×
20.08.2015
216.013.70f2

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ЖЕЛЕЗА

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе железа включает перемешивание порошков для матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного сплава. Порошки перемешивают с получением смеси, содержащей оксида металла при его объемном содержании 1-3%, 18-21 мас.% хрома, 4,5-5,5 мас.% алюминия, 0,4-0,6 мас.% титана и железо - остальное. Механическое легирование проводят в высокоэнергетической установке для размола и смешивания в течение 40-60 часов. Компактирование проводят методом горячей экструзии при температуре 1100-1250°C с коэффициентом вытяжки 11-16. Полученный сплав в виде прутков экструдата прокатывают вдоль направления экструзии при температуре 950-1150°C с коэффициентом деформации 15-20% за один проход. Обеспечивается получение композиционного материала с практической плотностью, равной не менее 96% от теоретической и не более 7,3 г/см, с пористостью не более 4%, с повышенной прочностью и с направленной структурой, характеризующейся значениями коэффициента неравноосности зерен от 30 до 40. 3 з.п. ф-лы, 3 пр.

Настоящее изобретение относится к области порошковой металлургии, а именно к технологиям получения высокотемпературных композиционных материалов на основе железа, которые могут быть использованы для изготовления неохлаждаемых деталей и узлов турбин авиационно-космической техники, работающей при температурах до 1350°С.

Дальнейшее повышение мощности, к.п.д, экологичности и экономичности современных газовых турбин, используемых в качестве авиационных двигателей, энергетических установок и газоперекачивающих агрегатов, возможно за счет повышения температуры рабочего газа на входе в турбину. Повышение рабочих температур до 1350°С исключает возможность использования современных сложнолегированных жаропрочных сплавов на основе никеля, не обладающих достаточной жаропрочностью и окалиностойкостью при указанных температурах. Наиболее перспективными материалами, устойчивыми в данных условиях, являются композиты с железной матрицей, упрочненные дисперсными частицами тугоплавких оксидов. К преимуществам таких материалов относятся меньшая плотность по сравнению с традиционно применяемыми жаропрочными сплавами, более высокая жаростойкость и температура плавления. Элементы камеры сгорания из подобного композиционного материала могут длительно работать при температурах выше на 100-150°С, чем аналогичные детали, выполненные из никелевых жаропрочных суперсплавов.

Известен литейный метод производства дисперсно-упрочненного сплава, включающий сушку нанопорошка оксида, плавление матричного металла, перемешивание порошка с матричным металлом, разливку полученного расплава в формы и их быстрое охлаждение (JP 2008189995 А, 21.08.2008).

Недостатком данного способа является трудность обеспечения равномерно распределенной оксидной фазы в объеме материала в процессе плавки и охлаждения сплава.

Также известен способ производства дисперсно-упрочненного сплава, включающий смешивание сплава с влажными солями иттрия, сушку полученной смеси, вакуумную термическую обработку для выделения оксида иттрия и компактирование полученных полуфабрикатов (KR 100960624 В1, 07.06.2010).

Недостатком указанного способа является трудоемкость процесса, обусловленная использованием влажных солей с последующей прокалкой сплава.

Известен способ получения ферритной стали, армированной дисперсными частицами оксида и имеющей следующий химический состав, масс.%: углерод - 0,05-0,25, хром - 8,0-12,0, вольфрам - 0,1-4,0, титан - 0,1-1,0, оксид иттрия - 0,1-0,5, остальное - железо. Способ включает смешивание элементарных порошков с порошком оксида иттрия, их механическое легирование, горячую экструзию полученной смеси при температуре 1150°С и термообработку (ЕР 1528113 А1, 04.05.2005).

Данный материал предназначен для применения в ядерной энергетике (трубопроводы охлаждающих систем) и не способен функционировать в условиях высокотемпературной газовой коррозии в процессе работы ГТД.

Наиболее близким аналогом является способ изготовления дисперсно-упрочненного композиционного материала на основе железа следующего состава, масс.%: Сr - 20, Аl - 4,5, Ti - 0,5, Y2O3 - 0,5, Fe - остальное. Метод включает механическое легирование в шаровой мельнице в защитной атмосфере аргона, дегазацию порошка сплава в капсулах в течение 1-3 дней, компактирование сплава методом горячего изостатического прессования при давлении 103 МПа и температуре 1010°С, горячую прокатку при температуре 927-1093°С и холодную прокатку при температуре 65°-93°С (US 5032190 А, 16.07.1991).

Недостатком данного способа является использование дорогостоящей операции горячего изостатического прессования, а также длительность подготовительного процесса дегазации перед прессованием.

Предложенный способ позволяет устранить данные недостатки.

Задачей предложенного изобретения является разработка способа получения легкого и прочного композиционного материала на основе железа, обладающего качественной равномерной структурой, а также упрощение данного способа.

Техническим результатом заявленного изобретения является получение композиционного материала на основе железа с практической плотностью, равной не менее 96% от теоретической и не более 7,3 г/см3, с пористостью не более 4%, с повышенной прочностью для указанной выше практической плотности, а также с направленной структурой, характеризующейся значениями коэффициента неравноосности зерен от 30 до 40.

Технический результат достигается в предложенном способе получения композиционного материала на основе железа, включающем перемешивание порошков для приготовления матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного сплава, при этом порошки перемешивают с получением смеси, содержащей: 18-21 мас.% хрома, 4,5-5,5 мас.% алюминия, 0,4-0,6 мас.% титана, объемное содержание оксида металла - 1-3%, железо - остальное, механическое легирование проводят в высокоэнергетической установке для размола и смешивания в течение 40-60 часов, компактирование проводят методом горячей экструзии при температуре 1100-1250°C с коэффициентом вытяжки 11-16, полученный сплав в виде прутков экструдата прокатывают вдоль направления экструзии при температуре 950-1150°C с коэффициентом деформации 15-20% за один проход.

В качестве порошков для приготовления матрицы материала лучше использовать порошок лигатуры железо-алюминий-титан, порошок хрома и порошок железа.

Порошок лигатуры железо-алюминий-титан лучше предварительно измельчить вместе с дисперсным порошком оксида металла.

В качестве дисперсного порошка оксида металла лучше использовать наноразмерный порошок оксида иттрия.

Вначале перемешивают исходную порошковую смесь компонентов, рассчитанную для получения материала следующего состава: Сr - 18-21 мас.%, Аl - 4,5-5,5 мас.%, Ti - 0,4-0,6 мас.%, объемное содержание оксида металла - 1-3%, Fe - остальное.

Поскольку алюминий и титан имеют высокую реакционную активность и быстро окисляются кислородом воздуха, их лучше вводить в смесь на стадии механического легирования в виде порошка лигатуры железо-алюминий-титан.

В качестве дисперсного порошка оксида металла можно использовать, например, порошки Al2O3, ZrO2, НfO2, однако предпочтительно использовать наноразмерный порошок Y2O3. Оксид иттрия обладает высокой термодинамической устойчивость и не взаимодействует с матрицей получаемого материала.

Дисперсный порошок оксида металла рекомендуется добавлять во время предварительного измельчения лигатуры Fe-Al-Ti для обеспечения равномерности распределения армирующей фазы и уменьшения времени последующего механического легирования.

После перемешивания порошков и оксида металла проводят механическое легирование смеси в высокоэнергетической установке для размола и смешивания (аттриторе) с защитной атмосферой инертного газа. Высокоэнергетический помол обеспечивает механическое активирование порошка матричного материала, а также позволяет производить перемешивание одновременно с помолом, во время которого происходит механическая активация смеси, увеличивается контакт между частицами порошка, уменьшается пористость, происходит деформация или разрушение отдельных частиц порошка.

Оптимальное время механического легирования, при котором происходит необходимое измельчение и перемешивание компонентов сплава, составляет 40-60 часов.

Готовый порошок экструдируют с коэффициентом вытяжки 11-16 при температуре 1100-1250°С для обеспечения направленной структуры сплава.

Анализ структуры с помощью растрового электронного микроскопа показал, что после экструзии в указанных режимах частицы оксидов металлов равномерно распределены в объеме материала, структура на поперечном шлифе - равноосная, на продольном - направленная. Однако в образцах наблюдалось наличие пор и рыхлот.

С целью усовершенствования структуры полученные прутки прокатывают вдоль направления экструзии при температуре 950-1150°С и коэффициенте деформации 15-20% за один проход. Наилучший результат по структуре материала наблюдается при его прокатке до толщины 3-9 мм, что можно осуществить за три и более прохода прокатки.

Пример 1.

Получали композиционный материал на основе Fe, армированный дисперсными частицами оксида иттрия.

Проводили смешивание порошков до получения смеси следующего состава: Сr - 19,5 масс.%, Аl - 4,6 масс.%, Ti - 0,47 масс.%, объемное содержание Y2O3 - 1,3%, Fe - остальное. Полученную порошковую смесь подвергали механическому легированию в высокоэнергетической установке для размола и смешивания (аттриторе) по следующему режиму: время обработки 40 часов, защитная атмосфера - аргон. Готовый порошок сплава экструдировали при температуре 1100°С с коэффициентом вытяжки 11. Полученные прутки сплава прокатывали в листы толщиной 8 мм вдоль направления экструзии при температуре 1100°С.

Полученный материал имел практическую плотность 7,28 г/см3, равную 98% от теоретической.

Прочность на разрыв материала вдоль направления экструзии при Τ=25°С составил σΒ=745 МПа.

Объемная пористость составила 2%.

Пример 2.

Получали композиционный материал на основе Fe, армированный дисперсными частицами оксида иттрия.

Проводили смешивание порошков до получения смеси следующего состава: Сr - 19,5 масс.%, Аl - 4,6 масс.%, Ti - 0,47 масс.%, объемное содержание Y2O3 - 2,8%, Fe - остальное. Полученную порошковую смесь подвергали механическому легированию в высокоэнергетической установке для размола и смешивания (аттриторе) по следующему режиму: время обработки 40 часов, защитная атмосфера - аргон. Готовый порошок сплава экструдировали при температуре 1100°C с коэффициентом вытяжки 16. Полученные прутки сплава прокатывали в листы толщиной 3 мм вдоль направления экструзии при температуре 1100°С.

Полученный материал имел практическую плотность 7,26 г/см3, равную 99% от теоретической.

Прочность на разрыв материала вдоль направления экструзии при Τ=25°С составил σΒ=720 МПа.

Объемная пористость составила 1%.

Пример 3.

Получали композиционный материал на основе Fe, армированный дисперсными частицами оксида гафния.

Проводили смешивание порошков до получения смеси следующего состава: Сr - 18 мас.%, Аl - 5,5 мас.%, Ti - 0,6 мас.%, объемное содержание НfO2 - 3%, Fe - остальное. Полученную порошковую смесь подвергали механическому легированию в высокоэнергетической установке для размола и смешивания (аттриторе) по следующему режиму: время обработки 60 часов, защитная атмосфера - аргон. Готовый порошок сплава экструдировали при температуре 1200°C с коэффициентом вытяжки 14. Полученные прутки сплава прокатывали в листы толщиной 8 мм вдоль направления экструзии при температуре 970°С.

Полученный материал имел практическую плотность 7,25 г/см3, равную 98% от теоретической.

Прочность на разрыв материала вдоль направления экструзии при Τ=25°С составил σΒ=700 МПа.

Объемная пористость составила 2%.

Анализ микроструктуры образцов после прокатки показал направленную структуру зерен с равномерным распределением оксидной фазы вдоль их границ. Расположение зерен характеризовалось большой степенью коэффициента их неравноосности от 30 до 40.

Стабилизатором данной структуры служили закрепленные на стыках субграниц упрочняющие наноразмерные частицы тугоплавких оксидов.

Таким образом, предложенный способ позволяет добиться высоких показателей прочности композиционного материала на основе железа с низкой плотностью, равной не менее 96% от теоретической и не более 7,3 г/см3, с пористостью не более 4% и с направленной структурой, характеризующейся большими значениями неравноосности зерен.

Источник поступления информации: Роспатент

Showing 31-40 of 367 items.
10.01.2015
№216.013.1977

Магнитный материал и изделие, выполненное из него

Изобретение относится к области порошковой металлургии, в частности к магнитному материалу, содержащему празеодим, железо, кобальт, бор, медь и, по меньшей мере, один элемент, выбранный из группы гадолиний (Gd), диспрозий (Dy), самарий (Sm), церий (Ce). Материал дополнительно содержит цинк...
Тип: Изобретение
Номер охранного документа: 0002537947
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.21bc

Полимерная композиция

Изобретение относится к полимерным композициям с наполнителем в виде полых микросфер. Полимерная композиция для полимерных композиционных материалов содержит олигоцианурат, полые микросферы, дополнительно содержит эпоксидный олигомер с вязкостью менее 5 Па·с при комнатной температуре, при...
Тип: Изобретение
Номер охранного документа: 0002540084
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.2695

Способ производства литейных жаропрочных сплавов на основе никеля (варианты)

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на основе никеля, как безуглеродистых, так и содержащих углерод, для изготовления лопаток и других деталей газотурбинных двигателей с монокристаллической структурой. Способ производства литейных...
Тип: Изобретение
Номер охранного документа: 0002541330
Дата охранного документа: 10.02.2015
10.03.2015
№216.013.31c1

Защитное технологическое покрытие

Изобретение относится к области производства силикатных материалов, которые могут быть использованы как защитные технологические покрытия от окисления и в качестве высокотемпературной смазки при технологических нагревах в процессе изготовления деталей и полуфабрикатов в машиностроении и в...
Тип: Изобретение
Номер охранного документа: 0002544205
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.322c

Способ химического никелирования и раствор для его осуществления

Изобретение относится к области химической металлизации поверхности металломатричных композиционных материалов, в частности металломатричного композиционного материала алюминий-карбид кремния. Способ включает обезжиривание, первую промывку, травление, вторую промывку, химическое осаждение...
Тип: Изобретение
Номер охранного документа: 0002544319
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3897

Способ удаления покрытия из нитрида циркония с подложки из титана или титановых сплавов

Изобретение относится к технологии удаления защитных покрытий из нитрида циркония с изделий, содержащих подложку из титана или титановых сплавов, в частности лопаток газотурбинных двигателей. В способе покрытие из нитрида циркония с подложки из титана или титанового сплава удаляют путем...
Тип: Изобретение
Номер охранного документа: 0002545975
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f80

Связующее, способ его получения и композиционный материал, изготовленный на основе связующего

Группа изобретений относится к связующим типа фенольно-фурановых связующих, используемым для изготовления изделий общепромышленного назначения, в том числе композиционных материалов, способам получения таких связующих, а также к композиционным материалам на их основе. Связующее получено из...
Тип: Изобретение
Номер охранного документа: 0002547744
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.406b

Припой на основе свинца

Изобретение может быть использовано для изготовления припоев на основе свинца. Припой содержит компоненты в следующих соотношениях, мас.%: олово 4,0-7,0; индий 0,5-2,0; медь 0,001-0,1; сурьма 0,2-1,0; натрий 0,001-0,2; висмут 1,0-3,0; никель 0,1-0,5; церий 0,005-0,1; цинк 0,001-0,3; свинец -...
Тип: Изобретение
Номер охранного документа: 0002547979
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.406f

Способ получения покрытия на алюминиевых сплавах

Изобретение относится к области нанесения покрытий на алюминий или его сплавы путем плазменного электролитического оксидирования. Способ включает нанесение на алюминиевый сплав оксидного покрытия путем плазменного электролитического оксидирования в водном электролите при наложении переменного...
Тип: Изобретение
Номер охранного документа: 0002547983
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41ff

Способ определения прочности сцепления покрытия с кремниевой подложкой

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытий с подложкой. Способ определения прочности сцепления покрытия с кремниевой подложкой заключается в том, что покрытие с внешним серебряным слоем соединяют с деталями...
Тип: Изобретение
Номер охранного документа: 0002548393
Дата охранного документа: 20.04.2015
Showing 31-40 of 336 items.
10.01.2015
№216.013.1977

Магнитный материал и изделие, выполненное из него

Изобретение относится к области порошковой металлургии, в частности к магнитному материалу, содержащему празеодим, железо, кобальт, бор, медь и, по меньшей мере, один элемент, выбранный из группы гадолиний (Gd), диспрозий (Dy), самарий (Sm), церий (Ce). Материал дополнительно содержит цинк...
Тип: Изобретение
Номер охранного документа: 0002537947
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.21bc

Полимерная композиция

Изобретение относится к полимерным композициям с наполнителем в виде полых микросфер. Полимерная композиция для полимерных композиционных материалов содержит олигоцианурат, полые микросферы, дополнительно содержит эпоксидный олигомер с вязкостью менее 5 Па·с при комнатной температуре, при...
Тип: Изобретение
Номер охранного документа: 0002540084
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.2695

Способ производства литейных жаропрочных сплавов на основе никеля (варианты)

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на основе никеля, как безуглеродистых, так и содержащих углерод, для изготовления лопаток и других деталей газотурбинных двигателей с монокристаллической структурой. Способ производства литейных...
Тип: Изобретение
Номер охранного документа: 0002541330
Дата охранного документа: 10.02.2015
10.03.2015
№216.013.31c1

Защитное технологическое покрытие

Изобретение относится к области производства силикатных материалов, которые могут быть использованы как защитные технологические покрытия от окисления и в качестве высокотемпературной смазки при технологических нагревах в процессе изготовления деталей и полуфабрикатов в машиностроении и в...
Тип: Изобретение
Номер охранного документа: 0002544205
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.322c

Способ химического никелирования и раствор для его осуществления

Изобретение относится к области химической металлизации поверхности металломатричных композиционных материалов, в частности металломатричного композиционного материала алюминий-карбид кремния. Способ включает обезжиривание, первую промывку, травление, вторую промывку, химическое осаждение...
Тип: Изобретение
Номер охранного документа: 0002544319
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3897

Способ удаления покрытия из нитрида циркония с подложки из титана или титановых сплавов

Изобретение относится к технологии удаления защитных покрытий из нитрида циркония с изделий, содержащих подложку из титана или титановых сплавов, в частности лопаток газотурбинных двигателей. В способе покрытие из нитрида циркония с подложки из титана или титанового сплава удаляют путем...
Тип: Изобретение
Номер охранного документа: 0002545975
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f80

Связующее, способ его получения и композиционный материал, изготовленный на основе связующего

Группа изобретений относится к связующим типа фенольно-фурановых связующих, используемым для изготовления изделий общепромышленного назначения, в том числе композиционных материалов, способам получения таких связующих, а также к композиционным материалам на их основе. Связующее получено из...
Тип: Изобретение
Номер охранного документа: 0002547744
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.406b

Припой на основе свинца

Изобретение может быть использовано для изготовления припоев на основе свинца. Припой содержит компоненты в следующих соотношениях, мас.%: олово 4,0-7,0; индий 0,5-2,0; медь 0,001-0,1; сурьма 0,2-1,0; натрий 0,001-0,2; висмут 1,0-3,0; никель 0,1-0,5; церий 0,005-0,1; цинк 0,001-0,3; свинец -...
Тип: Изобретение
Номер охранного документа: 0002547979
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.406f

Способ получения покрытия на алюминиевых сплавах

Изобретение относится к области нанесения покрытий на алюминий или его сплавы путем плазменного электролитического оксидирования. Способ включает нанесение на алюминиевый сплав оксидного покрытия путем плазменного электролитического оксидирования в водном электролите при наложении переменного...
Тип: Изобретение
Номер охранного документа: 0002547983
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41ff

Способ определения прочности сцепления покрытия с кремниевой подложкой

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытий с подложкой. Способ определения прочности сцепления покрытия с кремниевой подложкой заключается в том, что покрытие с внешним серебряным слоем соединяют с деталями...
Тип: Изобретение
Номер охранного документа: 0002548393
Дата охранного документа: 20.04.2015
+ добавить свой РИД