×
20.08.2015
216.013.70aa

Результат интеллектуальной деятельности: СПОСОБ ОБЕСКРЕМНИВАНИЯ АЛЮМИНАТНЫХ РАСТВОРОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к производству глинозема, в частности к обескремниванию алюминатных растворов в производстве глинозема из высококремнистого алюминиевого сырья. Способ обескремнивания алюминатных растворов заключается в получении алюмо-кальциевого компонента, двухстадийном обескремнивании алюминатно-щелочных растворов с использованием в качестве интенсифицирующей добавки полученного алюмо-кальциевого компонента, сгущении и фильтрации продуктов обескремнивания, осветлении обескремненного раствора, согласно изобретению получение указанного алюмо-кальциевого компонента проводят обработкой карбоната кальция природного и/или искусственного происхождения алюминатно-щелочным раствором при молярном отношении CaO:AlO=1,0÷2,0. Изобретение позволяет снизить расход энергоресурсов, утилизировать производственные отходы карбоната кальция, снизить потребление природных ресурсов и выбросов диоксида углерода в атмосферу, получить глинозем высшего качества марки Г-00, а также повысить технико-экономических показатели производства глинозема из высококремнистого сырья. 1 ил., 9 пр.
Основные результаты: Способ обескремнивания алюминатных растворов, заключающийся в получении алюмокальциевого компонента, двухстадийном обескремнивании алюминатно-щелочных растворов с использованием в качестве интенсифицирующей добавки полученного алюмокальциевого компонента, сгущении и фильтрации продуктов обескремнивания, осветлении обескремненного раствора, отличающийся тем, что получение указанного алюмокальциевого компонента проводят обработкой карбоната кальция природного и/или искусственного происхождения алюминатно-щелочным раствором при молярном отношении CaO:AlO=1,0÷2,0.

Изобретение относится к производству глинозема, в частности к обескремниванию алюминатных растворов в производстве глинозема из высококремнистого алюминиевого сырья.

Известен способов глубокого обескремнивания алюминатных растворов (Авторское свидетельство СССР №151312, опубликовано 01.01.1962). Повышенная степень их очистки достигается за счет введения в раствор известкового молока и выдержки полученной смеси в режиме перемешивания. После отделения образующегося шлама получают растворы с кремниевым модулем около 1000 единиц. Недостатками данного способа являются большое количество оборотного шлама, составляющее примерно 100 г/л, низкая степень использования известкового реагента и относительно невысокий кремниевый модуль, который не позволяет получать глинозем высокого качества при переработке растворов способом карбонизации, а также необходимость использования известкового молока путем гашения извести, получаемой при термическом разложении карбонатного сырья.

Известен способ обескремнивания алюминатных растворов путем их обработки известью при повышенной температуре (Певзнер И.З. Обескремнивание алюминатных растворов / И.З. Певзнер, Н.А. Макаров. М.: Металлургия, 1974. 112 с.). Недостатками данного способа являются низкий кремниевый модуль получаемых растворов, значительный расход извести, получаемой при термическом разложении карбонатного сырья и существенные потери оксида алюминия и щелочи с известковым шламом.

В способе обескремнивания алюминатных растворов (Лайнер А.И. Производство глинозема. М., Металлургия, 1978. 344 с.), раствор после автоклавного обескремнивания смешивают с известковым молоком, получаемым при гашении обожженной извести водой. Недостатками данного способа являются значительный расход извести, существенные потери оксида алюминия и щелочи с известковым шламом и низкий кремниевый модуль получаемых растворов, составляющий около 1250 единиц, что недостаточно для получения глинозема высокого качества, а также сохраняются недостатки, связанные с повышенным расходом энергоресурсов для приготовления известкового молока.

Известен способ обескремнивания алюминатных растворов (Авторское свидетельство №109756, опубл. 15.06.84), в котором снижение эксплуатационных затрат и повышение степени обескремнивания достигается за счет того, что обескремнивание алюминатных растворов включает термообработку в автоклаве при температуре 150÷240°C с введением извести или известь содержащих соединений, которые дозируют из расчета молярного отношения окиси кальция к кремнезему в исходном растворе 3÷6, термообработку ведут при содержании карбонатной щелочи в растворе 15÷30 г/л с последующей выдержкой полученной после термообработки суспензии в течение 1÷3 ч при 90÷105°C. При этом более полно и эффективно используются ограниченные ресурсы извести. Недостатком данного способа является относительно невысокий кремниевый модуль конечных растворов на уровне 2300÷2500 единиц, что затрудняет получение глинозема высших марок и заметно ограничивает выход глинозема, соответствующего марке Г-00, для которого кремниевый модуль находится на уровне 5000 единиц, а также сохраняются недостатки, связанные с повышенным расходом энергоресурсов для приготовления известкового молока.

В способе обескремнивания алюминатных растворов (Патент РФ №2374179, от 09.01.2008) их обескремнивание ведется при автоклавном выщелачивании боксита оборотными алюминатными растворами в присутствии кальцийсодержащего реагента, в качестве которого используют обожженную поверхностно-карбонизированную известь с уровнем содержания активной составляющей в виде CaO+MgO в пределах 85÷92% и повышенной долей карбонатной составляющей в виде кальцита, взятой в количестве 5-8 мас.% от массы боксита. Недостатком способа является низкая эффективность использования кальцийсодержащего реагента и относительно низкая степень обескремнивания, соответствующая достижению кремниевого модуля на уровне 400÷480 единиц, что делает эти растворы непригодными для разложения способом карбонизации, а также сохраняются недостатки, присущие ранее рассмотренным способам по затратам на обжиг карбонатных материалов.

В способе получения ненасыщенного твердого раствора ангидрида серной кислоты и/или угольной кислоты в четырехкальциевом гидроалюминате (Патент РФ №1556525, опубл. 15.12.1994) с целью активации реагента для проведения второй стадии обескремнивания синтез обескремнивающей добавки ведут при пониженной температуре 40÷55°C и молярном соотношении CaO:Al2O3=1,0÷2,0, что обеспечивает увеличение глубины обескремнивания алюминатных растворов при ее использовании для получения глинозема высших марок. В то же время сохраняются существенные затраты энергоресурсов на обжиг карбонатных материалов и приготовление известкового молока.

Известен способ обескремнивания алюминатных растворов (Патент РФ №2056357, опубл. 20.03.1996), включающий обработку извести алюминатно-щелочным раствором с получением алюмо-кальциевого компонента, две стадии обескремнивания алюминатно-щелочных растворов с использованием в качестве интенсифицирующей добавки полученного алюмо-кальциевого компонента, сгущение, фильтрацию продуктов обескремнивания, осветление обескремненного раствора, отличающийся тем, что обработку извести ведут алюминатно-щелочным раствором с каустическим модулем 3÷30. Это позволяет снизить безвозвратные потери Al2O3 с продуктами обескремнивания, расход обескремнивающей добавки и расход пара по переделу обескремнивания. Недостатком данного способа является сохраняющийся повышенный расход алюмо-кальциевого компонента на уровне 8÷10 г/л в пересчете на содержание активного CaO, необходимость использования для приготовления алюмо-кальциевого компонента растворов с повышенным каустическим модулем, что снижает его выход, а также ограничение по глубине обескремнивания алюминатных растворов, связанное с достижением кремниевого модуля на уровне 4000÷5000 единиц, что недостаточно для устойчивого получения глинозема высших марок Г-00 и Г-000. В то же время сохраняются существенные затраты энергоресурсов на обжиг карбонатных материалов и приготовление известкового молока.

Ближайшим аналогом предлагаемого способа является способ обескремнивания (Патент США N 4455284, кл. C01F 7/02, опубл. 1984), включающий приготовление интенсифицирующей добавки алюмо-кальциевого компонента обработкой извести алюминатным раствором, две стадии обескремнивания, сгущение и фильтрацию продуктов обескремнивания, осветление очищенного от кремнезема раствора, отличающийся тем, что интенсифицирующую добавку вводят в количестве, обеспечивающем соотношение CaO/SiO2 на стадии глубокого обескремнивания алюминатно-щелочных растворов не менее 40.

Недостатком данного способа является:

1. Значительный расход энергоресурсов на обжиг карбонатных материалов, составляющий около 130 кг кокса или 3, 25 ГДж на 1 т извести.

2. Достижение кремниевого модуля осветленных алюминатных растворов на уровне 4000 единиц, что недостаточно для устойчивого получения глинозема высокого качества марки Г-00 при переработке высококремнистого алюминиевого сырья.

Техническим результатом предлагаемого изобретения является снижение расхода энергоресурсов, утилизация производственных отходов карбоната кальция в ходе технологического процесса, что способствует снижению потребления природных ресурсов и выбросов диоксида углерода. Изобретение позволяет устойчиво получать глинозем марки Г-00, что обеспечивает повышение технико-экономических показателей его производства из высококремнистого сырья.

Технический результат достигается за счет того, что получение указанного алюмо-кальциевого компонента проводят обработкой карбоната кальция природного и/или искусственного происхождения алюминатно-щелочным раствором при молярном отношении CaO:Al2O3=1,0÷2,0.

Способ обескремнивания алюминатных растворов заключается в обработке карбоната кальция природного и/или искусственного происхождения алюминатно-щелочным раствором с получением алюмо-кальциевого компонента, двухстадийном обескремнивании алюминатно-щелочных растворов с использованием в качестве интенсифицирующей добавки полученного алюмо-кальциевого компонента, сгущении и фильтрации продуктов обескремнивания, осветлении обескремненного раствора:

- получение алюминатно-щелочных растворов глиноземного производства выполняется путем выщелачивания алюминатных спеков при атмосферных условиях, отделения шлама от осветленного алюминатного раствора, который в условиях осуществляемого процесса характеризуется содержанием SiO2 на уровне 2,5÷3,0 г/л и кремниевыми модулями в интервале 25÷35 единиц;

- алюминатный раствор с указанными показателями направляется на первую стадию обескремнивания, которая предполагает создание известных условий, необходимых для осуществления процесса кристаллизации гидроалюмосиликатов щелочных металлов, что обеспечивает снижение концентрации SiO2 до уровня 0,2÷0,3 г/л и достижение кремниевых модулей на уровне 350÷450 единиц с последующим отделением осветленного раствора. Например, в заводских условиях ЗАО «БАЗЭЛЦЕМЕНТ-ПИКАЛЕВО» получают растворы следующего усредненного состава, г/л: Al2O3 - 86,17, NaOобщ - 90,01, αк=1,51, SiO2 - 0,19 µsi=459 единиц;

- алюминатные щелочные растворы после первой стадии обескремнивания подлежат глубокому обескремниванию (вторая стадия) при известных условиях ведения процесса с использованием интенсифицирующей добавки алюмо-кальциевого компонента, получение которого включает обработку карбоната кальция природного и/или искусственного происхождения алюминатно-щелочным раствором при молярном соотношении оксида кальция в составе карбонатного материала к Al2O3 в алюминатном растворе 1,0÷2,0. Последующее отделение шлама путем сгущения и фильтрации позволяет получать осветленные алюминатно-щелочные растворы, пригодные по содержанию примесей для получения глинозема требуемого качества.

Существенным для достижения технического результата предлагаемого изобретения является использование интенсифицирующей добавки алюмо-кальциевого компонента, образующегося при взаимодействии алюминатно-щелочного раствора с необожженным карбонатным материалом высокой дисперсности, получаемым путем механического измельчения или химического осаждения в ходе смежных технологических переделов и производств, для которых получаемые осадки карбоната кальция являются попутными продуктами и нуждаются в утилизации. Возможность получения этим способом алюмо-кальциевого компонента, интенсифицирующего процесс обескремнивания алюминатных растворов, определяется известной областью существования метастабильных фаз в системе NaO2-Al2O3-CaO-CO2-H2O и реализацией многостадийного механизма гетерогенного взаимодействия при участии карбоната кальция и алюминатного раствора с получением твердых растворов угольной кислоты в гидроалюминате кальция:

Как показывают проведенные испытания, эффективность использования алюмо-кальциевого компонента, полученного предлагаемым способом, в значительной степени зависит от природы исходного карбонатного материала и его крупности, которые определяют величину поверхности материала и степень ее дефектности, т.е. характеристики, существенные для проведения гетерогенного взаимодействия и достижения требуемых показателей обескремнивания алюминатно-щелочных растворов глиноземного производства.

Показатели испытаний процесса обескремнивания алюминатных растворов по результатам реализации примеров №1÷9 приведены в таблице, фиг.1.

Пример №1

Заводская проба природного известняка Пикалевского месторождения измельчается до средней крупности 30÷40 мкм по результатам анализа методом лазерного рассеяния и обрабатывается алюминатно-щелочным раствором при молярном отношении CaO:Al2O3=1:1. Полученный алюмо-кальциевый компонент смешивается в известном соотношении, которое определяется содержанием CaOакт в интенсифицирующей добавке, с осветленным алюминатным раствором после первой стадии обескремнивания. Дозировка алюмо-кальциевого компонента в этом и последующих испытаниях составляет 7,5 г/л по CaOакт. Затем пульпа выдерживается в режиме перемешивания при температуре 85÷95°C в течение 3 часов для завершения процесса. В испытании участвовал щелочной алюминатный раствор, полученный в производственных условиях ЗАО «БАЗЭЛЦЕМЕНТ-ПИКАЛЕВО» при переработке нефелинового сырья на глинозем и попутную продукцию, следующего состава, г/л: Al2O3 - 86,17, NaOобщ - 90,01, αк=1,51, SiO2 - 0,19 µsi=459 единиц. По окончании процесса обескремнивания пульпа отфильтровывалась на вакуум фильтре, и полученный осветленный раствор анализировался на содержание Al2O3 и SiO2, по результатам чего рассчитывался кремниевый модуль, который в условиях проведенного испытания составил 5210, т.е. величину, которая находится вблизи нижней границы, обеспечивающей получение глинозема высшего качества и соответствующего по содержанию примеси SiO2 марке Г-00.

Пример №2

Пример №2 аналогичен примеру №1, но проба измельченного известняка обрабатывается алюминатно-щелочным раствором при молярном отношении CaO:Al2O3=1:1,5. По окончании процесса обескремнивания пульпа отфильтровывалась на вакуум-фильтре, и полученный осветленный раствор анализировался на содержание Al2O3 и SiO2, по результатам чего рассчитывался кремниевый модуль, который в условиях проведенного испытания составил 5650.

Пример №3

Пример №3 аналогичен примеру №1, но проба измельченного известняка обрабатывается алюминатно-щелочным раствором при молярном отношении CaO:Al2O3=1:2,0. По окончании процесса обескремнивания пульпа отфильтровывалась на вакуум-фильтре, и полученный осветленный раствор анализировался на содержание Al2O3 и SiO2, по результатам чего рассчитывался кремниевый модуль, который в условиях проведенного испытания составил 5970.

Пример №4

Пример №4 аналогичен примеру №1, но для приготовления алюмо-кальциевого компонента использована проба фосфомела, полученного в результате проведения опытно-промышленных испытаний на промышленной площадке ОАО «ФосАгро-Череповец». Фосфомел представляет собой твердый продукт с содержанием CaCO3 не менее 90% и средним размером частиц 10-15 мкм по результатам анализа методом лазерного рассеяния. Фосфомел образуется в ходе конверсионной переработки фосфогипса (отходов производства минеральных удобрений) по реакции:

CaSO4·2H2O+(NH4)2CO3→CaCO3+(NH4)2SO4+2H2O.

По окончании процесса обескремнивания пульпа отфильтровывалась на вакуум-фильтре, и полученный осветленный раствор анализировался на содержание Al2O3 и SiO2, по результатам чего рассчитывался кремниевый модуль, который в условиях проведенного испытания составил 6380.

Пример №5

Пример №5 аналогичен примеру №4, но проба фосфомела обрабатывается алюминатно-щелочным раствором при молярном отношении CaO:Al2O3=1:1,5. По окончании процесса обескремнивания пульпа отфильтровывалась на вакуум-фильтре, и полученный осветленный раствор анализировался на содержание Al2O3 и SiO2, по результатам чего рассчитывался кремниевый модуль, который в условиях проведенного испытания составил 6825.

Пример №6

Пример №6 аналогичен примеру №4, но проба фосфомела обрабатывается алюминатно-щелочным раствором при молярном отношении CaO:Al2O3=1:2,0. По окончании процесса обескремнивания пульпа отфильтровывалась на вакуум-фильтре, и полученный осветленный раствор анализировался на содержание Al2O3 и SiO2, по результатам чего рассчитывался кремниевый модуль, который в условиях проведенного испытания составил 7150.

Пример №7

Пример №7 аналогичен примеру №1 и №4, но для приготовления алюмо-кальциевого компонента использован известковый шлам, полученный в производственных условиях ЗАО «БАЗЭЛЦЕМЕНТ-ПИКАЛЕВО». Известковый шлам представляет собой твердый продукт с содержанием CaCO3 не менее 92% и средним размером частиц 3÷5 мкм по результатам анализа методом лазерного рассеяния. Известковый шлам образуется в ходе каустификации соды известковым молоком с целью получения раствора каустической щелочи по реакции:

Ca(OH)2+Na2CO3=CaCO3+2NaOH.

По окончании процесса обескремнивания пульпа отфильтровывалась на вакуум-фильтре, и полученный осветленный раствор анализировался на содержание Al2O3 и SiO2, по результатам чего рассчитывался кремниевый модуль, который в условиях проведенного испытания составил 7945.

Пример №8

Пример №8 аналогичен примеру №7, но проба известкового шлама обрабатывается алюминатно-щелочным раствором при молярном отношении CaO:Al2O3=1: 1,5. По окончании процесса обескремнивания пульпа отфильтровывалась на вакуум-фильтре, и полученный осветленный раствор анализировался на содержание Al2O3 и SiO2, по результатам чего рассчитывался кремниевый модуль, который в условиях проведенного испытания составил 8430.

Пример №9

Пример №9 аналогичен примеру №8, но проба известкового шлама обрабатывается алюминатно-щелочным раствором при молярном отношении CaO:Al2O3=1:2,0. По окончании процесса обескремнивания пульпа отфильтровывалась на вакуум-фильтре, и полученный осветленный раствор анализировался на содержание Al2O3 и SiO2, по результатам чего рассчитывался кремниевый модуль, который в условиях проведенного испытания составил 9170.

Способ обескремнивания алюминатных растворов, заключающийся в получении алюмокальциевого компонента, двухстадийном обескремнивании алюминатно-щелочных растворов с использованием в качестве интенсифицирующей добавки полученного алюмокальциевого компонента, сгущении и фильтрации продуктов обескремнивания, осветлении обескремненного раствора, отличающийся тем, что получение указанного алюмокальциевого компонента проводят обработкой карбоната кальция природного и/или искусственного происхождения алюминатно-щелочным раствором при молярном отношении CaO:AlO=1,0÷2,0.
СПОСОБ ОБЕСКРЕМНИВАНИЯ АЛЮМИНАТНЫХ РАСТВОРОВ
Источник поступления информации: Роспатент

Showing 21-30 of 170 items.
10.04.2014
№216.012.b837

Устройство компенсации высших гармоник и коррекции коэффициента мощности сети

Изобретение относится к электротехнике и электроэнергетике, а именно к устройствам подавления и компенсации высших гармоник в электрических сетях и коррекции коэффициента мощности. Технический результат заключается в снижении коэффициента искажения синусоидальной формы кривых тока и напряжения...
Тип: Изобретение
Номер охранного документа: 0002512886
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b903

Скребковый конвейер

Скребковый конвейер содержит замкнутый на приводной и натяжной звездочках двухцепной тяговый контур с закрепленными на цепях (1, 2) скребками (3) и ходовыми опорными катками (4, 5) с возможностью их перемещения по закрепленным на несущем желобе (6) направляющим (7, 8). Каждый скребок выполнен с...
Тип: Изобретение
Номер охранного документа: 0002513091
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb81

Способ разработки мощных крутопадающих рудных тел

Изобретение относится к горнодобывающей промышленности и может быть использовано при подземной разработке крутопадающих месторождений, представленных неустойчивыми рудами и вмещающими породами. Способ разработки мощных крутопадающих рудных тел включает разделение рудного тела на слои,...
Тип: Изобретение
Номер охранного документа: 0002513729
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bbcd

Способ повышения проницаемости угольного пласта через скважины, пробуренные из горных выработок

Изобретение относится к горной промышленности и может быть применено для дегазации угольных пластов. Способ включает создание полости в угольном пласте посредством циклического увеличения и снижения давления жидкости в шпуре и воздействия на пласт низкочастотными импульсами давления при...
Тип: Изобретение
Номер охранного документа: 0002513805
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c102

Электромеханический буровой снаряд

Изобретение относится к буровой технике и может быть использовано для бурения глубоких скважин с отбором керна в ледовых массивах Арктики и Антарктики. Электромеханический буровой снаряд включает колонковый набор, кабельный замок, электроотсек, насосный узел, приводной узел, шламосборник,...
Тип: Изобретение
Номер охранного документа: 0002515159
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c499

Способ подземной разработки сближенных угольных пластов при высокой газоносности угля и массива вмещающих пород

Изобретение относится к горному делу и может быть использовано при подземной разработке сближенных угольных пластов на участках шахтных полей, осложненных дизъюнктивными геологическими нарушениями в условиях высокой газоносности угля и массива вмещающих пород. Способ включает опережающую...
Тип: Изобретение
Номер охранного документа: 0002516088
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c570

Устройство для тепловой обработки газогидратных залежей

Изобретение относится к горному делу и может применяться для разработки газогидратных залежей, тепловой обработки призабойной зоны скважины и восстановления гидравлической связи пласта со скважиной. Устройство для тепловой обработки газогидратных залежей содержит два корпуса нагревателя,...
Тип: Изобретение
Номер охранного документа: 0002516303
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c664

Способ получения тонкодисперсного поликристаллического карбида кремния

Изобретение относится к производству поликристаллического карбида кремния. Способ получения поликристаллического карбида кремния включает металлотермическое восстановление натрием смеси тетрахлоридов кремния и углерода, взятой в мольном соотношении 1:1. Смесь хлоридов кремния и углерода подают...
Тип: Изобретение
Номер охранного документа: 0002516547
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cdf5

Пластинчатый питатель тяжелого типа

Пластинчатый питатель тяжелого типа содержит пластинчатую ленту, состоящую из прилегающих друг к другу с щелевыми зазорами (1) плоских пластин (2, 3), закрепленных на двухцепном тяговом органе, огибающем приводную и натяжную звездочку. На передних кромках пластин с возможностью огибания их...
Тип: Изобретение
Номер охранного документа: 0002518496
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cefe

Лотковый питатель

Лотковый питатель содержит кинематически связанный с кривошипно-шатунным приводом (1) лоток (2) с его опиранием на стационарные роликовые или катковые опоры (3), неподвижные борта (4). На верхней части бортов (4) у задней торцевой стенки (5) закреплены фланцы (6) с возможностью их соединения с...
Тип: Изобретение
Номер охранного документа: 0002518761
Дата охранного документа: 10.06.2014
Showing 21-30 of 219 items.
27.01.2014
№216.012.9c99

Стенд для ударных испытаний образцов

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит основание, закрепленную на основании направляющую трубу, выполненную с двумя параллельными вертикальными участками, соединенными в нижней части между собой коленом, шаровой ударник, размещенный в первом...
Тип: Изобретение
Номер охранного документа: 0002505795
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9e40

Эскалатор метрополитена

Эскалатор метрополитена содержит раму, ступенчатое полотно с закрепленными на каркасах ступенями, каждая из которых опирается на два основных и два вспомогательных катка с возможностью их опирания на направляющие и перемещения по ним при соединении ступенчатого полотна с двумя бесконечно...
Тип: Изобретение
Номер охранного документа: 0002506220
Дата охранного документа: 10.02.2014
20.03.2014
№216.012.ac92

Способ возведения сейсмостойкой бетонной крепи

Изобретение относится к горнодобывающей промышленности и может быть использовано для крепления горных выработок в сейсмоопасных районах или при ведении горных работ на удароопасных месторождениях. Техническим результатом является повышение сейсмоустойчивости бетонной крепи. Способ возведения...
Тип: Изобретение
Номер охранного документа: 0002509893
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acfc

Стенд для испытания зубчатых передач по схеме замкнутого контура

Изобретение относится к испытательной технике, в частности к стендам для испытания механических передач, и может быть использовано для испытания зубчатых передач. Стенд содержит привод, входной и выходной валы для установки ведущих и ведомых колес зубчатых передач с одинаковым передаточным...
Тип: Изобретение
Номер охранного документа: 0002509999
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acff

Стенд для исследования энергообмена в массиве горных пород

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд содержит опорную раму, размещенные в ней захват для образца...
Тип: Изобретение
Номер охранного документа: 0002510002
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad00

Стенд для исследования энергообмена в блочном массиве горных пород

Изобретение относится к испытательной технике, к устройствам для исследования энергообмена при деформировании и разрушении блочного горного массива. Стенд для исследования энергообмена в блочном массиве горных пород содержит опорную раму, размещенные в ней захват для образца и захват для...
Тип: Изобретение
Номер охранного документа: 0002510003
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad01

Центробежная установка для испытания образца материала на прочность

Изобретение относится к испытательной технике, к испытаниям на прочность. Центробежная установка содержит корпус, установленные на нем вал с приводом вращения, гидроцилиндр, закрепленный на валу перпендикулярно его оси, размещенные в гидроцилиндре поршень, фиксатор положения поршня в...
Тип: Изобретение
Номер охранного документа: 0002510004
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad02

Термонагружатель к стенду для испытания образцов материалов

Изобретение относится к средствам испытаний образцов материалов при сложном нагружении и может быть использовано совместно со стендами для исследования энергообмена при деформировании и разрушении твердых тел. Термонагружатель к стенду для испытания образцов материалов содержит платформу,...
Тип: Изобретение
Номер охранного документа: 0002510005
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad03

Стенд для испытания образцов материалов при многоточечном изгибе

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд для испытания образцов материалов при многоточечном изгибе содержит раму, опорный элемент в виде трубы, направляющие, установленные на внутренней поверхности трубы, разъемные фиксаторы направляющих на трубе,...
Тип: Изобретение
Номер охранного документа: 0002510006
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad05

Устройство для испытания образцов материалов

Изобретение относится к испытательной технике, к устройствам для испытания материалов на прочность. Устройство содержит основание, пассивный захват образца, закрепленный на основании, активный захват образца, нагружатель, соединенный с активным захватом образца и включающий шаровой корпус,...
Тип: Изобретение
Номер охранного документа: 0002510008
Дата охранного документа: 20.03.2014
+ добавить свой РИД