×
27.08.2015
216.013.7442

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КМОП ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Вид РИД

Изобретение

Аннотация: Использование: для контроля качества цифровых интегральных микросхем КМОП логическими элементами и оценки их температурных запасов. Сущность изобретения заключается в том, что способ включает подачу напряжения на контролируемую микросхему, переключение логического состояния греющего логического элемента последовательностью периодических импульсов, измерение изменения температурочувствительного параметра, определение теплового сопротивления, при этом греющий логический элемент переключается высокочувствительными импульсами, а в качестве температурочувствительного параметра используют длительность периода следования низкочастотных импульсов, генерируемых мультивибратором, и мультивибратор состоит из логического элемента контролируемой микросхемы и логического элемента образцовой микросхемы, работающей вместе с пассивными элементами мультивибратора при неизменной температуре. Технический результат: обеспечение возможности уменьшения времени измерения и погрешности измерения температурочувствительного параметра. 2 ил.
Основные результаты: Способ измерения теплового сопротивления КМОП цифровых интегральных микросхем, включающий подачу напряжения на контролируемую микросхему, переключение логического состояния греющего логического элемента последовательностью периодических импульсов, измерение изменения температурочувствительного параметра, определение теплового сопротивления с использованием измеренного изменения температурочувствительного параметра, греющей мощности и температурного коэффициента температурочувствительного параметра, отличающийся тем, что греющий логический элемент переключается высокочастотными импульсами, а в качестве температурочувствительного параметра используют длительность периода следования низкочастотных импульсов, генерируемых мультивибратором, и мультивибратор состоит из логического элемента контролируемой микросхемы и логического элемента образцовой микросхемы, работающей вместе с пассивными элементами мультивибратора при неизменной температуре, причем температурный коэффициент длительности периода следования низкочастотных импульсов определен путем нагрева в термостате контролируемой микросхемы при сохранении неизменной температуры образцовой микросхемы с пассивными элементами.

Изобретение относится к измерительной технике и может быть использовано для контроля качества цифровых интегральных микросхем с КМОП логическими элементами (ЛЭ) и оценки их температурных запасов.

Известен способ измерения теплового сопротивления цифровых интегральных микросхем RT, в котором микросхему нагревают переключением частотно-модулированными импульсами ЛЭ, выбранного в качестве источника тепла, измеряют изменение температурочувствительного параметра (ТЧП) ЛЭ, выбранного в качестве датчика температуры, определяют греющую мощность и определяют тепловое сопротивление с использованием измеренного изменения ТЧП, греющей мощности и известного температурного коэффициента ТЧП (см. а.с. 1310754 СССР. Способ измерения теплового сопротивления переход-корпус цифровых интегральных микросхем / В.А. Сергеев, Г.Ф. Афанасьев, Б.Н. Романов, В.В. Юдин. Опубл. 15.05.87. Бюл. №18). В качестве ТЧП используют напряжение логической единицы на выходе ЛЭ.

Недостатком указанного способа является большое время измерения напряжения ТЧП селективным вольтметром, что ограничивает автоматизацию контроля тепловых сопротивлений микросхем при массовом производстве.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ определения теплового сопротивления цифровых интегральных микросхем, в котором нагревают ЛЭ, выбранный в качестве источника тепла, путем подачи на его вход высокочастотных переключающих импульсов, модулированных последовательностью низкочастотных импульсов по форме меандра, определяют греющую мощность, измеряют изменение ТЧП ЛЭ, выбранного в качестве датчика температуры, и определяют тепловое сопротивление по измеренному изменению ТЧП, греющей мощности и известному температурному коэффициенту ТЧП (см. патент №2463618. Способ определения теплового импеданса КМОП цифровых интегральных микросхем / Сергеев В.А., Ламзин В.А., Юдин В.В. Опубл. 10.10.2012), принятый за прототип.

Недостатком известного способа, принятого за прототип, является также большое время измерения напряжения ТЧП селективным вольтметром и большая погрешность измерения ТЧП.

Технический результат заключается в уменьшении времени измерения и погрешности измерения ТЧП.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе измерения теплового сопротивления КМОП цифровых интегральных микросхем, включающем переключение логического состояния греющего логического элемента последовательностью высокочастотных импульсов, определение греющей мощности, измерение изменения температурочувствительного параметра, вычисление теплового сопротивления как отношение измеренного изменения температурочувствительного параметра к греющей мощности и температурному коэффициенту температурочувствительного параметра, особенность заключается в том, что в качестве температурочувствительного параметра используют длительность периода следования низкочастотных импульсов, генерируемых мультивибратором, и мультивибратор состоит из логического элемента контролируемой микросхемы и логического элемента образцовой микросхемы, работающей вместе с пассивными элементами мультивибратора при неизменной температуре, причем температурный коэффициент длительности периода следования низкочастотных импульсов определен путем нагрева в термостате контролируемой микросхемы при сохранении неизменной температуры образцовой микросхемы с пассивными элементами.

Сущность изобретения заключается в следующем. Нагрев КМОП цифровых интегральных микросхем осуществляют подачей на вход одного ЛЭ, выбранного в качестве источника тепла, высокочастотных переключающих импульсов (см., например, Тилл, У. Интегральные схемы. Материалы, приборы, изготовление: пер. с англ. / У. Тилл, Дж. Лаксон. - М.: Мир, 1985. - стр.474-475). Греющая мощность определяется из выражения

где - напряжение питания контролируемой микросхемы; f - частота следования высокочастотных импульсов греющегося ЛЭ; Сн - емкость нагрузки греющегося ЛЭ.

За счет теплопроводности тепло передается другим элементам микросхемы и изменяет их электрические характеристики. Тепловую связь между ЛЭ в цифровых интегральных микросхемах используют для определения теплового сопротивления (см. Закс Д.И. Параметры теплового режима полупроводниковых микросхем. М.: Радио и связь, 1983, с.31-32). Задавая приращение электрической мощности ΔP греющегося ЛЭ, измеряют изменение ТЧП ЛЭ, используемого в качестве датчика температуры. Тепловое сопротивление RT определяют по формуле:

где Δθ - приращение температуры ЛЭ, используемого в качестве датчика температуры; KU - температурный коэффициент ТЧП.

Кроме тепловой связи между ЛЭ существует электрическая связь из-за наличия паразитного сопротивления общей шины питания логических элементов микросхемы (см., например, а.с. №1613978 авторов Сергеев В.А., Юдин В.В., Горюнов H.H. «Способ измерения теплового сопротивления цифровых интегральных микросхем и устройство для его осуществления», опубл. 15.12.90. Бюл. №46). В прототипе в качестве ТЧП используют напряжение логической единицы , чувствительное к изменению напряжения питания ЛЭ. Микросхема в прототипе находится в двух разделенных по времени последовательно чередующихся состояниях: в состоянии нагрева и в состоянии измерения . Каждому состоянию соответствует свое напряжение питания ЛЭ, выбранного в качестве датчика температуры. В состоянии измерения напряжение питания повышается скачком относительно напряжения питания в состоянии нагрева на величину падения напряжения тока нагрева на паразитном сопротивлении в цепи питания ΔUэл. Напряжение также увеличивается. Скачкообразное изменение напряжения за счет влияния электрической связи ΔUэл алгебраически складывается с приращением напряжения спадающего у КМОП микросхем по экспоненте, за счет влияния тепловой связи, что значительно увеличивает погрешность измерения ТЧП.

На практике электрическую составляющую исключают путем измерения переменного напряжения , выбранного в качестве ТЧП, на низкой частоте при длительности периода следования Тнч>>τ и на высокой частоте при Твч<<τ, где τ - тепловая постоянная времени кристалла микросхемы. При Твч<<τ изменение напряжения обусловлено только влиянием электрической составляющей ΔUэл. Истинную величину обусловленную только изменением за счет тепловой связи, определяют путем вычитания (см., например, Аронов В.Л., Федотов Я.А. Испытание и исследование полупроводниковых приборов. Учебн. пособие для специальностей полупроводниковой техники вузов, М., «Высшая школа», 1975, стр.246). Двойное измерение на двух частотах увеличивает время измерения.

Чтобы исключить погрешность измерения ТЧП, вносимую электрической связью между ЛЭ, и уменьшить время измерения теплового сопротивления выберем в качестве ТЧП длительность периода T низкочастотных колебаний мультивибратора с одной времязадающей RC цепью. Одним плечом мультивибратора является ЛЭ1 контролируемой микросхемы 1, выбранный в качестве датчика температуры. Вторым плечом является ЛЭ2 образцовой микросхемы 2, температура которой вместе с внешней времязадающей RC цепью в процессе измерения остается постоянной (см. фиг.1). Один из ЛЭ контролируемой микросхемы, выбранный в качестве источника тепла, нагревают переключающими высокочастотными импульсами Uвч (см. фиг.2а). Для усиления нагрева выход ЛЭ нагружают на емкость нагрузки Cн. Выбрав емкость нагрузки из условия Сн>>Свых, где Свых - внутренняя емкость на выходе ЛЭ, то греющая мощность, определяемая по формуле (1), будет одинакова для всех микросхем. В процессе нагрева контролируемой микросхемы будет происходить изменение порогового напряжения Uпор переключения, напряжения и падение напряжения Uрп на защитном диоде логического элемента ЛЭ1. Изменение напряжений ЛЭ1 преобразуется в изменение частоты колебаний Uм мультивибратора. Длительность периода колебания Т мультивибратора имеет вид (см., например, Зельдин Е.А. Импульсные устройства на микросхемах. - М.: Радио и связь, 1991. - стр.84-85):

Измерение длительности периода следования низкочастотных импульсов T проводят в начале времени цикла tц нагрева (см. фиг.2д) - T1, и в конце цикла нагрева - Tm. Время цикла нагрева задается сигналом цикла нагрева Uц, как показано на фиг.2в. Вычисляют приращение периода следования:

и тепловое сопротивление по формуле (2).

При такой последовательности измерения периода следования низкочастотных импульсов, когда и нагрев, и измерение проводят одновременно, напряжение питания ЛЭ1 и напряжение , входящее в формулу (3), изменяться скачком не будут из-за отсутствия изменения напряжения на паразитном сопротивлении контролируемой микросхемы 1. Погрешность измерения ТЧП при этом существенно уменьшается.

Оценим методическую погрешность, обусловленную нагревом контролируемой микросхемы 1 за первый период следования импульса. Примем экспоненциальный закон изменения температуры нагрева. Приращение температуры за первый период следования импульса мультивибратора Δθ1 и по окончании цикла нагрева Δθц будет иметь вид:

где T1 - длительность первого периода следования импульсов мультивибратора; tц - длительность цикла нагрева; τ - тепловая постоянная времени кристалла микросхемы. Методическая погрешность измерения δ будет равна:

При этом должно выполняться неравенство T1<<τ<<tц. Для микросхем средней степени интеграции погрешность δ не превышает 1%.

Погрешность и время измерения длительности периода Т намного меньше погрешности и времени измерения напряжения , выбранного в прототипе в качестве ТЧП.

Температурный коэффициент длительности периода Кт определяют путем нагрева в термостате контролируемой микросхемы 1 при сохранении неизменной температуры образцовой микросхемы 2 с пассивными элементами (времязадающей RC цепью).

На фиг.1 представлен измеритель, реализующий способ определения теплового сопротивления КМОП цифровых интегральных микросхем.

На фиг.2 представлены эпюры напряжения схемы, реализующей способ определения теплового сопротивления КМОП цифровых интегральных микросхем.

Измеритель содержит исследуемую микросхему 1, образцовую микросхему 2, источник питания 3 исследуемой и образцовой микросхем, генератор высокочастотных импульсов нагрева 4, первый формирователь 5 импульса старта, триггер 6, первый логический элемент 2И 7, инвертор 8, регистр 9, второй логический элемент 2И 10, третий логический элемент 2И 11, генератор счетных импульсов 12, первый счетчик 13, второй счетчик 14, вычитатель 15, второй формирователь 16 импульсов сброса, четвертый логический элемент 2И 17.

Измеритель работает следующим образом. В исходном состоянии контролируемая микросхема 1 и образцовая микросхема 2 подключены к общему источнику питания 3 (см. фиг.1). На выходе триггера 6 сразу после включения питания измерителя присутствует произвольный уровень логического напряжения. Работа схемы начинается с подачи стартового импульса Uф1 низкого логического уровня (см. фиг.2б) с формирователя импульса 5 на вход сброса триггера 6 через логический элемент 2И 6, на вход сброса регистра 9 и счетчиков 14 и 15. При этом на выходе триггера 6 и на первом выходе регистра 9 устанавливается уровень логического нуля, происходит обнуление счетчиков 13 и 14. Уровень логического нуля на выходе триггера 6 блокирует первый логический элемент 2И 7 и логический элемент ЛЭ2 образцовой микросхемы 2 в составе мультивибратора. После окончания времени действия стартового импульса Uф1 по его заднему фронту на выходе триггера 6 (фиг.2в) и первом выходе регистра 9 (фиг.2е) устанавливаются уровни логической единицы Uц и Uр1. Логическая схема 2И 7 пропускает высокочастотные импульсы Uвч (фиг.2а) с генератора высокочастотных импульсов нагрева 4 на вход ЛЭ, выбранного в качестве источника тепла контролируемой микросхемы 1. Мультивибратор на логических элементах ЛЭ1 контролируемой микросхемы 1 и ЛЭ2 образцовой микросхемы 2 начинает генерировать низкочастотные импульсы Uм (фиг.2д). Генерированные импульсы мультивибратора снимаются с ЛЭ2. Первый период низкочастотных импульсов T1 начинается с низкого логического уровня. В результате нагрева контролируемой микросхемы, ее температура повышается по экспоненциальному закону, как показано на фиг.2г, а длительность периода Ti генерируемых мультивибратором низкочастотных импульсов увеличивается при неизменных значениях сопротивления R и емкости C времязадающей цепи. Генерируемые импульсы мультивибратора инвертируются инвертором 8 и сдвигают уровень логической единицы на выходах регистра 9. До прихода второго импульса мультивибратора с ЛЭ2 на вход регистра 9 импульсы генератора 12 счетных импульсов Uсч поступают через второй логический элемент 2И 10 на вход первого счетчика 13 (фиг.2з) и записывается количество прошедших импульсов. Это время соответствует началу разогрева контролируемой микросхемы 1. В дальнейшем происходит сдвиг импульсами мультивибратора логической единицы на выходе регистра до выбранного разряда m. Последний по счету m импульс регистра 9 Uрm (фиг.2ж) разрешает проходу счетных импульсов с генератора 12 через третий логический элемент 2И 11 на вход счетчика 14 (фиг.2з) и также происходит запись количества импульсов «горячей» контролируемой микросхемы 1 с длительностью периода следования Tm. Вычитатель 15 вычисляет разность Δn импульсов, записанных в счетчиках 13 и 14. С приходом очередного импульса мультивибратора, второй формирователь 16 формирует импульс Uф2 с уровнем логического нуля (фиг.2и), который завершает полное время цикла tц измерения (фиг.2в) путем сброса триггера 6 через четвертый логический элемент 2И 17.

Приращение длительности периода следования импульсов ΔT=Tm-T1=Δn·τсч, где τсч - длительность периода следования счетных импульсов Uсч. Тепловое сопротивление определяют по формуле (2)

RT=ΔT/КТΔP,

где КТ - известный температурный коэффициент длительности периода следования мультивибратора.

Способ измерения теплового сопротивления КМОП цифровых интегральных микросхем, включающий подачу напряжения на контролируемую микросхему, переключение логического состояния греющего логического элемента последовательностью периодических импульсов, измерение изменения температурочувствительного параметра, определение теплового сопротивления с использованием измеренного изменения температурочувствительного параметра, греющей мощности и температурного коэффициента температурочувствительного параметра, отличающийся тем, что греющий логический элемент переключается высокочастотными импульсами, а в качестве температурочувствительного параметра используют длительность периода следования низкочастотных импульсов, генерируемых мультивибратором, и мультивибратор состоит из логического элемента контролируемой микросхемы и логического элемента образцовой микросхемы, работающей вместе с пассивными элементами мультивибратора при неизменной температуре, причем температурный коэффициент длительности периода следования низкочастотных импульсов определен путем нагрева в термостате контролируемой микросхемы при сохранении неизменной температуры образцовой микросхемы с пассивными элементами.
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КМОП ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КМОП ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
Источник поступления информации: Роспатент

Showing 121-130 of 269 items.
10.07.2015
№216.013.60f9

Термостатирующее устройство

Изобретение относится к термостатам. Техническим результатом является повышение однородности температурного поля. Для этого в известное термостатирующее устройство введены дополнительные нагревательный элемент, электронный ключ, соединенные в последовательную цепь и подключенные к зажимам сети,...
Тип: Изобретение
Номер охранного документа: 0002556367
Дата охранного документа: 10.07.2015
27.07.2015
№216.013.667e

Тепловая электрическая станция

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электрических станциях. Тепловая электрическая станция, содержащая турбину с отопительными отборами пара, подключенными к нижнему и верхнему сетевым подогревателям, включенным по нагреваемой среде между...
Тип: Изобретение
Номер охранного документа: 0002557791
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6680

Газотурбинный двигатель

Газотурбинный двигатель содержит корпус, герметизирующую вход в корпус крышку, систему подачи электролита, выполненную в виде форсунки с кавитатором, размещенный в корпусе вал компрессора и турбины, электролизер-кавитатор, местное сужение канала с центральным телом. Электролизер-кавитатор...
Тип: Изобретение
Номер охранного документа: 0002557793
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.66c7

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида хрома. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002557864
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.66cb

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида хрома. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002557868
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.66f2

Установка для комплексного физиотерапевтического воздействия

Изобретение относится к медицинской технике. Установка для комплексного физиотерапевтического воздействия на организм человека содержит размещенную на кушетке емкость для помещения в нее пациента. Емкость выполнена в виде двух вставленных друг в друга упругих эластичных мешков. Промежуток между...
Тип: Изобретение
Номер охранного документа: 0002557907
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.67ab

Карниз крыши здания

Изобретение относится к области строительства, в частности к карнизу крыш зданий. Технический результат изобретения заключается в повышении эксплуатационной надежности крыши. Карниз крыши, обеспечивающий автоматический сброс сосулек при действиях порывов ветра, содержит параллельный стене...
Тип: Изобретение
Номер охранного документа: 0002558092
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6881

Способ получения износостойкого покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида или карбонитрида титана, кремния, алюминия, ниобия и хрома при их соотношении, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002558306
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6882

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ получения многослойного покрытия для режущего инструмента включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из...
Тип: Изобретение
Номер охранного документа: 0002558307
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6883

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из нитрида соединения титана, циркония и хрома при их...
Тип: Изобретение
Номер охранного документа: 0002558308
Дата охранного документа: 27.07.2015
Showing 121-130 of 443 items.
20.02.2014
№216.012.a321

Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом положительной нелинейности температурной характеристики выходного сигнала датчика

Изобретение относится к измерительной технике. Способ заключается в том, что определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α  и α  при температуре t и t, соответствующей верхнему и нижнему пределу рабочего диапазона температур, нелинейность ТКЧ мостовой цепи (Δα=α -α...
Тип: Изобретение
Номер охранного документа: 0002507476
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a322

Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом положительной нелинейности температурной характеристики выходного сигнала датчика

Изобретение относится к измерительной технике. Способ заключается в том, что при сопротивлении нагрузки R>500кОм определяют температурный коэффициент чувствительности (ТКЧ) мостовой цепи α  и α  при температуре t и t, соответствующей верхнему и нижнему пределу рабочего диапазона температур, и...
Тип: Изобретение
Номер охранного документа: 0002507477
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a34f

Цифровой способ преобразования параметров индуктивных датчиков с использованием временной инверсии сигнала

Изобретение относится к измерительной технике. Способ заключается в возбуждении кратковременным электрическим импульсом в LC-контурах измерительного и опорного плеч датчика колебательных сигналов и аналого-цифровом преобразовании их в числовые массивы данных, временной инверсии путем...
Тип: Изобретение
Номер охранного документа: 0002507522
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a353

Способ измерения теплового импеданса полупроводниковых диодов с использованием полигармонической модуляции греющей мощности

Изобретение относится к технике измерения теплофизических параметров полупроводниковых диодов. Способ измерения теплового импеданса полупроводниковых диодов, заключающийся в том, что через полупроводниковый диод пропускают последовательность импульсов греющего тока, период следования которых...
Тип: Изобретение
Номер охранного документа: 0002507526
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a379

Устройство сравнения двоичных чисел

Изобретение относится к вычислительной технике и может быть использовано в цифровых компараторах, ассоциативных процессорах и машинах баз данных. Техническим результатом является упрощение устройства за счет обеспечения однородности аппаратурного состава. Устройство сравнения двоичных чисел...
Тип: Изобретение
Номер охранного документа: 0002507564
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a418

Устройство для управления электрическим режимом дуговой сталеплавильной печи

Изобретение относится к электротермии, в частности к устройствам управления дуговыми сталеплавильными печами. Технический результат - снижение чувствительности системы управления дуговой сталеплавильной печи к изменяющимся параметрам процесса плавки, повышение стабильности режимов работы,...
Тип: Изобретение
Номер охранного документа: 0002507723
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.a8ee

Способ получения объемных сложнопрофильных наноструктурных конструкционных и функциональных материалов

Изобретение относится к порошковой металлургии, в частности к получению объемных наноструктурных материалов. Пористую металломатричную основу формируют путем спекания в состоянии свободной засыпки полиморфных порошковых материалов дисперсностью 1-10 мкм. В основу, нагретую до температуры 0,4 от...
Тип: Изобретение
Номер охранного документа: 0002508961
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9d4

Устройство для удаления сосулек

Устройство для удаления сосулек относится к строительству крыш жилых и производственных зданий, исключающих опасность схода с крыши снега и льда. Устройство для удаления сосулек 1 с карниза 2 крыши 3 здания 4 содержит гибкие режущие элементы 5, расположенные вдоль карниза параллельно ему....
Тип: Изобретение
Номер охранного документа: 0002509191
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9d5

Устройство для сброса сосулек, наледи и снега со свеса кровли

Изобретение относится к области строительства, в частности к устройству для сброса сосулек, наледи и снега со свеса крыши. Технический результат изобретения заключается в повышении эксплуатационной надежности крыши. Устройство для сброса сосулек и наледи и слоя снега со свеса кровли здания...
Тип: Изобретение
Номер охранного документа: 0002509192
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9ee

Способ работы тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. Способ работы тепловой электрической станции характеризуется тем, что вырабатываемый в котле пар подают в турбину, паром отборов турбины нагревают сетевую воду в сетевых подогревателях, из...
Тип: Изобретение
Номер охранного документа: 0002509217
Дата охранного документа: 10.03.2014
+ добавить свой РИД