×
20.08.2015
216.013.70e6

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для получения крупногабаритных многослойных материалов, используемых в атомной, нефтегазовой, химической отраслях промышленности, а также в судостроении. Для повышения прочности сцепления металлических плит из разнородных материалов применяют нанесение промежуточного слоя толщиной 30-40 мкм на поверхность неподвижной плиты методом холодного газодинамического напыления. Перед нанесением промежуточного слоя проводится предварительная подготовка поверхности плиты методом абразивной обработки. Состав промежуточного слоя выбирают в зависимости от материала соединяемых пластин из условия обеспечения взаимной диффузии металлов в месте контакта. В качестве металла свариваемых пластин используют Al, Zn, Сu, Ni, Ti, Co, Fe, Ag и сплавы на их основе. В качестве напыляемого металла используют Al, Zn, Сu, Ni, Ti, Co, Fe, Ag и сплавы на их основе, легированные редкоземельными металлами. Полученный многослойный материал с напыляемым слоем имеет сплошность соединения слоев, соответствующую 1 классу по ГОСТ 22727 и прочность соединения слоев 300-400 МПа, что примерно в 1,5 раза выше прочности биметаллов без напыляемого слоя. 5 з.п. ф-лы, 3 пр.

Изобретение относится к области сварки взрывом и может быть использовано для соединения двух или нескольких металлических пластин.

Известен многослойный композиционный материал и способ его получения (RU 2243289, С22С 47/20; С22С 49/06; С22С 21/08). Многослойный композиционный материал, обладающий повышенной прочностью, жаропрочностью и эксплуатационными характеристиками, включает в себя матрицу из алюминиевого сплава и наполнитель, выполненный из стального волокна. Способ изготовления композита, заключающийся в армировании матрицы, предусматривает послойную укладку волокон в пакет с последующим соединением с помощью сварки взрывом, диффузионной сварки или горячей прокатки.

Известен способ получения композиционного сталеалюминиевого переходника сваркой взрывом (патент RU 2270742, МПК В23К 20/08, опубл. 27.02.2006 г. ), в котором производят последовательную сварку взрывом стального плакируемого листа с двумя плакирующими листами. Плакируемый стальной лист предварительно хромируют до получения по всей поверхности слоя толщиной 0,03-0,07 мм.

Недостатком данного технического решения является наличие в осаждаемом слое хрома напряжений растяжения, которые будут тем больше, чем толще слой хрома. Наличие напряжений растяжения в слое хрома приводит к отслаиванию хрома и к снижению усталостной прочности изделий, покрытых хромом, а, следовательно, и всего многослойного изделия. Кроме того, перед хромированием необходимо проводить механическую обработку поверхности для активации поверхности, включающую удаление оксидных пленок и снижение шероховатости, иначе при отложении хрома на поверхности будут «скопированы» все неровности и изъяны. Толщина слоя хрома ограничена - не более 0,3 мм. Слой большей толщины непрочен и имеет структуру низкого качества. Процесс хромирования является дорогим, малопроизводительным и экологически грязным.

Известен способ сварки взрывом (патент RU 2243871, МПК В23К 20/08, опубл. 10.01.2005 г.), принятый в качестве прототипа, в котором метаемую пластину устанавливают с зазором над неподвижной пластиной и инициируют заряд взрывчатого вещества (ВВ), расположенный над метаемой пластиной. Предварительно производят обработку поверхностей свариваемых пластин до шероховатости Rz=8,0-12,0 мкм. Сварку осуществляют давлением продуктов детонации, время действия которых превышает время остывания расплавленных на глубины более 2 мкм поверхностных слоев пластин. Недостатком данного технического решения является возникновение наклепа поверхности пластин при их обработке, который характеризуется наличием напряжений растяжения в обработанном слое, снижающих сопротивление усталости материала.

В процессе соединения сваркой взрывом двух или нескольких металлических пластин качество и прочность соединений зависят от размера поверхностных неровностей, которые устраняются известными из указанных аналогов методами, изменяющими структуру обрабатываемой поверхности, ухудшая прочностные характеристики.

Технический результат изобретения заключается в получении многослойного материала с повышенной прочностью соединения металлических пластин.

Технический результат достигается тем, что в способе получения многослойного материала сваркой взрывом, включающем установку с зазором метаемой пластины над неподвижной пластиной с предварительно обработанной поверхностью и инициирование заряда взрывчатого материала, расположенного над метаемой пластиной, в соответствии с изобретением на обработанную поверхность неподвижной пластины сверхзвуковым «холодным» газодинамическим напылением (ХГДН) наносят слой одного из представленных металлов, таких как Al, Zn, Cu, Ni, Ti, Со, Fe, Ag и сплавов на их основе.

Использование технологии газодинамического напыления позволяет не вносить изменения в структуру и состав материалов пластин в процессе нанесения промежуточного слоя и, как следствие, не вносить изменения в характеристики материала. В процессе напыления решающее влияние имеет высокая скорость частиц порошка, а не их температура. При нанесении слоя из Al, Zn, Cu, Ni, Ti, Со, Fe, Ag и сплавов на их основе, легированных редкоземельными металлами, температура не превышает 100°C, при этом скорость может изменяться от 200 до 500 м/с.

Перед напылением указанного слоя проводят активацию поверхности пластины методом абразивной обработки, не нарушая структуру металла. Оставшиеся поверхностные неровности заполняются металлом при напылении указанным методом, увеличивая тем самым адгезионную прочность наносимого слоя, достаточную для предотвращения его самопроизвольного отслоения до момента завершения процесса соединения сваркой взрывом пластин разнородных материалов.

Толщина напыляемого слоя 30-40 мкм является оптимальной для достижения высоких прочностных качеств многослойного материала. При толщине напыления менее 30 мкм адгезионная прочность нанесенного слоя недостаточна для обеспечения требуемой прочности многослойного материала, а при толщине более 40 мкм происходит ухудшение когезионной прочности.

При соединении пластин методом сварки взрывом в месте контакта разнородных металлов одновременно с диффузией происходит химическая реакция с образованием интерметаллических соединений или интерметаллидов. В зависимости от температуры и давления могут образовываться соединения, существенно отличающиеся по удельному сопротивлению, коэффициенту термического расширения и твердости. Из-за различия в коэффициентах термического расширения интерметаллических фаз образуются микротрещины.

Процесс понижения прочности металлического контакта за счет образования интерметаллических соединений усугубляется тем, что при контакте различных металлов в месте контакта происходит взаимная диффузия металлов по междоузлиям или вакансиям. При этом в результате различия коэффициентов диффузии в металле с большим коэффициентом диффузии образуются пустоты.

Таким образом, процессы образования слоев интерметаллидов, пустот и трещин снижают его прочность.

Указанные структурные дефекты удается исключить соответствующим выбором состава материала напыляемого слоя в зависимости от марки соединяемых материалов.

В качестве металлов свариваемых пластин используют металлы с широким спектром растворимости, например: Al, Zn, Cu, Ni, Ti, Со, Fe, Ag и сплавы на их основе. В качестве напыляемого металла используют Al, Zn, Cu, Ni, Ti, Со, Fe, Ag и сплавы на их основе, легированные редкоземельными металлами цериевой и/или иттриевой группы в объеме от 0,01% до 0,2%, которые выполняют функцию модификаторов сплавов (очищают от неметаллических включений, таких как кислород, азот, водород) и обеспечивают получение наноструктурированного состояния обрабатываемого материала пластин.

При напылении промежуточного слоя используют порошковые материалы фракцией от 10 мкм до 50 мкм.

Оптимальный зазор для свариваемых материалов - 0,6÷1,2 толщины метаемого листа. Сверху на плакируемый лист через технологические проставки укладывают плакирующий (метаемый) титановый лист. Точка расположения инициирования детонации зависит от конфигурации и назначения изготовляемого биметалла (лист, круг, кольцо и т.д.).

Качество сварки оценивается: по сплошности биметаллических заготовок, определяемой ультразвуковым контролем; по результатам металлографического анализа границы раздела между металлами с определением количества расплавов и испытаниями образцов из биметалла на срез, отрыв плакирующего слоя и изгиб.

Пример 1

Способ получения многослойного материала рассмотрим на примере получения биметаллического соединения сталь-титан.

В качестве стальной пластины используется лист толщиной 20 мм марки Х18Н10Т. В качестве титановой пластины используется лист толщиной 8 мм марки ВТ 1-0. В качестве материала промежуточного слоя применяется никель, который напыляется методом ХГДН на поверхность стальной пластины. Способ получения биметалла можно разделить на несколько этапов.

На первом этапе происходит обезжиривание поверхности стальной пластины, затем на втором этапе осуществляют абразивную обработку поверхности.

На третьем этапе происходит напыление Ni толщиной 30-40 мкм методом ХГДН при скоростях двухфазного потока 450 м/с и температурой частиц, не превышающей 100°C. Адгезия слоя никеля к стальной пластине 36-41 МПа.

На четвертом этапе производится процесс соединения пластин методом сварки взрывом: сверху на плакируемый стальной лист через технологические проставки с зазором 4,8 мм укладывают плакирующий (метаемый) титановый лист, а над ним - взрывчатое вещество. Процесс сварки взрывом осуществляется при инициировании заряда взрывчатого вещества (ВВ) электродетонатором. Во ВВ возникает процесс устойчивой детонации, когда в результате химической реакции с огромной скоростью происходит превращение твердого вещества в сжатые (до нескольких десятков тысяч атмосфер) и раскаленные (до нескольких тысяч градусов) газы. Расширяясь, газы сообщают плакирующей заготовке резко ускоренное движение в сторону плакируемой детали. В момент соударения свариваемых заготовок в зоне физического контакта возникают мощные ударные волны, вызывающие интенсивную пластическую деформацию поверхностных слоев.

Пример 2

Способ получения многослойного материала рассмотрим на примере получения биметаллического соединения сталь-медь.

В качестве стальной пластины используется лист толщиной 20 мм марки Ст20. В качестве медной пластины используется лист толщиной 8 мм. В качестве материала промежуточного слоя применяется медь, которая напыляется методом ХГДН на поверхность стального листа.

На первом этапе происходит обезжиривание поверхности стального листа, затем на втором этапе проводят абразивную обработку поверхности.

На третьем этапе сразу после абразивной обработки происходит напыление Си толщиной 30-40 мкм методом ХГДН при скоростях двухфазного потока 400 м/с и температурой частиц, не превышающей 100°C. Адгезия слоя Си к стальному листу 35-40 МПа.

На четвертом этапе производится процесс соединения пластин методом сварки взрывом: сверху на плакируемый лист через технологические проставки укладывают плакирующий (метаемый) медный лист с зазором 6,5 мм, а над ним - взрывчатое вещество. Процесс сварки взрывом осуществляется при инициировании заряда взрывчатого вещества.

Пример 3

Способ получения многослойного материала рассмотрим на примере получения биметаллического соединения сталь-алюминий.

В качестве стальной пластины используется лист толщиной 20 мм марки Ст20. В качестве алюминиевой пластины используется лист толщиной 8 мм марки AMg5. В качестве материала промежуточного слоя применяется алюминий, который напыляется методом ХГДН на поверхность стального листа.

На первом этапе происходит обезжиривание поверхности стального листа, затем на втором этапе проводят абразивную обработку поверхности.

На третьем этапе сразу после абразивной обработки происходит напыление А1 толщиной 30-40 мкм методом ХГДН при скоростях двухфазного потока 400 м/с и температурой частиц, не превышающей 100°C. Адгезия слоя алюминия к стальному листу 39-45 МПа.

На четвертом этапе производится процесс соединения пластин методом сварки взрывом: сверху на плакируемый лист через технологические проставки укладывают плакирующий (метаемый) алюминиевый лист с зазором 8,5 мм, а над ним - взрывчатое вещество. Процесс сварки взрывом осуществляется при инициировании заряда взрывчатого вещества.

Результаты испытаний образцов биметаллов с напыленным слоем, полученных сваркой взрывом, показали, что сплошность соединения слоев, соответствует 1 классу по ГОСТ 22727, а прочность соединения слоев - 300…400 МПа, что примерно в 1,5 раза выше прочности биметаллов без напыляемого слоя.

Кроме того, предлагаемый способ нанесения слоя на поверхность пластины методом сверхзвукового «холодного» газодинамического напыления (ХГДН) позволяет создать на обработанной поверхности стойкое, функционально-градиентное покрытие, позволяющее исключить из технологического процесса операции по сохранению подготовленной для сварки взрывом поверхности полуфабриката при длительном хранении или транспортировке.

Кроме представленных выше примеров соединений, могут быть получены другие, изготовляемые сваркой взрывом комбинации соединений, такие как: алюминий - медь; алюминий - алюминий; медь - никель; сталь - сталь.

Источник поступления информации: Роспатент

Showing 231-240 of 273 items.
18.05.2019
№219.017.59f5

Фиксатор положения лопастей

Изобретение относится к судостроению и авиастроению, в частности к конструкции систем управления движителем. Фиксатор положения управляемых лопастей включает управляющую тягу, расположенную в полой части вала, и установленный на корпусе гидроцилиндр. Шток гидроцилиндра кинематически связан с...
Тип: Изобретение
Номер охранного документа: 0002457147
Дата охранного документа: 27.07.2012
18.05.2019
№219.017.5b5e

Огнестойкий слоистый звукотеплоизолирующий материал

Изобретение относится к области создания слоистых звукотеплоизолирующих огнестойких материалов авиационного назначения, используемых в бортовой звукотеплоизолирующей конструкции пассажирских самолетов. Огнестойкий слоистый звукотеплоизолирующий материал содержит теплозвукоизолирующий и...
Тип: Изобретение
Номер охранного документа: 0002465145
Дата охранного документа: 27.10.2012
18.05.2019
№219.017.5b73

Способ получения волокнистого керамического материала

Изобретение относится к волокнистым керамическим материалам, которые способны выдерживать вибрационные нагрузки и градиент температур как по толщине материала, так и по его поверхности и которые предназначены для теплоизоляции металлических корпусов камер сгорания газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002466966
Дата охранного документа: 20.11.2012
18.05.2019
№219.017.5b7e

Способ определения прочностных характеристик полимерных композиционных материалов

Использование: для определения прочностных характеристик полимерных композиционных материалов. Сущность изобретения заключается в том, что в полимерном композиционном материале контролируемого изделия с помощью излучающего преобразователя возбуждают импульсы ультразвуковых колебаний, принимают...
Тип: Изобретение
Номер охранного документа: 0002461820
Дата охранного документа: 20.09.2012
20.05.2019
№219.017.5cca

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя содержит твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса,...
Тип: Изобретение
Номер охранного документа: 0002688054
Дата охранного документа: 17.05.2019
20.05.2019
№219.017.5d69

Судно на подводных крыльях

Изобретение относится к судостроению и касается создания судов на подводных крыльях. Судно на подводных крыльях, имеющее корпус, движительный комплекс и комплекс подводных крыльев, оборудовано расположенным по обе стороны корпуса центропланом брызгозащитной конфигурации, простирающимся вдоль...
Тип: Изобретение
Номер охранного документа: 0002434778
Дата охранного документа: 27.11.2011
29.05.2019
№219.017.681a

Способ летного моделирования ручной визуальной посадки самолета на объект

Изобретение относится к области исследований устойчивости, управляемости и динамики посадки самолетов и может быть использовано в приборном оборудовании летательных аппаратов для повышения безопасности и сокращения сроков и стоимости летного обучения и летной отработки управляемости самолетов...
Тип: Изобретение
Номер охранного документа: 0002471151
Дата охранного документа: 27.12.2012
29.05.2019
№219.017.6909

Многоцелевая подводная станция (мпс)

Изобретение относится к области освоения минеральных ресурсов недр арктического шельфа. Многофункциональная подводная станция имеет семь отсеков, атомную энергетическую установку (7), лебедки, грузовой трюм (5), самоходную спасательную камеру, устройство для разрушения льда (9). В отсеках...
Тип: Изобретение
Номер охранного документа: 0002436705
Дата охранного документа: 20.12.2011
29.05.2019
№219.017.69bd

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002469341
Дата охранного документа: 10.12.2012
29.05.2019
№219.017.69c3

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков, подключенных к инструментальному усилителю и запитанных постоянным током. Техническим результатом является исключение аддитивных...
Тип: Изобретение
Номер охранного документа: 0002469338
Дата охранного документа: 10.12.2012
Showing 231-236 of 236 items.
27.05.2020
№220.018.20fd

Проволока сварочная из титановых сплавов

Изобретение может быть использовано в производстве присадочных материалов для дуговой сварки в среде инертных газов высокопрочных (α+β) и псевдо-β-титановых сплавов, предназначенных для использования в качестве конструкционного высокопрочного высокотехнологичного материала для изготовления...
Тип: Изобретение
Номер охранного документа: 0002721977
Дата охранного документа: 25.05.2020
21.04.2023
№223.018.5054

Способ изготовления заготовок трубных из титановых псевдо α-сплавов 5в и 37

Изобретение относится к металлургии, в частности к изготовлению трубных заготовок из титановых псевдо α-сплавов 5В или 37 повышенной прочности для изделий судового машиностроения и энергетических установок. Способ включает ковку слитка в заготовку, ее механическую обработку, сквозное сверление...
Тип: Изобретение
Номер охранного документа: 0002794154
Дата охранного документа: 12.04.2023
21.04.2023
№223.018.50cd

Износостойкий сплав на основе квазикристаллической композиции al-cu-fe

Изобретение относится к области создания износостойких функциональных покрытий на основе квазикристаллов системы Al-Cu-Fe для защиты от механических нагрузок изделий прецизионного машино- и энергомашиностроения. Сплав на основе квазикристаллической композиции Al-Cu–Fe содержит, мас.%: цирконий...
Тип: Изобретение
Номер охранного документа: 0002794146
Дата охранного документа: 11.04.2023
03.06.2023
№223.018.7657

Износостойкий резистивный сплав на основе меди с отрицательным температурным коэффициентом сопротивления

Изобретение относится к области создания резистивных сплавов на основе меди и может быть использовано для получения износостойких покрытий с отрицательным температурным коэффициентом сопротивления при создании миниатюрных датчиков. Сплав на основе меди содержит, мас. %: марганец 18,0-22,0,...
Тип: Изобретение
Номер охранного документа: 0002796582
Дата охранного документа: 25.05.2023
03.06.2023
№223.018.765c

Сплав на основе алюминия для нанесения износостойких покрытий

Изобретение относится к области создания износостойких сплавов на основе алюминия и может быть использовано для получения функциональных покрытий, защищающих элементы прецизионного машино- и приборостроения от действия механических нагрузок. Сплав на основе алюминия содержит, мас.%: олово...
Тип: Изобретение
Номер охранного документа: 0002796583
Дата охранного документа: 25.05.2023
06.06.2023
№223.018.78f5

Способ электронно-лучевой сварки высокопрочных титановых сплавов для изготовления крупногабаритных конструкций

Изобретение относится к способу электронно-лучевой сварки высокопрочных псевдо-β-титановых сплавов и может быть использовано для изготовления крупногабаритных конструкций судостроительной, авиационной и космической техники, а также энергетических установок. Способ включает: наплавку на кромки...
Тип: Изобретение
Номер охранного документа: 0002750229
Дата охранного документа: 24.06.2021
+ добавить свой РИД