкой структурой, низким газосодержанием, равномерным распределением интерметаллидных фаз.

Указанный технический результат достигается тем, что в способе изготовления крупногабаритных слитков прямоугольного сечения из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr, включающем загрузку и плавление шихты в плавильных отражательных электрических печах сопротивления, обработку расплава флюсом в ковше, вакуумную обработку расплава в миксере, фильтрацию и литье слитков, согласно изобретению загрузку шихты производят поэтапно, лигатуру алюминий-цирконий загружают в центральную часть печного пространства одновременно с техническим алюминием и отходами в плавильную печь с температурой 740-750°C, после чего при температуре 730-740°C в расплав вводят лигатуру алюминий-бериллий, далее в расплав с температурой 710-730°C вводят магний и цинк, затем после выдержки расплава в течение 10-20 минут при температуре 710-730°C вводят медь, лигатуры алюминий-железо, алюминий-хром-магний, после чего осуществляют нагрев расплава до 720-740°C и дальнейшее перемешивание, за 15-25 минут до перелива в литейный миксер расплав модифицируют лигатурой алюминий-титан в объеме 50% от расчетного количества, переливают расплав в ковш и осуществляют обработку расплава флюсом при температуре 710-730°C, при этом расплав из ковша переливают в миксер с предварительно загруженными и нагретыми до 750-770°C в течение 20-40 минут лигатурами алюминий-титан в объеме 50% от расчетного количества и алюминий-титан-бор, осуществляют вакуумную обработку в течение 30-60 минут при температуре 710-730°C и остаточном давлении 1,3-2,0 кПа, а литье осуществляют с использованием фильтрующего элемента на основе базальтовой ткани с поверхностной плотностью не менее 300 г/м2, причем слиток охлаждают водой, подаваемой под давлением 100-150 кПа на широкие грани слитка, и под давлением 10-30 кПа - на узкие грани слитка.

Рациональный подбор оборудования и технологических процессов обеспечивает значительное снижение в алюминиевых сплавах примесей, неметаллических включений и водорода, а также уменьшения величины зерна. В качестве плавильных агрегатов для получения слитков используют отражательные электрические печи (печи сопротивления). Данные печи позволяют минимизировать разрушение окисной пленки, находящейся на поверхности расплава, так как отсутствуют турбулентные движения на поверхности ванны расплава в процессе плавки, что, в свою очередь, препятствует поглощению водорода расплавом и препятствует попаданию отдельных частей окисной пленки в расплав.

Способ реализуется следующим образом.

В плавильную печь в соответствии с расчетным составом загружают технический алюминий, отходы соответствующей группы сплавов, а также лигатуру алюминий-цирконий, которую загружают в центральную часть рабочего пространства печи для более эффективного растворения фаз циркония. Печь доводят до заданной температуры 740-750°C, снимают шлак с поверхности расплава, расплав выдерживают при этой температуре в течение 10-20 минут с целью максимального растворения крупных первичных интерметаллидов, находящихся в составе лигатуры. Затем через смотровые окна осуществляют присадку лигатуры алюминий-бериллий для образования поверхностной пленки, способствующей минимизации окисления расплава и предохраняющей расплав от насыщения водородом, а также предотвращающей испарение из расплава магния и цинка, которые в чистом виде далее вводят в расплав с температурой 730-740°C. После введения магния и цинка расплав перемешивают, отстаивают, после чего осуществляют присадку меди при температуре 710-730°C. Затем с целью увеличения прочностных свойств сплав на уровне примесей легируют микродобавками железа, вводимого посредством лигатуры алюминий-железо, и хрома, измельчающего структуру полученного слитка и вводимого в лигатуре алюминий-хром-магний, которая содержит дополнительное количество магния для дошихтовки расплава при длительной выдержке. Для улучшения совокупности технологических и эксплуатационных свойств (прочности, пластичности, вязкости разрушения, коррозионной стойкости и т.д.) в слитках необходимо сформировать равномерную мелкозернистую структуру, для чего в процессе плавки расплав модифицируют комплексными лигатурами, содержащими модификаторы 2 рода. Лигатуру алюминий-титан, используемую для измельчения зерна за счет получения мелкодисперсных фаз, вводят следующим образом: 50% от расчетного количества лигатуры вводят за 20-40 минут до перелива расплава в литейный ковш, а остальное количество лигатуры алюминий-титан вместе с лигатурой алюминий-титан-бор загружают в литейный миксер, нагретый до температуры 750-770°C, и выдерживают в миксере до перелива расплава из ковша 20-40 минут. Такой способ введения лигатуры алюминий-титан обеспечивает равномерное ее растворение в расплаве при сохранении эффекта модифицирования. Полученный расплав из плавильной печи переливают в рафинировочный ковш и осуществляют рафинирование в ковше флюсом.

Температура расплава при рафинировании должна находиться в интервале 710-730°C, что позволяет достигнуть максимального эффекта рафинирования. Для усиления модифицирующего эффекта, обеспечивающего измельчение зерна за счет введения в расплав мелкодисперсных фаз, служащих центрами кристаллизации и приводящих к улучшению механических свойств и уменьшению газовой пористости отливаемого слитка, в расплав вводят лигатуру алюминий-титан-бор. Предварительную загрузку и отдельный нагрев лигатуры алюминий-титан-бор с лигатурой алюминий-титан в миксере осуществляют для увеличения растворимости интерметаллидов, содержащихся в лигатурах, а также уменьшения времени нахождения расплава, перелитого в миксер из ковша. После перелива расплава из ковша в миксер при температуре 710-730°C осуществляют вакуумную обработку расплава в течение 30-60 минут и остаточном давлении 1,3-2,0 кПа, что уменьшает газосодержание и количество неметаллических включений. Литье слитков производят в кристаллизатор скольжения с использованием литейной воронки, на которую установлен фильтрующий элемент из базальтовой ткани с поверхностной плотностью не менее 300 г/м2. Фильтрующий элемент благодаря своим теплофизическим свойствам не смачивается алюминиевым расплавом и обеспечивает легкость удаления гарнисажа, поверхностная плотность указанной величины позволяет не пропускать расплав сквозь базальтовую ткань, а выпуск расплава из распределительной воронки к фронту кристаллизации обеспечивается посредством выпускных отверстий в фильтрующем элементе. Для исключения внутренних напряжений, приводящих к холодным и горячим трещинам, охлаждение полученного слитка осуществляют водой, подаваемой на два фронта охлаждения: на широкие и узкие грани слитка.

Наиболее оптимальными интервалами давления воды, подаваемой на отливаемый слиток в зависимости от габаритов слитка, являются значения давления: 100-150 кПа на широкие грани слитка, 10-30 кПа - на узкие грани слитка. Применение такой схемы охлаждения позволяет существенно облегчить условия охлаждения в угловых зонах плоских слитков и производить отливку слитков с исключением несоответствий по их качеству.

Промышленная применимость изобретения подтверждается примером его конкретного выполнения.

Опробование предлагаемого способа осуществлялось при отливке слитков прямоугольного сечения из алюминиевого сплава системы Al-Zn-Mg-Cu-Zr размерами 314×1130×4000 мм, предназначенных для изготовления плоского проката аэрокосмического назначения. На подину плавильной отражательной электрической печи сопротивления, нагретой до температуры 750°C загружали технический алюминий марки A99, отходы сплавов системы Al-Zn-Mg-Cu и лигатуру алюминий-цирконий. После расплавления шихты снимали шлак, расплав выдерживали в течение 15 минут и при температуре 740°C через загрузочное окно производили присадку лигатуры алюминий-бериллий марки АБ-1 (ТУ 951810-89). После присадки лигатуры при температуре 720°C вводили магний технический марки Мг90 (ГОСТ 804-93) и цинк технический марки ЦВО (ГОСТ 3640-96). Далее расплав перемешивали, выдерживали 15 минут и при температуре 710°C последовательно вводили медь марки МООК (ГОСТ 859-2001), лигатуру алюминий-железо (СТП 05-039-2004), лигатуру алюминий-хром-магний (СТП 05-039-2004). Затем расплав нагревали до температуры 740°C и перемешивали. Перед переливом расплава в ковш в плавильную печь загружали лигатуру алюминий-титан (Al-3Ti) (СТП 05-039-2004) в объеме 50% от расчетного количества.

Слив расплава из печи в ковш проводили при температуре 730°C. Рафинирование расплава в ковшах проводили криолитсодержащим флюсом при температуре 710-720°C.

Перед переливом расплава в вакуумный миксер загружали остальное количество лигатуры алюминий-титан (Al-3Ti), а также лигатуру алюминий-титан-бор (ТУ 1712-001-45649028-98) и нагревали миксер в течение 40 минут до температуры 760°C. Далее рафинированный расплав переливали в миксер и в течение 45 минут осуществляли вакуумную обработку при температуре 710-720°C и остаточном давлении 1,5 кПа. После вакуумной обработки в миксер подавали нейтральный газ - аргон. Температуру расплава доводили до температуры литья и производили разливку в слиток.

Отливку слитка производили на литейной машине с тросовым приводом. Для фильтрации расплава в кристаллизаторе применяли распределительную воронку из базальтовой ткани марки БТ-11 (ТУ 5952-030-00204949-95) с поверхностной плотностью 345 г/м2 и выполненными выпускными отверстиями. Температура литья составляла 715-735°C, давление охлаждающей воды, подаваемой на широкие грани слитка, составляло 140 кПа, а давление воды, подаваемой на узкие грани слитка, составляло 20 кПа. После отливки на слитках осуществляли гомогенизацию по известным режимам. Из отлитых слитков прокатаны и термообработаны плиты толщиной 40 мм. Полученные результаты исследования слитков и изготовленных плит приведены в таблицах 1, 2, 3, 4. Химический состав сплава указан в табл. 1. Содержание водорода и коэффициент поглощения ультразвуковых колебаний в слитках приведены в табл. 2. В табл. 3 приведены результаты металлографического контроля слитков. В табл. 4 приведены показатели качества изготовленных плит. Качество полученных слитков и плит в полной мере соответствует нормативной документации.

Таким образом, предлагаемый способ позволяет получать слитки из алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr, характеризующиеся однородной мелкой структурой, низким газосодержанием, равномерным распределением интерметаллидных фаз.

Способ изготовления крупногабаритных слитков прямоугольного сечения из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr, включающий загрузку и плавление шихты в плавильных отражательных электрических печах сопротивления, обработку расплава флюсом в ковше, вакуумную обработку расплава в миксере, фильтрацию и литье слитков, отличающийся тем, что загрузку шихты производят поэтапно, лигатуру алюминий-цирконий загружают в центральную часть печного пространства одновременно с техническим алюминием и отходами в плавильную печь с температурой 740-750°C, после чего при температуре 730-740°C в расплав вводят лигатуру алюминий-бериллий, далее в расплав с температурой 710-730°C вводят магний и цинк, затем после выдержки расплава в течение 10-20 минут при температуре 710-730°C вводят медь, лигатуры алюминий-железо, алюминий-хром-магний, после чего осуществляют нагрев расплава до 720-740°C и дальнейшее перемешивание, за 15-25 минут до перелива в литейный миксер расплав модифицируют лигатурой алюминий - титан в объеме 50% от расчетного количества, переливают расплав в ковш и осуществляют обработку расплава флюсом при температуре 710-730°C, при этом расплав из ковша переливают в миксер с предварительно загруженными и нагретыми до 750-770°C в течение 20-40 минут лигатурами алюминий-титан в объеме 50% от расчетного количества и алюминий-титан-бор, осуществляют вакуумную обработку в течение 30-60 минут при температуре 710-730°C и остаточном давлении 1,3-2,0 кПа, а литье осуществляют с использованием фильтрующего элемента на основе базальтовой ткани с поверхностной плотностью не менее 300 г/м, причем слиток охлаждают водой, подаваемой под давлением 100-150 кПа на широкие грани слитка, и под давлением 10-30 кПа - на узкие грани слитка.
Источник поступления информации: Роспатент

Showing 51-60 of 71 items.
19.04.2019
№219.017.2f8b

Способ подготовки хлормагниевого сырья для производства магния электролизом расплавленных солей

Изобретение относится к области цветной металлургии и может быть использовано при подготовке хлормагниевого сырья для получения магния электролизом расплавленных солей. Хлормагниевое сырье загружают в многокамерную печь кипящего слоя, в которой сырье последовательно передвигается через ряд...
Тип: Изобретение
Номер охранного документа: 0002370441
Дата охранного документа: 20.10.2009
19.04.2019
№219.017.3170

Способ химической очистки расплавленного хлорида магния от примесей для электролитического получения магния

Изобретение относится к цветной металлургии, в частности к способам подготовки и очистки хлормагниевого сырья - хлорида магния для электролитического получения магния. Способ химической очистки хлормагниевого расплава от примесей включает заливку расплавленного хлорида магния в емкость,...
Тип: Изобретение
Номер охранного документа: 0002427670
Дата охранного документа: 27.08.2011
09.05.2019
№219.017.4db8

Вибрационный грохот для рассева материала пористой неоднородной формы

Изобретение относится к грохотам, применяемым для рассева материалов, а именно для рассева измельченного материала пористой неоднородной формы, например титановой или циркониевой губки. Вибрационный грохот для рассева материала пористой неоднородной формы включает корпус, вибровозбудитель,...
Тип: Изобретение
Номер охранного документа: 0002333044
Дата охранного документа: 10.09.2008
18.05.2019
№219.017.5666

Устройство для контроля металлотермической реакции восстановления титана

Изобретение относится к устройствам для контроля металлотермической реакции восстановления металла и может быть использовано в системах управления технологическими процессами в металлургической промышленности. В качестве датчиков индуцированного магнитного поля используются витки нагревателя,...
Тип: Изобретение
Номер охранного документа: 0002393438
Дата охранного документа: 27.06.2010
18.05.2019
№219.017.5671

Способ подготовки карналлитового сырья к процессу электролитического получения магния и хлора

Изобретение относится к цветной металлургии, а именно к способу подготовки хлормагниевого сырья методом обезвоживания к процессу электролитического получения магния и хлора. Способ включает подачу сырья в многокамерную печь кипящего слоя, первую стадию обезвоживания сырья путем...
Тип: Изобретение
Номер охранного документа: 0002399588
Дата охранного документа: 20.09.2010
18.05.2019
№219.017.579f

Устройство для резки блока тугоплавкого металла

Изобретение относится к цветной металлургии и может быть использовано при резке блока тугоплавкого металла, например блока губчатого титана или циркония. Устройство содержит станину, в которой смонтированы приемный стол для размещения блока, механизм перемещения зажимов в виде ползуна с...
Тип: Изобретение
Номер охранного документа: 0002371307
Дата охранного документа: 27.10.2009
18.05.2019
№219.017.57bf

Способ переработки карналлитовой пыли из циклонов печи кипящего слоя

Изобретение относится к цветной металлургии, а именно к подготовке карналлитового сырья к электролизу. Способ переработки карналлитовой пыли из циклонов печи кипящего слоя включает подачу сырья в печь кипящего слоя, его обезвоживание, улавливание пыли в циклонах с последующим извлечением ее из...
Тип: Изобретение
Номер охранного документа: 0002370440
Дата охранного документа: 20.10.2009
18.05.2019
№219.017.58b0

Способ обезвоживания карналлитового сырья в трехкамерной печи кипящего слоя

Изобретение относится к обезвоживанию карналлитового сырья, используемого при электролитическом получении магния. Обезвоживание карналлитового сырья проводят в трехкамерной печи кипящего слоя. Третья камера печи разделена перегородками с переточными окнами на полукамеры. Обезвоживание в первой...
Тип: Изобретение
Номер охранного документа: 0002323880
Дата охранного документа: 10.05.2008
18.05.2019
№219.017.59be

Способ вырезки контура металлических изделий

Изобретение относится к способам струйной резки и может быть использовано для вырезки контура металлических изделий, полученных преимущественно из труднодеформируемых металлов и сплавов методами обработки давлением. Осуществляют закрепление изделия в ложементе рабочего координатного стола...
Тип: Изобретение
Номер охранного документа: 0002470769
Дата охранного документа: 27.12.2012
18.05.2019
№219.017.5a8e

Способ определения содержания водорода в алюминиевых сплавах

Изобретение относится к области анализа газов в металлах. Способ включает отбор расплава, изготовление цилиндрического образца и определение количества содержащегося в сплаве водорода. Отбор расплава осуществляют заливкой порции жидкого металла в металлическую изложницу цилиндрического сечения...
Тип: Изобретение
Номер охранного документа: 0002435160
Дата охранного документа: 27.11.2011
Showing 21-28 of 28 items.
10.05.2016
№216.015.3b23

Способ изготовления холоднодеформированных бесшовных труб из титанового сплава ti-3al-2,5v

Изобретение относится к области металлургии, а именно к изготовлению холоднодеформированных бесшовных труб из титанового сплава Ti-3Al-2,5V. Способ включает производство слитков, ковку слитка в цилиндрическую заготовку за несколько переходов с чередованием деформации в β- и (α+β)-областях....
Тип: Изобретение
Номер охранного документа: 0002583566
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d82

Способ получения особо тонких листов из титанового сплава ti-6,5al-2,5sn-4zr-1nb-0,7mo-0,15si

Изобретение относится к обработке металлов давлением, а именно к способам изготовления особо тонких листов из высокопрочного псевдо-альфа титанового сплава Ti-6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si. Способ получения особо тонких листов из титанового сплава Ti-6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si включает...
Тип: Изобретение
Номер охранного документа: 0002583567
Дата охранного документа: 10.05.2016
26.08.2017
№217.015.edac

Способ диагностики структуры тонкостенных труб из алюминиевых сплавов

Изобретение относится к исследованию свойств материалов с помощью электрических измерений и может быть использовано для неразрушающего контроля структуры изделий из алюминиевых сплавов. Сущность: способ включает определение удельной электропроводимости материала и анализ полученных значений....
Тип: Изобретение
Номер охранного документа: 0002628870
Дата охранного документа: 22.08.2017
19.01.2018
№218.016.07d5

Способ изготовления стандартных образцов лигатур на основе алюминия

Изобретение относится к цветной металлургии, в частности к способам изготовления стандартных образцов состава лигатур на основе алюминия с аттестованным содержанием одного или нескольких легирующих химических элементов. Способ включает приготовление шихты, получение расплава, изготовление...
Тип: Изобретение
Номер охранного документа: 0002631544
Дата охранного документа: 25.09.2017
11.06.2018
№218.016.6160

Лигатура для алюминиевых сплавов

Изобретение относится к металлургии и может быть использовано при получении лигатур для легирования и модифицирования алюминиевых сплавов, содержащих цирконий и титан. Лигатура для алюминиевых сплавов систем Al-Zn-Mg-Cu и Al-Cu-Mg содержит, мас.%: медь 27-33, цирконий...
Тип: Изобретение
Номер охранного документа: 0002657271
Дата охранного документа: 09.06.2018
04.04.2019
№219.016.fc53

Способ изготовления образцов

Изобретение относится к литейному производству. Разливку ведут в изложницу, содержащую полость для формирования слитка и полость для формирования образца, сообщающиеся между собой. Перед началом разливки в стандартную изложницу устанавливают разъемную вставку, высота которой составляет 0,3-0,5...
Тип: Изобретение
Номер охранного документа: 0002355506
Дата охранного документа: 20.05.2009
18.05.2019
№219.017.5a8e

Способ определения содержания водорода в алюминиевых сплавах

Изобретение относится к области анализа газов в металлах. Способ включает отбор расплава, изготовление цилиндрического образца и определение количества содержащегося в сплаве водорода. Отбор расплава осуществляют заливкой порции жидкого металла в металлическую изложницу цилиндрического сечения...
Тип: Изобретение
Номер охранного документа: 0002435160
Дата охранного документа: 27.11.2011
19.06.2019
№219.017.8bcc

Способ получения лигатуры алюминий-титан-бор

Изобретение относится к металлургии и может быть использовано для получения модифицирующих лигатур при приготовлении алюминиевых сплавов методом введения в расплав алюминия борсодержащих и титансодержащих веществ или составов. Способ включает плавление первичного алюминия, порционное введение в...
Тип: Изобретение
Номер охранного документа: 0002466202
Дата охранного документа: 10.11.2012
+ добавить свой РИД