×
27.08.2015
216.013.7536

СПОСОБ ИЗГОТОВЛЕНИЯ КРУПНОГАБАРИТНЫХ СЛИТКОВ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ ИЗ ВЫСОКОПРОЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ СИСТЕМЫ Al-Zn-Mg-Cu-Zr

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002561581
Дата охранного документа
27.08.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к металлургии. Лигатуру алюминий-цирконий, технический алюминий и отходы загружают в центральную часть печного пространства с температурой 740-750°C. В расплав вводят лигатуру алюминий-бериллий при температуре 730-740°C, магний и цинк с температурой 710-730°C и после выдержки расплава 10-20 минут при температуре 710-730°C вводят медь, лигатуры алюминий-железо, алюминий-хром-магний. Осуществляют нагрев расплава до 720-740°C и перемешивание. За 15-25 минут до перелива расплав модифицируют лигатурой алюминий-титан в объеме 50% от расчетного количества. Перелитый в ковш расплав обрабатывают флюсом при температуре 710-730°C. Расплав из ковша переливают в миксер с предварительно загруженными и нагретыми до 750-770°C 20-40 минут лигатурами алюминий-титан в объеме 50% от расчетного количества и алюминий-титан-бор. Осуществляют вакуумную обработку 30-60 минут при температуре 710-730°C и остаточном давлении 1,3-2,0 кПа. Литье осуществляют с использованием фильтрующего элемента. Слиток охлаждают водой, подаваемой под давлением 100-150 кПа на широкие грани слитка, и под давлением 10-30 кПа - на узкие грани слитка. Обеспечивается получение слитков с однородной мелкой структурой, низким газосодержанием, равномерным распределением интерметаллидных фаз. 4 табл.
Основные результаты: Способ изготовления крупногабаритных слитков прямоугольного сечения из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr, включающий загрузку и плавление шихты в плавильных отражательных электрических печах сопротивления, обработку расплава флюсом в ковше, вакуумную обработку расплава в миксере, фильтрацию и литье слитков, отличающийся тем, что загрузку шихты производят поэтапно, лигатуру алюминий-цирконий загружают в центральную часть печного пространства одновременно с техническим алюминием и отходами в плавильную печь с температурой 740-750°C, после чего при температуре 730-740°C в расплав вводят лигатуру алюминий-бериллий, далее в расплав с температурой 710-730°C вводят магний и цинк, затем после выдержки расплава в течение 10-20 минут при температуре 710-730°C вводят медь, лигатуры алюминий-железо, алюминий-хром-магний, после чего осуществляют нагрев расплава до 720-740°C и дальнейшее перемешивание, за 15-25 минут до перелива в литейный миксер расплав модифицируют лигатурой алюминий - титан в объеме 50% от расчетного количества, переливают расплав в ковш и осуществляют обработку расплава флюсом при температуре 710-730°C, при этом расплав из ковша переливают в миксер с предварительно загруженными и нагретыми до 750-770°C в течение 20-40 минут лигатурами алюминий-титан в объеме 50% от расчетного количества и алюминий-титан-бор, осуществляют вакуумную обработку в течение 30-60 минут при температуре 710-730°C и остаточном давлении 1,3-2,0 кПа, а литье осуществляют с использованием фильтрующего элемента на основе базальтовой ткани с поверхностной плотностью не менее 300 г/м, причем слиток охлаждают водой, подаваемой под давлением 100-150 кПа на широкие грани слитка, и под давлением 10-30 кПа - на узкие грани слитка.
Реферат Свернуть Развернуть

Изобретение относится к непрерывному литью металлов и может быть использовано для изготовления слитков из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr.

Высокопрочные алюминиевые сплавы системы Al-Zn-Mg-Cu-Zr, разработаны для изготовления деформированных полуфабрикатов, в том числе и прокаткой, и предназначенных для сварки. Сплавы отличается высокой жидкотекучестью, быстро кристаллизуются, что вызывает появление неслитин. Кроме того, сплавы содержат большое количество легирующих элементов, в том числе и тугоплавких, соответственно, при изготовлении крупногабаритных слитков возникают сложности получения равномерного химического состава, однородной структуры слитка, обеспечения отсутствия металлических и неметаллических соединений, снижающих качество слитков и изготовленных из него полуфабрикатов. Поэтому для достижения всех требуемых показателей качества необходимы индивидуальные способы изготовления крупногабаритных слитков из сплавов данной системы.

Известен способ непрерывного литья крупногабаритных слитков из легких модифицированных сплавов, преимущественно на основе алюминия, включающий подачу расплава в кристаллизатор, его обработку ультразвуком и вытягивание формируемого слитка (а.с. СССР №701000, публ. 27.03.1996).

Недостатками известного способа является необходимость наличия специализированного оборудования и отдельного помещения для отливки слитков, а также вредное воздействие ультразвука на организм человека.

Известен способ непрерывного литья цилиндрических слитков из алюминиевых сплавов, включающий струйную подачу расплава в кристаллизатор через распределительную воронку под мениск в горизонтальном направлении с заданной скоростью и вытягивание слитка, при этом площадь поперечного сечения отверстия цилиндрической распределительной воронки рассчитывают по определенным формулам (Патент РФ №2414324, публ. 20.03.2011).

Недостатком известного способа является узкая область применения, т.к. он предназначен для изготовления только цилиндрических слитков.

Известен способ получения слитков из алюминиевых сплавов, содержащих литий, включающий приготовление расплава, перелив расплава в вакуумный миксер, вакуумирование в две стадии, отстаивание расплава и разливку в слитки (Патент РФ №2463364, публ. 10.10.2012) - прототип. Недостатком известного способа является то, что способ разработан для изготовления слитков из сплавов системы Al-Li-Mg и не учитывает особенностей сплавов системы Al-Zn-Mg-Cu-Zr.

Задачей, на решение которой направлено изобретение, является разработка способа изготовления слитков, позволяющего осуществлять бездефектную отливку крупногабаритных слитков прямоугольного сечения из сплавов системы Al-Zn-Mg-Cu-Zr с высокими показателями качества.

Техническим результатом, достигаемым при осуществлении изобретения, является получение слитков с однородной мелкой структурой, низким газосодержанием, равномерным распределением интерметаллидных фаз.

Указанный технический результат достигается тем, что в способе изготовления крупногабаритных слитков прямоугольного сечения из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr, включающем загрузку и плавление шихты в плавильных отражательных электрических печах сопротивления, обработку расплава флюсом в ковше, вакуумную обработку расплава в миксере, фильтрацию и литье слитков, согласно изобретению загрузку шихты производят поэтапно, лигатуру алюминий-цирконий загружают в центральную часть печного пространства одновременно с техническим алюминием и отходами в плавильную печь с температурой 740-750°C, после чего при температуре 730-740°C в расплав вводят лигатуру алюминий-бериллий, далее в расплав с температурой 710-730°C вводят магний и цинк, затем после выдержки расплава в течение 10-20 минут при температуре 710-730°C вводят медь, лигатуры алюминий-железо, алюминий-хром-магний, после чего осуществляют нагрев расплава до 720-740°C и дальнейшее перемешивание, за 15-25 минут до перелива в литейный миксер расплав модифицируют лигатурой алюминий-титан в объеме 50% от расчетного количества, переливают расплав в ковш и осуществляют обработку расплава флюсом при температуре 710-730°C, при этом расплав из ковша переливают в миксер с предварительно загруженными и нагретыми до 750-770°C в течение 20-40 минут лигатурами алюминий-титан в объеме 50% от расчетного количества и алюминий-титан-бор, осуществляют вакуумную обработку в течение 30-60 минут при температуре 710-730°C и остаточном давлении 1,3-2,0 кПа, а литье осуществляют с использованием фильтрующего элемента на основе базальтовой ткани с поверхностной плотностью не менее 300 г/м2, причем слиток охлаждают водой, подаваемой под давлением 100-150 кПа на широкие грани слитка, и под давлением 10-30 кПа - на узкие грани слитка.

Рациональный подбор оборудования и технологических процессов обеспечивает значительное снижение в алюминиевых сплавах примесей, неметаллических включений и водорода, а также уменьшения величины зерна. В качестве плавильных агрегатов для получения слитков используют отражательные электрические печи (печи сопротивления). Данные печи позволяют минимизировать разрушение окисной пленки, находящейся на поверхности расплава, так как отсутствуют турбулентные движения на поверхности ванны расплава в процессе плавки, что, в свою очередь, препятствует поглощению водорода расплавом и препятствует попаданию отдельных частей окисной пленки в расплав.

Способ реализуется следующим образом.

В плавильную печь в соответствии с расчетным составом загружают технический алюминий, отходы соответствующей группы сплавов, а также лигатуру алюминий-цирконий, которую загружают в центральную часть рабочего пространства печи для более эффективного растворения фаз циркония. Печь доводят до заданной температуры 740-750°C, снимают шлак с поверхности расплава, расплав выдерживают при этой температуре в течение 10-20 минут с целью максимального растворения крупных первичных интерметаллидов, находящихся в составе лигатуры. Затем через смотровые окна осуществляют присадку лигатуры алюминий-бериллий для образования поверхностной пленки, способствующей минимизации окисления расплава и предохраняющей расплав от насыщения водородом, а также предотвращающей испарение из расплава магния и цинка, которые в чистом виде далее вводят в расплав с температурой 730-740°C. После введения магния и цинка расплав перемешивают, отстаивают, после чего осуществляют присадку меди при температуре 710-730°C. Затем с целью увеличения прочностных свойств сплав на уровне примесей легируют микродобавками железа, вводимого посредством лигатуры алюминий-железо, и хрома, измельчающего структуру полученного слитка и вводимого в лигатуре алюминий-хром-магний, которая содержит дополнительное количество магния для дошихтовки расплава при длительной выдержке. Для улучшения совокупности технологических и эксплуатационных свойств (прочности, пластичности, вязкости разрушения, коррозионной стойкости и т.д.) в слитках необходимо сформировать равномерную мелкозернистую структуру, для чего в процессе плавки расплав модифицируют комплексными лигатурами, содержащими модификаторы 2 рода. Лигатуру алюминий-титан, используемую для измельчения зерна за счет получения мелкодисперсных фаз, вводят следующим образом: 50% от расчетного количества лигатуры вводят за 20-40 минут до перелива расплава в литейный ковш, а остальное количество лигатуры алюминий-титан вместе с лигатурой алюминий-титан-бор загружают в литейный миксер, нагретый до температуры 750-770°C, и выдерживают в миксере до перелива расплава из ковша 20-40 минут. Такой способ введения лигатуры алюминий-титан обеспечивает равномерное ее растворение в расплаве при сохранении эффекта модифицирования. Полученный расплав из плавильной печи переливают в рафинировочный ковш и осуществляют рафинирование в ковше флюсом.

Температура расплава при рафинировании должна находиться в интервале 710-730°C, что позволяет достигнуть максимального эффекта рафинирования. Для усиления модифицирующего эффекта, обеспечивающего измельчение зерна за счет введения в расплав мелкодисперсных фаз, служащих центрами кристаллизации и приводящих к улучшению механических свойств и уменьшению газовой пористости отливаемого слитка, в расплав вводят лигатуру алюминий-титан-бор. Предварительную загрузку и отдельный нагрев лигатуры алюминий-титан-бор с лигатурой алюминий-титан в миксере осуществляют для увеличения растворимости интерметаллидов, содержащихся в лигатурах, а также уменьшения времени нахождения расплава, перелитого в миксер из ковша. После перелива расплава из ковша в миксер при температуре 710-730°C осуществляют вакуумную обработку расплава в течение 30-60 минут и остаточном давлении 1,3-2,0 кПа, что уменьшает газосодержание и количество неметаллических включений. Литье слитков производят в кристаллизатор скольжения с использованием литейной воронки, на которую установлен фильтрующий элемент из базальтовой ткани с поверхностной плотностью не менее 300 г/м2. Фильтрующий элемент благодаря своим теплофизическим свойствам не смачивается алюминиевым расплавом и обеспечивает легкость удаления гарнисажа, поверхностная плотность указанной величины позволяет не пропускать расплав сквозь базальтовую ткань, а выпуск расплава из распределительной воронки к фронту кристаллизации обеспечивается посредством выпускных отверстий в фильтрующем элементе. Для исключения внутренних напряжений, приводящих к холодным и горячим трещинам, охлаждение полученного слитка осуществляют водой, подаваемой на два фронта охлаждения: на широкие и узкие грани слитка.

Наиболее оптимальными интервалами давления воды, подаваемой на отливаемый слиток в зависимости от габаритов слитка, являются значения давления: 100-150 кПа на широкие грани слитка, 10-30 кПа - на узкие грани слитка. Применение такой схемы охлаждения позволяет существенно облегчить условия охлаждения в угловых зонах плоских слитков и производить отливку слитков с исключением несоответствий по их качеству.

Промышленная применимость изобретения подтверждается примером его конкретного выполнения.

Опробование предлагаемого способа осуществлялось при отливке слитков прямоугольного сечения из алюминиевого сплава системы Al-Zn-Mg-Cu-Zr размерами 314×1130×4000 мм, предназначенных для изготовления плоского проката аэрокосмического назначения. На подину плавильной отражательной электрической печи сопротивления, нагретой до температуры 750°C загружали технический алюминий марки A99, отходы сплавов системы Al-Zn-Mg-Cu и лигатуру алюминий-цирконий. После расплавления шихты снимали шлак, расплав выдерживали в течение 15 минут и при температуре 740°C через загрузочное окно производили присадку лигатуры алюминий-бериллий марки АБ-1 (ТУ 951810-89). После присадки лигатуры при температуре 720°C вводили магний технический марки Мг90 (ГОСТ 804-93) и цинк технический марки ЦВО (ГОСТ 3640-96). Далее расплав перемешивали, выдерживали 15 минут и при температуре 710°C последовательно вводили медь марки МООК (ГОСТ 859-2001), лигатуру алюминий-железо (СТП 05-039-2004), лигатуру алюминий-хром-магний (СТП 05-039-2004). Затем расплав нагревали до температуры 740°C и перемешивали. Перед переливом расплава в ковш в плавильную печь загружали лигатуру алюминий-титан (Al-3Ti) (СТП 05-039-2004) в объеме 50% от расчетного количества.

Слив расплава из печи в ковш проводили при температуре 730°C. Рафинирование расплава в ковшах проводили криолитсодержащим флюсом при температуре 710-720°C.

Перед переливом расплава в вакуумный миксер загружали остальное количество лигатуры алюминий-титан (Al-3Ti), а также лигатуру алюминий-титан-бор (ТУ 1712-001-45649028-98) и нагревали миксер в течение 40 минут до температуры 760°C. Далее рафинированный расплав переливали в миксер и в течение 45 минут осуществляли вакуумную обработку при температуре 710-720°C и остаточном давлении 1,5 кПа. После вакуумной обработки в миксер подавали нейтральный газ - аргон. Температуру расплава доводили до температуры литья и производили разливку в слиток.

Отливку слитка производили на литейной машине с тросовым приводом. Для фильтрации расплава в кристаллизаторе применяли распределительную воронку из базальтовой ткани марки БТ-11 (ТУ 5952-030-00204949-95) с поверхностной плотностью 345 г/м2 и выполненными выпускными отверстиями. Температура литья составляла 715-735°C, давление охлаждающей воды, подаваемой на широкие грани слитка, составляло 140 кПа, а давление воды, подаваемой на узкие грани слитка, составляло 20 кПа. После отливки на слитках осуществляли гомогенизацию по известным режимам. Из отлитых слитков прокатаны и термообработаны плиты толщиной 40 мм. Полученные результаты исследования слитков и изготовленных плит приведены в таблицах 1, 2, 3, 4. Химический состав сплава указан в табл. 1. Содержание водорода и коэффициент поглощения ультразвуковых колебаний в слитках приведены в табл. 2. В табл. 3 приведены результаты металлографического контроля слитков. В табл. 4 приведены показатели качества изготовленных плит. Качество полученных слитков и плит в полной мере соответствует нормативной документации.

Таким образом, предлагаемый способ позволяет получать слитки из алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr, характеризующиеся однородной мелкой структурой, низким газосодержанием, равномерным распределением интерметаллидных фаз.

Способ изготовления крупногабаритных слитков прямоугольного сечения из высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu-Zr, включающий загрузку и плавление шихты в плавильных отражательных электрических печах сопротивления, обработку расплава флюсом в ковше, вакуумную обработку расплава в миксере, фильтрацию и литье слитков, отличающийся тем, что загрузку шихты производят поэтапно, лигатуру алюминий-цирконий загружают в центральную часть печного пространства одновременно с техническим алюминием и отходами в плавильную печь с температурой 740-750°C, после чего при температуре 730-740°C в расплав вводят лигатуру алюминий-бериллий, далее в расплав с температурой 710-730°C вводят магний и цинк, затем после выдержки расплава в течение 10-20 минут при температуре 710-730°C вводят медь, лигатуры алюминий-железо, алюминий-хром-магний, после чего осуществляют нагрев расплава до 720-740°C и дальнейшее перемешивание, за 15-25 минут до перелива в литейный миксер расплав модифицируют лигатурой алюминий - титан в объеме 50% от расчетного количества, переливают расплав в ковш и осуществляют обработку расплава флюсом при температуре 710-730°C, при этом расплав из ковша переливают в миксер с предварительно загруженными и нагретыми до 750-770°C в течение 20-40 минут лигатурами алюминий-титан в объеме 50% от расчетного количества и алюминий-титан-бор, осуществляют вакуумную обработку в течение 30-60 минут при температуре 710-730°C и остаточном давлении 1,3-2,0 кПа, а литье осуществляют с использованием фильтрующего элемента на основе базальтовой ткани с поверхностной плотностью не менее 300 г/м, причем слиток охлаждают водой, подаваемой под давлением 100-150 кПа на широкие грани слитка, и под давлением 10-30 кПа - на узкие грани слитка.
Источник поступления информации: Роспатент

Showing 1-10 of 71 items.
10.03.2013
№216.012.2d8c

Способ изготовления полой вентиляторной лопатки

Изобретение может быть использовано в авиационном двигателестроении при изготовлении полой лопатки вентилятора газотурбинного двигателя, состоящей из выполненных из титанового сплава обшивок и заполнителя. Способ предполагает использование диффузионной сварки для соединения обшивок и...
Тип: Изобретение
Номер охранного документа: 0002477191
Дата охранного документа: 10.03.2013
10.04.2013
№216.012.337b

Способ установки расходуемого электрода в кристаллизатор

Изобретение относится к металлургии, преимущественно к способам вакуумной дуговой плавки высокореакционных металлов, в частности титана и его сплавов. Способ включает загрузку расходуемого электрода в кристаллизатор, центрирование электрода по оси кристаллизатора и фиксацию данного положения...
Тип: Изобретение
Номер охранного документа: 0002478722
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.3718

Сплав на основе титана

Изобретение относится к металлургии сплавов на основе титана, используемых в медицине для изготовления деталей эндопротезов и имплантатов, предназначенных для применения в ортопедии, стоматологии и челюстно-лицевой хирургии. Предложен сплав, содержащий следующие компоненты, мас.%: алюминий...
Тип: Изобретение
Номер охранного документа: 0002479657
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.372a

Способ теплового регулирования электролизеров для получения магния и хлора и устройство для его осуществления

Изобретение относится к тепловому регулированию электролизеров для получения магния и хлора. При электролизе хлормагниевого сырья в электролизерах с верхним вводом анодов осуществляют отвод тепла от верхней части анодов над перекрытием путем подвода хладоагента к кессонам, контроль расхода...
Тип: Изобретение
Номер охранного документа: 0002479675
Дата охранного документа: 20.04.2013
10.07.2013
№216.012.53fe

Калийно-магниевое удобрение

Изобретение относится к сельскому хозяйству. Калийно-магниевое удобрение, которое содержит хлориды калия, магния, кальция, натрия и оксид магния, причем оно дополнительно содержит компоненты марганца, ванадия, хрома, цинка, меди и кобальта. Все компоненты взяты при определенном соотношении....
Тип: Изобретение
Номер охранного документа: 0002487105
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.5752

Способ изготовления тонких листов

Изобретение относится к области металлургии, в частности к способам изготовления тонких листов из жаропрочного псевдо-альфа-титанового сплава. Предложен способ изготовления тонких листов из слитка псевдо-альфа-титанового сплава. Способ включает деформацию слитка сплава...
Тип: Изобретение
Номер охранного документа: 0002487962
Дата охранного документа: 20.07.2013
27.10.2013
№216.012.79fc

Вакуумная дуговая гарнисажная печь

Изобретение относится к электрометаллургии, в частности к конструкции вакуумных дуговых гарнисажных печей, и может быть использовано для выплавки слитков из тугоплавких высокореакционных металлов и сплавов, преимущественно титановых, применяемых в аэрокосмической технике и судостроении. В печи...
Тип: Изобретение
Номер охранного документа: 0002496890
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7ccc

Способ технологического испытания листов из титановых сплавов при глубокой вытяжке и устройство для его осуществления

Изобретение относится к горячей листовой штамповке (вытяжке) и может быть использовано во всех отраслях народного хозяйства для установления технологических параметров деформирования листовых материалов из титановых сплавов. Производятся несколько циклов испытаний на максимальную вытяжку в...
Тип: Изобретение
Номер охранного документа: 0002497621
Дата охранного документа: 10.11.2013
10.12.2013
№216.012.8945

Способ получения слитков-электродов и устройство для его осуществления

Изобретение относится к электрометаллургии, в частности к конструкции вакуумных дуговых гарнисажных печей, и может быть использовано для выплавки слитков из тугоплавких высокореакционных металлов и сплавов, преимущественно титановых, применяемых в аэрокосмической технике и судостроении. В...
Тип: Изобретение
Номер охранного документа: 0002500823
Дата охранного документа: 10.12.2013
10.01.2014
№216.012.94a7

Устройство подготовки карналлита для электролитического получения магния и хлора

Изобретение относится к цветной металлургии. Устройство включает емкость в виде футерованного кожуха, разделенную перегородками на камеру плавления карналлита, камеру хлорирования расплава, выполненные с возможностью обогрева графитированными электродами, и камеру отстоя расплава, фурмы для...
Тип: Изобретение
Номер охранного документа: 0002503749
Дата охранного документа: 10.01.2014
Showing 1-10 of 28 items.
10.03.2013
№216.012.2d8c

Способ изготовления полой вентиляторной лопатки

Изобретение может быть использовано в авиационном двигателестроении при изготовлении полой лопатки вентилятора газотурбинного двигателя, состоящей из выполненных из титанового сплава обшивок и заполнителя. Способ предполагает использование диффузионной сварки для соединения обшивок и...
Тип: Изобретение
Номер охранного документа: 0002477191
Дата охранного документа: 10.03.2013
10.04.2013
№216.012.337b

Способ установки расходуемого электрода в кристаллизатор

Изобретение относится к металлургии, преимущественно к способам вакуумной дуговой плавки высокореакционных металлов, в частности титана и его сплавов. Способ включает загрузку расходуемого электрода в кристаллизатор, центрирование электрода по оси кристаллизатора и фиксацию данного положения...
Тип: Изобретение
Номер охранного документа: 0002478722
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.3718

Сплав на основе титана

Изобретение относится к металлургии сплавов на основе титана, используемых в медицине для изготовления деталей эндопротезов и имплантатов, предназначенных для применения в ортопедии, стоматологии и челюстно-лицевой хирургии. Предложен сплав, содержащий следующие компоненты, мас.%: алюминий...
Тип: Изобретение
Номер охранного документа: 0002479657
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.372a

Способ теплового регулирования электролизеров для получения магния и хлора и устройство для его осуществления

Изобретение относится к тепловому регулированию электролизеров для получения магния и хлора. При электролизе хлормагниевого сырья в электролизерах с верхним вводом анодов осуществляют отвод тепла от верхней части анодов над перекрытием путем подвода хладоагента к кессонам, контроль расхода...
Тип: Изобретение
Номер охранного документа: 0002479675
Дата охранного документа: 20.04.2013
10.07.2013
№216.012.53fe

Калийно-магниевое удобрение

Изобретение относится к сельскому хозяйству. Калийно-магниевое удобрение, которое содержит хлориды калия, магния, кальция, натрия и оксид магния, причем оно дополнительно содержит компоненты марганца, ванадия, хрома, цинка, меди и кобальта. Все компоненты взяты при определенном соотношении....
Тип: Изобретение
Номер охранного документа: 0002487105
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.5752

Способ изготовления тонких листов

Изобретение относится к области металлургии, в частности к способам изготовления тонких листов из жаропрочного псевдо-альфа-титанового сплава. Предложен способ изготовления тонких листов из слитка псевдо-альфа-титанового сплава. Способ включает деформацию слитка сплава...
Тип: Изобретение
Номер охранного документа: 0002487962
Дата охранного документа: 20.07.2013
27.10.2013
№216.012.79fc

Вакуумная дуговая гарнисажная печь

Изобретение относится к электрометаллургии, в частности к конструкции вакуумных дуговых гарнисажных печей, и может быть использовано для выплавки слитков из тугоплавких высокореакционных металлов и сплавов, преимущественно титановых, применяемых в аэрокосмической технике и судостроении. В печи...
Тип: Изобретение
Номер охранного документа: 0002496890
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7ccc

Способ технологического испытания листов из титановых сплавов при глубокой вытяжке и устройство для его осуществления

Изобретение относится к горячей листовой штамповке (вытяжке) и может быть использовано во всех отраслях народного хозяйства для установления технологических параметров деформирования листовых материалов из титановых сплавов. Производятся несколько циклов испытаний на максимальную вытяжку в...
Тип: Изобретение
Номер охранного документа: 0002497621
Дата охранного документа: 10.11.2013
10.12.2013
№216.012.8945

Способ получения слитков-электродов и устройство для его осуществления

Изобретение относится к электрометаллургии, в частности к конструкции вакуумных дуговых гарнисажных печей, и может быть использовано для выплавки слитков из тугоплавких высокореакционных металлов и сплавов, преимущественно титановых, применяемых в аэрокосмической технике и судостроении. В...
Тип: Изобретение
Номер охранного документа: 0002500823
Дата охранного документа: 10.12.2013
10.01.2014
№216.012.94a7

Устройство подготовки карналлита для электролитического получения магния и хлора

Изобретение относится к цветной металлургии. Устройство включает емкость в виде футерованного кожуха, разделенную перегородками на камеру плавления карналлита, камеру хлорирования расплава, выполненные с возможностью обогрева графитированными электродами, и камеру отстоя расплава, фурмы для...
Тип: Изобретение
Номер охранного документа: 0002503749
Дата охранного документа: 10.01.2014
+ добавить свой РИД