×
20.08.2015
216.013.6fd9

Результат интеллектуальной деятельности: РАДИАЛЬНЫЙ ПОДШИПНИК ЖИДКОСТОНОГО ТРЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и может быть использовано в металлургической, строительной, горнорудной промышленностях для обеспечения надежной и долговечной работы оборудования при значительных снижениях затрат на изготовление и эксплуатацию машин. Радиальный подшипник жидкостного трения включает втулку-цапфу (1), расположенную во втулке-вкладыше (3). На поверхности втулки-цапфы (1) сформирована система параллельных мартенситных валиков (3), которая при движении подшипника обеспечивает максимальное количество масляных клиньев, создающих гидродинамические силы поддержания втулки-цапфы. Валики (3) сформированы на втулке-цапфе (1) в виде системы параллельных валиков (3) один за другим на расстоянии L=(1,5÷3)h друг от друга, где h - ширина валика (3), выступающего над поверхностью на 0,3÷1,5 мм, в направлении, параллельном оси подшипника. Валики сформированы на втулке-цапфе (1) в виде двух систем параллельных валиков: одна за другой, в виде сетки под углом 2β=60÷120°, причем обе системы расположены симметрично относительно направления движения подшипника в эксплуатации на окружном расстоянии L=Lcosβ друг от друга. Технический результат: создание радиального подшипника жидкостного трения с конструкцией, позволяющей создать максимально возможное количество масляных клиньев. При этом конструкция учитывает следующие условия работы: возможность кратковременной работы при малых скоростях скольжения, изменение направления нагрузки на подшипник, возможность реверсивной работы. Подшипник прост в изготовлении, долговечен и не дорогостоящий. 2 з.п. ф-лы, 7 ил.

Изобретение относится к области машиностроения и может быть использовано в металлургической, строительной, горно-рудной промышленностях для обеспечения надежной и долговечной работы оборудования (насосов, воздуходувок, компрессоров и т.д.) при значительных снижениях затрат на изготовление и эксплуатацию машин.

Известен радиальный подшипник жидкостного трения [1, стр. 228-231], широко используемый в прокатном производстве. Основные детали подшипника - стальная втулка-цапфа с зеркальной рабочей поверхностью шероховатостью 18-45 мкм и втулка-вкладыш, залитая баббитом Б83, подвергнутая алмазной расточке и доводке с окончательной шероховатостью не выше 0,8 мкм.

Недостатком данного подшипника являются высокие требования к точности изготовления с применением высокоточного станочного оборудования, что ведет к значительным затратам при изготовлении. При работе данного подшипника образуется один масляный клин, который способствует разделению поверхностей трения, поэтому подшипник плохо переносит резкие перегрузки, неустановившийся и повторно-кратковременный режимы работы.

Наиболее близким к изобретению по технической сущности и достигаемому результату является сегментный радиальный подшипник [2, стр. 84]. Он состоит из комплекта независимых вкладышей (трех и более) с несимметрично расположенной опорой в корпусе, на которой они могут поворачиваться в поперечной относительно оси вала плоскости. Положение опоры выбирается сообразно направлению вращения вала, а именно: передняя, относительно вращения вала, кромка вкладыша отстоит от опоры дальше, чем задняя. Такое положение опоры обеспечивает при вращении вала со скоростями выше 3 м/с образование масляного клина и гидравлической силы поддержания между вкладышем и сопрягаемой поверхностью скольжения. Так как вкладыши устанавливаются независимо друг от друга, то и масляные клинья будут создаваться также независимо.

Недостатком данного подшипника является то, что количество независимых масляных клиньев соответствует числу вкладышей. Разрушение какого-либо масляного клина приводит к аварии всей машины. Подшипник не может работать в реверсивном режиме. Конструкция данного подшипника является сложной и дорогостоящей при изготовлении и монтаже.

Задачей изобретения является создание радиального подшипника жидкостного трения с конструкцией, позволяющей создать максимально возможное количество масляных клиньев. Причем при работе подшипника должно обеспечиваться надежное разделение поверхностей трения масляным слоем. Конструкция предлагаемого радиального подшипника должна учитывать экстремальные условия работы, а именно: возможность кратковременной работы при малых скоростях скольжения, изменение направления нагрузки на подшипник, возможность реверсивной работы. Подшипник должен быть прост в изготовлении, долговечным и не дорогостоящим.

Поставленная задача достигается тем, что радиальный подшипник жидкостного трения включает втулку-цапфу, расположенную во втулке-вкладыше, и на поверхности втулки-цапфы сформирована система параллельных мартенситных валиков, которая при движении подшипника обеспечивает максимальное количество масляных клиньев, создающих гидродинамические силы поддержания втулки-цапфы. Радиальный подшипник жидкостного трения с мартенситными валиками, сформированными на втулке-цапфе в виде системы параллельных валиков один за другим на расстоянии L=(1,5÷3)h друг от друга, где h - ширина валика, выступающего над поверхностью на 0,3÷1,5 мм, по всей поверхности втулки-цапфы от края до края, в направлении, параллельном оси подшипника. Радиальный подшипник жидкостного трения с мартенситными валиками, сформированными на втулке-цапфе в виде двух систем параллельных валиков: одна за другой, в виде сетки под углом 2β=60÷120°, причем обе системы расположены симметрично относительно направления движения подшипника в эксплуатации на окружном расстоянии L1=Lcosβ друг от друга.

Выполнение мартенситных валиков на рабочей поверхности износостойких пар трения на изделиях из конструкционных сталей известно (см. патент РФ №2486002) [3], однако такое расположение валиков возможно только для изделий, работающих в тяжелых условиях с возвратно-поступательным движением.

На фиг. 1 представлена часть увеличенного поперечного сечение радиального подшипника жидкостного трения, на фиг. 2 - втулка-цапфа радиального подшипника жидкостного трения с системой валиков, параллельной оси подшипника, на фиг. 3 - поперечное сечение радиального подшипника жидкостного трения с системой валиков, параллельной оси подшипника, на фиг. 4 - втулка-цапфа радиального подшипника жидкостного трения горизонтального исполнения с сетчатой системой валиков, на фиг. 5 - поперечное сечение радиального подшипника жидкостного трения горизонтального исполнения с сетчатой системой валиков, на фиг. 6 - втулка-цапфа радиального подшипника жидкостного трения вертикального исполнения с сетчатой системой валиков, на фиг. 7 - вид сверху радиального подшипника жидкостного трения вертикального исполнения с сетчатой системой валиков.

Втулка-цапфа 1 изготавливается из конструкционной стали, которая с натягом одевается на цапфу вала (фиг. 1). На наружной поверхности втулки-цапфы 1 созданы выпуклые валики 2 из мелкоигольчатого мартенстита с помощью быстровращающегося диска, из которых сформированы масляные карманы для удержания смазки. Валики имеют наклонные (клиновые) рабочие поверхности d, обеспечивающие гидродинамические силы поддержания при скоростях скольжения выше 2-3 м/с (жидкостное трение) и опорные поверхности с из высокотвердого материала, позволяющие сохранять износостойкость в условиях полусухого трения при малых скоростях скольжения (менее 2 м/с).

Подшипник состоит (фиг. 1): 1 - втулка-цапфа, 2 - валик, 3 - втулка-вкладыш, 4 - закаленный слой (ТВЧ) на поверхности втулки-вкладыша, между валиками пространство заполнено маслом; m - высота валика над поверхностью втулки-цапфы, m=(0,3-1,5) мм; h - ширина валика; с - опорная поверхность валика, c=(h-2d); d - длина наклонной поверхности валика, d=3-4 мм; L - расстояние по нормали между валиками (минимальное), L=(1,5÷3)h.

При создании радиального подшипника жидкостного трения с возможностью воспринимать радиальную нагрузку, систему параллельных валиков 2 формируют на рабочей поверхности втулки-цапфы 1 один за другим на расстоянии L=(1,5÷3)h друг от друга, где h - ширина валика. Ширина валика зависит от ширины диска, создающего валики. Направление валиков назначают параллельно оси подшипника (фиг. 2, 3), такое расположение системы создает максимальные гидродинамические силы поддержания. Расстояние между валиками не может быть назначено меньше, так как карман со смазочным материалом будет иметь не достаточные размеры, а также не может быть назначено больше, так как количество карманов должно быть по возможности максимальным. Длина смазочной канавки составляет 0,8 B, где B - ширина подшипника. Такой подшипник может работать при реверсивном движении.

При создании радиального подшипника жидкостного трения с возможностью работы как в горизонтальном исполнении (фиг. 4, 5), так и в вертикальном исполнении (фиг. 6, 7), две системы параллельных валиков формируют на поверхности втулки-цапфы одну за другой в виде сетки под углом 2β=60-120°, причем располагаются обе системы симметрично относительно направления движения подшипника в эксплуатации на окружном расстоянии L1=Lcosβ друг от друга. В данном случае создаются замкнутые карманы оптимальной величины как в горизонтальном, так и вертикальном направлении. Данный подшипник может работать при реверсивном движении и при любом направлении силы N, действующей на подшипник.

Подшипник работает следующим образом (фиг. 1). Перед началом работы в смазочное отверстие подшипника подают масло под давлением 150-200 КПа, которое заполняет масляные карманы между параллельными мартенситными валиками 2, после чего запускают машину вхолостую и окружную скорость подшипника доводят до значений выше 2-3 м/с. Масло, увлекаемое вращающейся втулкой-цапфой 1, затягивается в сужающийся клиновой зазор между втулкой-вкладышем 3 и наклонными бортами мартенситных валиков d, где и создаются гидродинамические силы поддержания. Втулка-цапфа «всплывает» (образует зазор) над втулкой-вкладышем, полусухое трение переходит в жидкостное трение. После этого дают нагрузку машине и технологические радиальные нагрузки полностью воспринимаются гидродинамическими силами поддержания.

При случайных чрезмерных нагрузках, а также в случае аварийных ситуаций, подшипник переходит в условия работы с полусухим трением. Опорные поверхности валиков с (фиг. 1) нагреваются, однако они могут работать до тех пор, пока не начнется структурное превращение мелкоигольчатого мартенсита трения в аустенит (это соответствует массовой температуре в 840°C) на что необходимо достаточно времени, чтобы остановить машину и предотвратить аварию.

Работа подшипника заметно стабилизируется, когда опорные поверхности с (фиг. 1) подвергают шлифовке и жидкостное трение наступает при меньших зазорах между закаленным слоем 4 втулки-вкладыша (ТВЧ) и опорными поверхностями валиков с, причем все зазоры при этом практически одинаковы.

Таким образом, достигается цель - создание радиального подшипника жидкостного трения, позволяющего создать максимально возможное количество масляных клиньев с меньшими энергетическими затратами, минимальным количеством технологических операций. Причем при работе подшипника обеспечивается надежное разделение поверхностей трения масляным слоем. Конструкция предлагаемого радиального подшипника учитывает условия работы, а именно: работу при малых скоростях скольжения, изменение направления нагрузки на подшипник, его положение в пространстве, возможность реверсивной работы.

Источники информации

1. Целиков А.И. Машины и агрегаты металлургических заводов. В 3-х томах. Т.3. Машины и агрегаты для производства и отделки проката. Учебник для вузов / А.И. Целиков, П.И. Полухин, В.М. Гребенник, и др. 2 изд., перераб. и доп. - Москва: Металлургия, 1988. - 680 с.

2. Агернан Н.С. Детали машин. Сборник по расчету и конструированию. В 2-х книгах. Изд. 2-е испр. и доп. Книга II. / Под ред. д.т.н., проф. Н.С. Агернана - Москва: Машгиз, 1959. - 560 с.

3. Патент на изобретение №2466002 с приоритетом от 01 июня 2011 г. Заявка №2011122319. Зарегистрировано в Государственном реестре изобретений РФ 10 ноября 2012 г.


РАДИАЛЬНЫЙ ПОДШИПНИК ЖИДКОСТОНОГО ТРЕНИЯ
РАДИАЛЬНЫЙ ПОДШИПНИК ЖИДКОСТОНОГО ТРЕНИЯ
РАДИАЛЬНЫЙ ПОДШИПНИК ЖИДКОСТОНОГО ТРЕНИЯ
РАДИАЛЬНЫЙ ПОДШИПНИК ЖИДКОСТОНОГО ТРЕНИЯ
РАДИАЛЬНЫЙ ПОДШИПНИК ЖИДКОСТОНОГО ТРЕНИЯ
РАДИАЛЬНЫЙ ПОДШИПНИК ЖИДКОСТОНОГО ТРЕНИЯ
РАДИАЛЬНЫЙ ПОДШИПНИК ЖИДКОСТОНОГО ТРЕНИЯ
Источник поступления информации: Роспатент

Showing 81-82 of 82 items.
13.02.2018
№218.016.204c

Порошковая проволока

Изобретение относится к сварочным материалам и может быть использовано при наплавке под флюсом для восстановления изношенных деталей и получения износостойкого защитного покрытия на деталях горнорудного оборудования, работающего в условиях абразивного износа, например бункеров и труботечек....
Тип: Изобретение
Номер охранного документа: 0002641590
Дата охранного документа: 18.01.2018
16.05.2019
№219.017.529e

Способ сухой переработки угля

Изобретение относится к угольной промышленности и может быть использовано для переработки труднообогатимых углей. Способ сухой переработки труднообогатимого угля включает предварительное грохочение с выделением класса 0-25 мм, избирательное дробление, обработку на пневмоклассификаторе с...
Тип: Изобретение
Номер охранного документа: 0002282503
Дата охранного документа: 27.08.2006
Showing 91-100 of 105 items.
25.08.2017
№217.015.be92

Способ повышения долговечности изделия из меди, работающего в условиях ползучести

Изобретение относится к обработке меди и сплавов на ее основе и может быть использовано для регулирования ресурса работы изделий, изготавливаемых из поликристаллической меди марки М00б, эксплуатирующихся в условиях ползучести. Способ повышения долговечности изделия из поликристаллической меди,...
Тип: Изобретение
Номер охранного документа: 0002616742
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bf83

Способ нанесения электроэрозионностойких покрытий на основе вольфрама, меди и никеля на медные электрические контакты

Изобретение относится к области получения электрических контактов, в частности к формированию на медных электрических контактах покрытий на основе вольфрама, никеля и меди, которые могут быть использованы в электротехнике. Способ включает электрический взрыв композиционного электрически...
Тип: Изобретение
Номер охранного документа: 0002617190
Дата охранного документа: 21.04.2017
26.08.2017
№217.015.d4b7

Газовая плоскопламенная горелка со встроенным радиационным рекуператором

Изобретение относится к горелочным устройствам тепловых агрегатов, используемых в различных отраслях промышленности. Газовая плоскопламенная горелка со встроенным радиационным рекуператором содержит дымовую трубу, воздушную трубу, газовую трубу с отверстиями для выхода газа. Прямая дымовая...
Тип: Изобретение
Номер охранного документа: 0002622357
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.d7e6

Самоустанавливающаяся пятисателлитная планетарная передача

Изобретение относится к области машиностроения, а именно к планетарным передачам. Пятисателлитная планетарная передача содержит входное зубчатое колесо, пять сателлитов, первый трехпарный шатун, второй трехпарный шатун, третий трехпарный шатун, четвертый трехпарный шатун, двухпарный повод,...
Тип: Изобретение
Номер охранного документа: 0002622731
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d8e7

Способ нанесения электроэрозионностойких покрытий на основе молибдена, меди и никеля на медные электрические контакты

Изобретение относится к формированию на поверхности медных электрических контактах покрытий и может быть использовано в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и...
Тип: Изобретение
Номер охранного документа: 0002623546
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.d927

Способ нанесения электроэрозионностойких покрытий на основе хрома, карбидов хрома и меди на медные электрические контакты

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии и может быть использовано в электротехнике. Способ нанесения электроэрозионного покрытия системы медь – хром, содержащего карбиды хрома, на медные электрические...
Тип: Изобретение
Номер охранного документа: 0002623548
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.da43

Шихта порошковой проволоки

Изобретение может быть использовано при наплавке порошковой проволокой рабочих поверхностей деталей металлургического оборудования, к которым предъявляются повышенные требования по твердости и износостойкости. Шихта для порошковой проволоки содержит пыль электрофильтров алюминиевого...
Тип: Изобретение
Номер охранного документа: 0002623981
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.dad3

Флюс-добавка

Изобретение может быть использовано при электродуговой сварке сталей под флюсом. Флюс-добавка содержит компоненты в следующем соотношении, мас.%: стронций-бариевый карбонатит 60-75, натриевое жидкое стекло 25-40. Флюс-добавка обеспечивает улучшение механических свойств сварного шва, в...
Тип: Изобретение
Номер охранного документа: 0002623982
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.df82

Флюс для сварки и наплавки

Изобретение может быть использовано для электродуговой сварки под флюсом, в частности для сварки и наплавки легированных сталей. Флюс содержит компоненты в следующем соотношении, мас.%: пылевидный ковшевой шлак производства рельсовой стали 30,0-50,0, пылевидные отходы производства алюминия...
Тип: Изобретение
Номер охранного документа: 0002625153
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e142

Флюс-добавка

Флюс-добавка предназначен для примешивания к плавленым флюсам и может быть использован при электродуговой сварке сталей под флюсом. Флюс-добавка содержит компоненты в следующем соотношении, мас. %: стронций-бариевый карбонатит 1-15, натриевое жидкое стекло 25-50, пыль электрофильтров...
Тип: Изобретение
Номер охранного документа: 0002625509
Дата охранного документа: 14.07.2017
+ добавить свой РИД