×
20.08.2015
216.013.7174

Результат интеллектуальной деятельности: СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергетики и может быть использовано для утилизации теплоты тепловой электрической станции (ТЭС). Осуществляют подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от потребителей по обратному трубопроводу сетевой воды в теплообменник-охладитель сетевой воды и в нижний, и верхний сетевые подогреватели, подачу сетевой воды в подающий трубопровод сетевой воды, направление отработавшего пара из паровой турбины в паровое пространство конденсатора, в котором пар конденсируется на поверхности конденсаторных трубок. Конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации. Дополнительно используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара и систему маслоснабжения ее подшипников с маслоохладителем, и осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина. В цикле Ренкина в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. Низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в маслоохладителе, нагревают в теплообменнике-охладителе сетевой воды, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя. В частном случае осуществления изобретения в качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения. В качестве низкокипящего рабочего тела используют сжиженный пропан CH.Обеспечивается повышение коэффициента полезного действия ТЭС для дополнительной выработки электрической энергии. 2 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а также в конденсаторе теплонасосной установки теплотой, отведенной от обратной сетевой воды в испарителе теплонасосной установки, после чего направляют потребителям, при этом весь поток сетевой воды последовательно нагревают в нижнем сетевом подогревателе, конденсаторе теплонасосной установки и верхнем сетевом подогревателе (патент RU №2275512, МПК F01K 17/02, 27.04.2006).

Прототипом является способ работы тепловой электрической станции, содержащей теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей (патент RU №2269014, МПК F01K 17/02, 27.01.2006).

В известном способе возвращаемая от потребителей по обратному трубопроводу теплосети сетевая вода подается сетевым насосом в испаритель теплонасосной установки, где отдает часть теплоты хладагенту теплонасосной установки и охлаждается, затем сетевая вода поступает в сетевые подогреватели, где нагревается паром отопительных отборов турбины. Перед подачей потребителям сетевая вода дополнительно нагревается в конденсаторе теплонасосной установки за счет теплоты хладагента, циркулирующего в контуре теплонасосной установки. Благодаря последовательному включению испарителя теплонасосной установки в обратный трубопровод теплосети до сетевых подогревателей, а конденсатора в подающий трубопровод теплосети после сетевых подогревателей достигается максимальное охлаждение обратной сетевой воды.

Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство верхнего и нижнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в испаритель, выполняющий функцию теплообменника-охладителя сетевой воды, нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем в испарителе, выполняющем функцию теплообменника-охладителя сетевой воды, осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи охлаждающей жидкости.

Основным недостатком аналога и прототипа является то, что утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют в целях выработки дополнительной тепловой энергии, а не для дополнительной выработки электрической энергии.

Кроме этого, недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии, обусловленный затратами электрической мощности на привод теплонасосной установки.

Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.

Техническим результатом является повышение коэффициента полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.

Технический результат достигается тем, что в способе утилизации теплоты тепловой электрической станции, включающий подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от потребителей по обратному трубопроводу сетевой воды в теплообменник-охладитель сетевой воды и в нижний, и верхний сетевые подогреватели, подачу сетевой воды в подающий трубопровод сетевой воды, направление отработавшего пара из паровой турбины в паровое пространство конденсатора, в котором пар конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, согласно настоящему изобретению дополнительно используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара и систему маслоснабжения ее подшипников с маслоохладителем, и осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины спроизводственным отбором пара, утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом низкокипящее рабочее тело сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в маслоохладителе, нагревают в теплообменнике-охладителе сетевой воды, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.

В качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.

Таким образом, технический результат достигается за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара для дополнительной выработки электрической энергии, которые осуществляют путем последовательного нагрева, соответственно, в маслоохладителе системы маслоснабжения подшипников паровой турбины с производственным отбором пара, теплообменнике-охладителе сетевой воды и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность изобретения поясняется фиг. 1, на которой представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, теплообменником-рекуператором, теплообменник-охладитель сетевой воды и конденсационную установку.

На фиг. 1 цифрами обозначены:

1 - паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - теплообменник-конденсатор,

9 - конденсатный насос,

10 - верхний сетевой подогреватель,

11 - нижний сетевой подогреватель,

12 - подающий трубопровод сетевой воды,

13 - обратный трубопровод сетевой воды,

14 - теплообменник-охладитель сетевой воды,

15 - конденсационная установка,

16 - паровая турбина с производственным отбором пара,

17 - электрогенератор паровой турбины с производственным отбором пара,

18 - конденсатор паровой турбины с производственным отбором пара,

19 - конденсатный насос конденсатора паровой турбины с производственным отбором пара,

20 - система маслоснабжения подшипников паровой турбины с производственным отбором пара,

21 - сливной трубопровод,

22 - маслобак,

23 - маслонасос,

24 - маслоохладитель,

25 - напорный трубопровод,

26 - теплообменник-рекуператор.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды, и теплообменник-охладитель 14 сетевой воды, включенный по нагреваемой среде в обратный трубопровод 13 сетевой воды перед нижним сетевым подогревателем 11.

В тепловую электрическую станцию введены конденсационная установка 15 и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.

Конденсационная установка 15 содержит последовательно соединенные паровую турбину 16 с производственным отбором пара, имеющую электрогенератор 17, конденсатор 18 паровой турбины с производственным отбором пара, конденсатный насос 19 конденсатора паровой турбины с производственным отбором пара, и систему 20 маслоснабжения подшипников паровой турбины с производственным отбором пара, содержащую последовательно соединенные по греющей среде сливной трубопровод 21, маслобак 22, маслонасос 23 и маслоохладитель 24, выход которого по нагреваемой среде соединен с напорным трубопроводом 25.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 26, теплообменник-конденсатор 8 и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 26, выход теплообменника-рекуператора 26 по нагреваемой среде соединен с входом маслоохладителя 24 системы маслоснабжения подшипников паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом теплообменника-охладителя 14 сетевой воды, а выход теплообменника-охладителя 14 сетевой воды по нагреваемой среде соединен с входом конденсатора 18 паровой турбины с производственным отбором пара, выход конденсатора 18 паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера 6, выход турбодетандера 6 по греющей среде соединен с теплообменником-рекуператором 26, выход теплообменника-рекуператора 26 по греющей среде соединен с теплообменником-конденсатором 8, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.

Способ утилизации теплоты тепловой электрической станции осуществляют следующим образом.

Способ включает в себя подачу пара отопительных параметров из отборов паровой турбины 1 в паровое пространство верхнего 10 и нижнего 11 сетевых подогревателей, подачу сетевой воды от потребителей по обратному 13 трубопроводу сетевой воды в теплообменник-охладитель 14 сетевой воды и в нижний 11, и верхний 10 сетевые подогреватели, подачу сетевой воды в подающий 12 трубопровод сетевой воды, направление отработавшего пара из паровой турбины 1 в паровое пространство конденсатора 2, в котором пар конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины 1 направляют в систему регенерации.

Отличием предлагаемого способа является то, что дополнительно используют конденсационную установку 15, имеющую конденсатор 18 паровой турбины 16 с производственным отбором пара и систему 20 маслоснабжения ее подшипников с маслоохладителем 24, и осуществляют утилизацию низкопотенциальной теплоты системы 20 маслоснабжения подшипников паровой турбины 16 с производственным отбором пара, утилизацию высокопотенциальной теплоты пара производственного отбора и утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом низкокипящее рабочее тело сжимают в конденсатном насосе 9 теплового двигателя 5, нагревают в теплообменнике-рекуператоре 26 теплового двигателя, нагревают в маслоохладителе 24, нагревают в теплообменнике-охладителе 14 сетевой воды, испаряют и перегревают в конденсаторе 18 паровой турбины 16 с производственным отбором пара, расширяют в турбодетандере 6 теплового двигателя, снижают его температуру в теплообменнике-рекуператоре 26 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.

В качестве теплообменника-конденсатора 8 теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.

Пример конкретного выполнения

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Преобразование низкопотенциальной тепловой энергии системы 20 маслоснабжения подшипников паровой турбины 16 с производственным отбором пара, а также избыточной низкопотенциальной тепловой энергии обратной сетевой воды и высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 16 в механическую и далее в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.

Таким образом, утилизацию низкопотенциальной теплоты системы 20 маслоснабжения подшипников паровой турбины 16 с производственным отбором пара, утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора из паровой турбины 16 с производственным отбором пара осуществляют путем последовательного нагрева соответственно в маслоохладителе 24 системы маслоснабжения подшипников паровой турбины с производственным отбором пара, теплообменнике-охладителе 14 сетевой воды и конденсаторе 18 паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Весь процесс начинается со сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который последовательно направляют на нагрев вначале в теплообменник-рекуператор 26, куда поступает перегретый газообразный пропан C3H8 из турбодетандера 6, далее в маслоохладитель 24, куда поступает нагретое масло системы 20 маслоснабжения подшипников паровой турбины 16, а затем в теплообменник-охладитель 14 сетевой воды, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура нагретого масла и обратной сетевой воды может варьироваться в интервале от 313,15 К до 343,15 К.

В процессе теплообмена перегретого газообразного пропана C3H8 со сжиженным пропаном C3H8 в теплообменнике-рекуператоре 26 и теплообмена нагретого масла с сжиженным пропаном C3H8 в маслоохладителе 24, а также в процессе теплообмена обратной сетевой воды со сжиженным пропаном C3H8 в теплообменнике-охладителе 14 сетевой воды происходит нагрев сжиженного пропана C3H8 в пределах критической температуры в интервале от 308,15 К до 338,15 К при сверхкритическом давлении от 4,2512 МПа до 8 МПа, и далее его направляют на испарение и перегрев в конденсатор 18 паровой турбины с производственным отбором пара, куда поступает пар производственного отбора из паровой турбины 16 при температуре около 573 К.

Пар, поступающий из производственного отбора паровой турбины 16 в паровое пространство конденсатора 18, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 16 передается соединенному на одном валу основному электрогенератору 17.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 19 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.

В процессе конденсации пара производственного отбора в конденсаторе 18 паровой турбины происходит нагрев сжиженного пропана C3H8 до критической температуры 369,89 К с последующим его испарением и перегревом до сверхкритической температуры от 369,89 К до 420 К при сверхкритическом давлении от 4,2512 МПа до 8 МПа, который направляют в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан C3H8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 26 для снижения температуры.

В теплообменнике-рекуператоре 26 в процессе отвода теплоты на нагрев сжиженного пропана C3H8 снижаются нагрузка на теплообменник-конденсатор 8, выполненный, например, в виде конденсатора воздушного охлаждения, и затраты мощности на привод вентиляторов воздушного охлаждения.

Далее, при снижении температуры газообразного пропана C3H8 происходит его сжижение в теплообменнике-конденсаторе 8, охлаждаемом воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.

После теплообменника-конденсатора 8 в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Использование в работе тепловой электрической станции конденсационной установки 15 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя 5 с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.

Использование предлагаемого способа работы тепловой электрической станции позволит по сравнению с прототипом повысить коэффициент полезного действия ТЭС за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии.


СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ
Источник поступления информации: Роспатент

Showing 31-40 of 164 items.
27.06.2014
№216.012.d820

Аккумуляторная батарея

Изобретение относится к устройствам для накапливания электрической энергии и последующего использования ее и преобразования в автономном режиме для функционирования различных аппаратов и может быть использовано, например, в двигателях транспортных средств, эксплуатирующихся в северных районах с...
Тип: Изобретение
Номер охранного документа: 0002521106
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dc42

Трансформатор источника питания подвесных измерительных датчиков

Изобретение относится к устройству источников питания подвесных измерительных датчиков, устанавливаемых на высоковольтные линии электропередачи. Технический результат состоит в расширении диапазона нагрузок. Трансформатор источника питания переводит его в режим насыщения, при котором выходное...
Тип: Изобретение
Номер охранного документа: 0002522164
Дата охранного документа: 10.07.2014
27.07.2014
№216.012.e5b4

Система впрыска воды осевого многоступенчатого компрессора

Изобретение относится к стационарным газотурбинным установкам (СГТУ), имеющим в своем составе осевой многоступенчатый компрессор. Технический результат достигается тем, что система впрыска воды осевого многоступенчатого компрессора, имеющая трубки и выпускные каналы, дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002524594
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e770

Способ работы газораспределительной станции

Способ предназначен для комбинированной выработки электроэнергии, промышленного холода и конденсата. Способ заключается в следующем: природный газ забирают из магистрали высокого давления перед редуцирующим устройством и через байпасный газопровод направляют в магистраль низкого давления, при...
Тип: Изобретение
Номер охранного документа: 0002525041
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e85c

Способ лечения кожных заболеваний и лазерное терапевтическое устройство для его осуществления

Группа изобретений относится к медицине. При осуществлении способа воздействуют на поверхность кожи дискретным по времени когерентным лазерным излучением, формируемым лазерным терапевтическим устройством. При этом длину волны выбирают в пределах от 300 нм до 1020 нм и дискретное лазерное...
Тип: Изобретение
Номер охранного документа: 0002525277
Дата охранного документа: 10.08.2014
10.09.2014
№216.012.f3c7

Детандер-генераторный агрегат

Изобретение относится к детандер-генераторным агрегатам. Детандер-генераторный агрегат содержит первую ступень детандера для привода электрогенератора, вторую ступень детандера для привода компрессора, теплообменник, дроссель, испаритель, газопроводы высокого и низкого давления, первую, вторую...
Тип: Изобретение
Номер охранного документа: 0002528230
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f56a

Лазерное терапевтическое устройство

Изобретение относится к медицинской технике и может найти применение в терапевтических целях. Технический результат - обеспечение стабильности параметров воздействующих факторов и упрощение конструкции терапевтического устройства. Лазерное терапевтическое устройство включает в себя источник...
Тип: Изобретение
Номер охранного документа: 0002528659
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f7dc

Способ повышения эффективности работы осевого многоступенчатого компрессора

Изобретение относится к компрессоростроению и может быть использовано в теплоэнергетике, газоперекачивающих станциях, наземных и судовых транспортных средствах в стационарных газотурбинных установках, имеющих в своем составе осевой многоступенчатый компрессор. Способ повышения эффективности...
Тип: Изобретение
Номер охранного документа: 0002529289
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.ffa3

Способ подготовки топочного мазута к сжиганию

Изобретение относится к теплоэнергетике и может быть использовано для улучшения физико-химических и эксплуатационных характеристик топочных мазутов на тепловых электрических станциях, в котельных промышленных предприятий, котельных агропромышленного комплекса и ЖКХ. В способе подготовки...
Тип: Изобретение
Номер охранного документа: 0002531299
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.01ea

Электрический чайник

Изобретение относится к кухонной посуде для кипячения воды, а именно к чайникам. Электрический чайник содержит корпус, нагревательный элемент, соединенный с блоком управления. В него введен сосуд с двойными стенками и вакуумом между ними, а также отражатель, при этом указанный сосуд является...
Тип: Изобретение
Номер охранного документа: 0002531888
Дата охранного документа: 27.10.2014
Showing 31-40 of 179 items.
10.04.2014
№216.012.b3f2

Горелка для сжигания газа

Изобретение относится к технологии сжигания газообразного топлива в топках котлов и печах. Задачей изобретения является повышение качества сжигания топлива на всех режимах работы горелки. Технический результат достигается тем, что в горелку для сжигания газа, содержащую цилиндрический корпус,...
Тип: Изобретение
Номер охранного документа: 0002511783
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b43c

Теплообменная труба

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором...
Тип: Изобретение
Номер охранного документа: 0002511859
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b497

Газотурбинный двигатель со свободнопоршневым генератором газа

Газотурбинный двигатель со свободнопоршневым генератором газа (СПГГ) состоит из связанных между собой СПГГ, газосборника и газовой турбины. СПГГ содержит рабочий цилиндр двигателя, рабочие поршни двигателя, поршни компрессора, синхронизирующий механизм движения рабочих поршней двигателя и...
Тип: Изобретение
Номер охранного документа: 0002511952
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0d9

Способ измерения пористости хлебобулочного изделия и устройство для осуществления

Изобретение относится к области технологического контроля пористости хлебобулочных изделий в процессе их производства и может быть использовано при отработке оптимального режима технологии получения заданной пористости в цеховых лабораторных условиях. В способе измерения пористости...
Тип: Изобретение
Номер охранного документа: 0002515118
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c0dc

Способ определения допустимых величины и длительности перегрузки силового маслонаполненного трансформаторного оборудования

Изобретение относится к области электроэнергетики, в частности к автоматизированным системам управления и диагностики трансформаторного оборудования электрических подстанций. Технический результат: повышение эксплуатационной надежности трансформаторного оборудования за счет более достоверного...
Тип: Изобретение
Номер охранного документа: 0002515121
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c13a

Цифровое прогнозирующее и дифференцирующее устройство

Изобретение относится к цифровому прогнозирующему и дифференцирующему устройству. Технический результат заключается в упрощении аппаратной реализации и расширении функциональных возможностей устройства. Прогнозирующее и дифференцирующее устройство содержит блок сглаживания, блок прогноза,...
Тип: Изобретение
Номер охранного документа: 0002515215
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c6bf

Кавитатор

Изобретение относится к устройствам для генерации кавитационных явлений и может быть использовано в теплоэнергетике, нефтехимической промышленности, а именно в гидродинамических теплогенераторах, системах подготовки углеводородных топлив к сжиганию, установках для очистки воды, в кавитационных...
Тип: Изобретение
Номер охранного документа: 0002516638
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c6fd

Провод для высоковольтных линий электропередачи

Изобретение относится к электротехнике, а именно к конструкциям грозозащитных и фазовых проводов высоковольтных воздушных линий электропередачи с использованием их в качестве телекоммуникационной сети на основе оптоволоконной технологии. В проводе для высоковольтных линий электропередачи,...
Тип: Изобретение
Номер охранного документа: 0002516700
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c95e

Адаптивное цифровое прогнозирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов, повышения качества и точности управления в цифровых динамических системах контроля. Технический результат заключается в снижении...
Тип: Изобретение
Номер охранного документа: 0002517316
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c95f

Адаптивное цифровое прогнозирующее и дифференцирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в возможности получения оценки второй производной по формуле численного дифференцирования для...
Тип: Изобретение
Номер охранного документа: 0002517317
Дата охранного документа: 27.05.2014
+ добавить свой РИД