×
20.08.2015
216.013.6f6c

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ И НАПРАВЛЕНИЯ ПРИХОДА ИОНОСФЕРНОГО ВОЗМУЩЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиофизики и может быть использовано для контроля за солнечной, геомагнитной и сейсмической активностью, за предвестниками землетрясения, извержения вулканов, цунами, процессами грозовой активности, динамикой мощных штормовых циклонов, а также для обнаружения ядерных и иных крупных взрывов и пожаров, больших аварийных выбросов на атомных электростанциях, запусков космических аппаратов и ракет, излучений мощных радиопередающих комплексов радиолокационного и связного назначения, средств специального воздействия на ионосферу с целью управления ее параметрами. Технический результат состоит в повышении чувствительности обнаружения и точности определения скорости распространения и направления прихода ионосферного возмущения решеткой приемных станций спутниковых радионавигационных систем ГЛОНАСС/GPS путем восстановления пространственного распределения полного электронного содержания ионосферы по данным радиопросвечивания атмосферы сигналами ГЛОНАСС/GPS. Для этого способ реализуется спутниковыми радионавигационными системами ГЛОНАСС/GPS и протяженной решеткой двухчастотных приемников, обеспечивающих прием и обработку сигналов. 3 ил.
Основные результаты: Способ определения скорости распространения и направления прихода ионосферного возмущения, основанный на анализе данных о полном электронном содержании в ионосфере Земли, которые получают в результате обработки сигналов, принятых двухчастотными приемниками спутниковой радионавигационной системы ГЛОНАСС/GPS, с последующим формированием временных рядов полного электронного содержания и их фильтрацией в диапазоне периодов колебаний, соответствующих отклику ионосферы на воздействие источника ионосферного возмущения, при этом используют протяженную приемную антенну и последовательно проверяют гипотезу о значениях направления прихода и скорости распространения плоского фронта ионосферного возмущения путем формирования диаграммы направленности приемной решетки и ее сканирования в заданном секторе обзора пространства "направление прихода - скорость распространения ионосферного возмущения" за счет синтеза выходного сигнала приемной решетки при синфазном суммировании рядов вариаций полного электронного содержания отдельных элементов решетки с временными сдвигами, рассчитанными исходя из проверяемых значений направления ионосферного возмущения и расстояний, пройденных фронтом ионосферного возмущения между элементами приемной решетки в проверяемом направлении внутри сферического слоя ионосферы Земли, решение о правильности проверяемой гипотезы и обнаружении ионосферного возмущения принимается при превышении суммарным сигналом заданного порогового уровня, соответствующие значения направления прихода и фазовой скорости распространения ионосферного возмущения считаются оценочными значениями, отличающийся тем, что для определения полного электронного содержания ионосферы осуществляют совместно кодовые измерения путем кодирования двухчастотных сигналов, передаваемых спутниковой радионавигационной системой ГЛОНАСС/GPS и принимаемых их двухчастотными приемниками спутниковой радионавигационной системы ГЛОНАСС/GPS, и фазовые измерения, учитывают групповые поправки, связанные с многолучевостью распространения сигнала и с вертикальными ионосферными и тропосферными задержками и используют дифференциальный режим спутниковых радионавигационных систем ГЛОНАСС/GPS посредством двух приемников, один из которых имеет известные координаты.

Предлагаемый способ относится к области радиофизики, и может быть использован для контроля за солнечной, геомагнитной и сейсмической активностью, за предвестниками землетрясения, извержения вулканов, цунами, процессами грозовой активности, динамикой мощных штормовых циклонов, а также для обнаружения ядерных и иных крупных взрывов и пожаров, больших аварийных выбросов на атомных электростанциях, запусков космических аппаратов и ракет, излучений мощных радиопередающих комплексов радиолокационного и связного назначения, средств специального воздействия на ионосферу с целью управления ее параметрами и т.п.

Известны способы определения направления прихода и скорости перемещения ионосферных возмущений естественного и техногенного характера (авт. свид. СССР №№1.451.688, 1.709.263; патенты РФ №№2.085.965, 2.189.051, 2.189.052, 2.193.495, 2.267.139, 2.379.709; патенты США №№4.761.650, 6.061.013; патент EP №0.622.639; патент WO №0.045.192; Afraimovich E.L., Kosogorov E.A., Perevalova N.P. The use ofGPS arrays in defecting shoch-acoustic waves generated during rocket launchings. J. Atmos. Solar - Terr. Phys., V63, 1941-1957, 2001 и другие).

Из известных способов наиболее близким к предлагаемому способу является «Способ определения скорости распространения и направления прихода ионосферного возмущения» (патент РФ №2.379.709, GO1 S 13/95, 2008), который и выбран в качестве прототипа.

Указанный способ обеспечивает повышение чувствительности обнаружения и точности определения скорости распространения и направления прихода ионосферного возмущения, регистрируемого протяженной решеткой приемных станций спутниковых радионавигационных систем ГЛОНАСС/GPS. Временные ряды полного электронного содержания, полученные по измерениям двухчастотных приемников спутниковых радионавигационных систем ГЛОНАСС/GPS, образующих протяженную приемную решетку, фильтруют с целью выделения вариаций, соответствующих отклику ионосферы на воздействие источника. Проверяются гипотезы о значениях направления прихода и скорости распространения плоского фронта ионосферного возмущения путем формирования диаграммы направленности приемной решетки и ее сканирования в заданном секторе обзора пространства ''направление прихода - скорость распространения ионосферного возмущения '' за счет синтеза выходного сигнала приемной решетки при синфазном суммировании рядов вариаций полного электронного содержания отдельных элементов решетки с временными сдвигами, рассчитанными исходя из проверяемых значений ''направление прихода - скорость распространения ионосферного возмущения '' и расстояний, пройденных фронтом ионосферного возмущения между элементами приемной решетки в проверяемом направлении внутри сферического слоя ионосферы Земли. Решение о правильности проверяемой гипотезы и обнаружении ионосферного возмущения принимается при превышении суммарным сигналом заданного порогового уровня. Соответствующие значения направления прихода и фазовой скорости распространения ионосферного возмущения считаются оценочными значениями.

Однако указанный способ не учитывает групповые поправки, связанные с многолучевостью распространения сигнала и вертикальными ионосферными и тропосферными задержками, а также использует для определения полного электронного содержания ионосферы только двухчастотные измерения псевдодальности между навигационным спутником и наземным приемником и не использует фазовые измерения.

Все это не позволяет восстановить пространственное распределение полного электронного содержания ионосферы по данным радиопросвечивания атмосферы сигналами ГЛОНАСС/GPS и приводит к снижению точности определения скорости распространения и направления прихода ионосферного возмущения.

Технической задачей изобретения является повышение чувствительности обнаружения и точность определения скорости распространения и направления прихода ионосферного возмущения, регистрируемого протяженной решеткой приемных станций спутниковых радионавигационных систем ГЛОНАСС/GPS путем восстановления пространственного распределения полного электронного содержания ионосферы по данным радиопросвечивания атмосферы сигналами ГЛОНАСС/GPS.

Поставленная задача решается тем, что способ определения скорости распространения и направления прихода ионосферного возмущения, основанный, в соответствии с ближайшим аналогом, на анализе данных о полном электронном содержании в ионосфере Земли, которые получают в результате обработки сигналов, принятых двухчастотными приемниками спутниковой радионавигационной системы ГЛОНАСС/GPS, с последующим формированием временных рядов полного электронного содержания и их фильтрацией в диапазоне периодов колебаний, соответствующих отклику ионосферы на воздействие источника ионосферного возмущения, при этом используют протяженную приемную решетку и последовательно проверяют гипотезу о значениях направления прихода и скорости распространения плоского фронта ионосферного возмущения путем формирования диаграммы направленности приемной решетки и ее сканирования в заданном секторе обзора пространства ''направление прихода - скорость распространения ионосферного возмущения '' за счет синтеза выходного сигнала приемной решетки при синфазном суммировании рядов вариаций полного электронного содержания отдельных элементов решетки с временными сдвигами, рассчитанными исходя из проверяемых значений направления прихода и скорости распространения ионосферного возмущения и расстояний, пройденных фронтом ионосферного возмущения между элементами приемной решетки в проверяемом направлении внутри сферического слоя ионосферы Земли, решение о правильности проверяемой гипотезы и обнаружении ионосферного возмущения принимается при превышении суммарным сигналом заданного порогового уровня, соответствующие значения направления прихода и фазовой скорости распространения ионосферного возмущения считаются оценочными значениями, отличается от ближайшего аналога тем, что для определения полного электронного содержания ионосферы осуществляют кодовые измерения псевдодальности и фазовые измерения совместно, учитывают групповые поправки, связанные с многолучевостью распространения сигнала и с вертикальными ионосферными и тропосферными задержками и используют дифференциальный режим спутниковых радионавигационных систем ГЛОНАСС/GPS.

Геометрия определения координат удаленного точечного источника ионосферного возмущения представлена на фиг.1. Схема радиопросвечивания атмосферы показана на фиг.2. Вариации полного электронного содержания для отдельных элементов протяженной приемной решетки, а также суммарный сигнал , полученной на выходе решетки, показана на фиг.3.

Для реализации предлагаемого способа используется спутниковая радионавигационная система ГЛОНАСС/GPS, которая состоит из трех частей: космической, наземной и пользовательского оборудования.

Космическая часть - это 24 спутника, вращающихся по 6 орбитам. Наклон орбит к земному экватору - 55 град., угол между плоскостями орбит - 60 град. Высота орбит 20180 км, период обращения 12 ч. Мощность спутникового передатчика 50 Вт. Спутники GPS способны, передвигаясь, заполнять бреши в системе если один из них вышел из строя. Важным элементом спутника являются атомные часы, рубидиевые и цезиевые, по четыре на каждом. Спутники идентифицируются номером PRN (Pseudo Random Number), который отображается на приемнике GPS.

За спутниками тщательно следят с помощью наземного сегмента управления - станции управления и слежения. В задачи последнего входит техническое обслуживание, орбитальной системы, определение системного времени, предвычисление элементов орбит спутника (эфемерид), моделирование поведения часов спутника, передача навигационных данных спутника и их загрузка в память спутников.

В качестве пользовательского оборудования используются двухчастотные приемники спутниковой радионавигационной системы ГЛОНАСС/GPS.

Все частоты в системе кратны основной частоте часов спутника, 10.23 МГц. Спутник передает на двух частотах и МГц специальный навигационный сигнал в виде бинарного фазоманипулированного сигнала. В сигнале зашифровываются два вида кода. Один из них код С/А - доступен широкому кругу потребителей. Он позволяет получать лишь приблизительную оценку местоположения, поэтому называется “грубым” кодом. Передача кода С/А осуществляется на частоте и использованием фазовой манипуляции псевдочастотной последовательностью длиной 1023 символа. Защита от ошибок обеспечивается с помощью кода Гоулда. Период повторения С/А - кода - 1 мс, тактовая частота 1.023 МГц.

Другой код - Р обеспечивает более точное вычисление координат, но пользоваться им способны не все, доступ к нему ограничивается провайдером услуг GPS. Этот код передается на частоте с применением сверхдлинной псевдослучайной последовательности с периодом повторения 267 дней. Тактовая частота - 10.23 МГц.

Радиопросвечивание атмосферы с помощью сигналов спутниковых радионавигационных систем и семи наземных станций является легкодоступным и не требующим больших затрат способом мониторинга ее параметров в реальном времени.

Просвечивание атмосферы двухчастотными радиосигналами ГЛОНАСС/GPS основано на существовании явления дисперсии радиоволн микроволнового диапазона в атмосфере Земли.

Полное микрофизическое содержание вдоль луча визирования от фазового центра антенны приемника на антенну передатчика пропорционально разности набегов фазы на двух частотах. Учитывая, что фазовая скорость равна по знаку и противоположна по величине групповой скорости, микрофизическое содержание пропорционально разности псевдодальности, определяемой из навигационных сигналов на двух частотах. Однако для фазовых измерений микрофизическое содержание может быть определено лишь с точностью до постоянной (в пределах одного сеанса) константы. Стоит отметить также, что измерения сдвига фазы на несколько порядков точнее кодовых измерений псевдодальности, поэтому для определения абсолютного микрофизического содержания целесообразно использовать кодовые и фазовые измерения совместно.

Многолучевость появляется в результате вторичных отражений сигнала спутника от крупных препятствий, расположенных в непосредственной близости от приемника. При этом возникает явление интерференции и измерить расстояние достаточно трудно, а наилучшим способом борьбы с нею считается рациональное размещение приемника относительно препятствий. В результате воздействия этого фактора ошибки определения псевдодальности могут увеличиться на 2 м.

Ионосфера - это ионизированный атмосферный слой в диапазоне высот 50-500 км, который содержит свободные электроны. Наличие этих электронов вызывает задержку распространения сигнала спутника, которая прямо пропорциональна концентрации электронов и обратно пропорциональна квадрату частоты радиосигнала.

Для вычисления ионосферной поправки используется измерение псевдодальности на Р - коде на двух частотах:

, (1)

где γ=(ƒ12)2=(1575.42/1227.6)2,

и - частоты сигналов GPS.

Dp1, Dp2 - измерение псевдодальности на Р - коде на частотах и соответственно.

Ионосферная поправка псевдодальности устраняет систематическую ошибку порядка 5 метров в определении вектора положения покоящегося наблюдателя.

Тропосфера - самый нижний слой атмосферы (до высоты 8-13 км). Она также обуславливает задержку распространения радиосигнала от спутника. Задержка сигнала в тропосфере также вызвана эффектами рефракции. В отличие от ионосферной задержки тропосферная задержка не зависит от частоты сигнала, она зависит от метеопараметров (давления, температуры, влажности), а также от высоты спутника над горизонтом. Для вычисления тропосферной поправки измерения псевдодальности используют измерения температуры, давления воздуха и парциального давления водяного пара. Эти измерения доступны в сети Internet для каждой базовой GPS станции.

Соотношение для вычисления тропосферной поправки псевдодальности наземного наблюдателя имеет вид:

, [м]; (2)

где T - температура в Ко;

Р - давление воздуха [мб];

В - парциальное давлении водяного пара [мб];

Θ- зенитный угол направления на НКА.

Тропосферные задержки вызывают ошибки измерения псевдодальности в 1 м.

Наиболее эффективным средством исключения ошибок является дифференциальный способ наблюдений. Его суть состоит в выполнении измерений двумя приемниками: один устанавливается в определяемой точке, а другой в точке с известными координатами - базовой (контрольной) станции. В дифференциальном режиме измеряют не абсолютные координаты первого приемника, а его положение относительно базового (вектор базы). Использование дифференциального режима позволяет довести точность кодовых измерений до десятков сантиметров, а фазовых - до единиц миллиметров.

Определение значения полного электронного содержания (ПЭС) ионосферы осуществляется по двухчастотным измерениям дальности между навигационным спутником и наземным приемником.

, (3)

где МГц, МГц, - частоты и длины волн навигационных сигналов:

- фазовый путь трансионосферных радиосигналов (L1,L2 - число полных оборотов фазы);

Θ - зенитный угол луча “приемник - навигационный спутник”.

Совокупность лучей “приемник - навигационный спутник” в заданном регионе образует приемную решетку, каждый i-й элемент которой в момент времени t характеризуется изменением значения ПЭС Yi(t) и положением соответствующей ионосферной точки Xi(t) Y i(t) и Z i(t). Временные ряды ПЭС отражают как регулярные изменения ПЭС в точке регистрации, так и вариации ПЭС, вызванные ионосферными возмущениями различного характера.

Для выделения характерных ионосферных возмущений ряды ПЭС подвергаются процедуре специальной фильтрации в диапазоне периодов, соответствующих масштабу возмущения.

Обнаружение и определение пространственно - временных параметров ионосферного возмущения осуществляется путем последовательной проверки гипотез о значениях направления прихода и скорости распространения ионосферного возмущения.

Для каждой пары проверяемых значений (α, v) формируется диаграмма направленности приемной решетки и соответствующим образом ориентируется в фазовом пространстве [α, v] за счет синфазного суммирования отдельных рядов приемной решетки к некоторому нейтральному ряду , выбранному в качестве опорного, с временными сдвигами и формировании выходного сигнала приемной решетки:

, (4)

где р - количество элементов приемной решетки.

Временной сдвиг определяется как разность времени tj j-ого отсчета i-го суммарного ряда ПЭС и времени to регистрации ионосферного возмущения центральным элементом приемной решетки и выбирается исходя из минимизации выражения, описывающего динамику распространения возмущения:

, (5)

где - расстояние, пройденное фронтом волны между i-м и центральным элементом приемной решетки.

Для протяженных приемных решеток расстояние рассчитывается с учетом кривизны Земли. С этой целью в заданном направлении α прихода волны ионосферного возмущения на высоте hmax задается удаленный точечный источник (обозначен точкой Е на фиг.1), который будет являться полюсом ортодромической системы координат, экватор которой (сильная жирная линия на фиг.1) проходит через центральный элемент приемной решетки (точка А на фиг. 1). Тогда фронт волны, распространяющийся от удаленного точечного источника и приходящий через i-й элемент приемной решетки (точка В на фиг. 1), будет представлять собой широтный круг (жирная прерывистая линия), параллельный экватору полученной ортодромической системы. Такая модель соответствует плоской волне ионосферного возмущения, распространяющейся на сфере Земли.

Геоцентрические координаты (Xe,Ye,Ze) удаленного источника ионосферного возмущения определяюся с использованием правил сферической тригонометрии. При этом рассматриваются сферический треугольник, вершиной А которого является центральный элемент приемной решетки с известными координатами (Xо,Yо,Zо). Вершиной С этого треугольника является северный полюс геоцентрической системы координат (О,О, R+hmax), где R - радиус Земли. Необходимо определить координаты третьей вершины Е, которая и будет являться удаленным источником. Чтобы удаленный источник Е являлся полюсом ортодромической системы координат, угловой размер стороны АЕ сферического треугольника задается равным . В полученном сферическом треугольнике известны две стороны АС и АЕ, а также угол между ними<LCAE=α, что является типовой задачей решения сферического треугольника. С использованием теоремы косинусов сторон сферического треугольника определяется третья сторона и координаты (Xe,Ye,Ze) удаленного источника Е.

Расстояние, пройденное фронтом волны между i-м и центральным элементом приемной решетки, определяется как разность расстояний АЕ и ВЕ (фиг.1) и записывается в виде:

, (6)

где (Xi,Yi,Zi) координаты i-ого элемента приемной решетки в момент времени tj.

Решение о правильности проверяемой гипотезы принимается при превышении суммарным сигналом заданного порогового уровня. При этом считается, что обнаружено ионосферное возмущение, а соответствующие значения α и V, для которых суммарный сигнал приемной решетки превысил пороговое значение, считаются оценками направления прихода и фазовой скорости распространения обнаруженного ионосферного возмущения.

Таким образом, предлагаемый способ по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение чувствительности обнаружения и более точное определение скорости распространения и направления прихода ионосферного возмущения, регистрируемого протяженной решеткой приемных станций спутниковых радионавигационных систем ГЛОНАСС/GPS. Это достигается за счет совместных кодовых измерений псевдодальности и фазовых измерений, учета групповых поправок, связанных с многолучевостью распространения сигнала и с вертикальными ионосферными и тропосферными задержками, и использования дифференциального режима, что, в свою очередь, приводит к восстановлению пространственного распределения полного электронного содержания ионосферы по данным радиопросвечивания атмосферы сигналами ГЛОНАСС/GPS.

Способ определения скорости распространения и направления прихода ионосферного возмущения, основанный на анализе данных о полном электронном содержании в ионосфере Земли, которые получают в результате обработки сигналов, принятых двухчастотными приемниками спутниковой радионавигационной системы ГЛОНАСС/GPS, с последующим формированием временных рядов полного электронного содержания и их фильтрацией в диапазоне периодов колебаний, соответствующих отклику ионосферы на воздействие источника ионосферного возмущения, при этом используют протяженную приемную антенну и последовательно проверяют гипотезу о значениях направления прихода и скорости распространения плоского фронта ионосферного возмущения путем формирования диаграммы направленности приемной решетки и ее сканирования в заданном секторе обзора пространства "направление прихода - скорость распространения ионосферного возмущения" за счет синтеза выходного сигнала приемной решетки при синфазном суммировании рядов вариаций полного электронного содержания отдельных элементов решетки с временными сдвигами, рассчитанными исходя из проверяемых значений направления ионосферного возмущения и расстояний, пройденных фронтом ионосферного возмущения между элементами приемной решетки в проверяемом направлении внутри сферического слоя ионосферы Земли, решение о правильности проверяемой гипотезы и обнаружении ионосферного возмущения принимается при превышении суммарным сигналом заданного порогового уровня, соответствующие значения направления прихода и фазовой скорости распространения ионосферного возмущения считаются оценочными значениями, отличающийся тем, что для определения полного электронного содержания ионосферы осуществляют совместно кодовые измерения путем кодирования двухчастотных сигналов, передаваемых спутниковой радионавигационной системой ГЛОНАСС/GPS и принимаемых их двухчастотными приемниками спутниковой радионавигационной системы ГЛОНАСС/GPS, и фазовые измерения, учитывают групповые поправки, связанные с многолучевостью распространения сигнала и с вертикальными ионосферными и тропосферными задержками и используют дифференциальный режим спутниковых радионавигационных систем ГЛОНАСС/GPS посредством двух приемников, один из которых имеет известные координаты.
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ И НАПРАВЛЕНИЯ ПРИХОДА ИОНОСФЕРНОГО ВОЗМУЩЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ И НАПРАВЛЕНИЯ ПРИХОДА ИОНОСФЕРНОГО ВОЗМУЩЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ И НАПРАВЛЕНИЯ ПРИХОДА ИОНОСФЕРНОГО ВОЗМУЩЕНИЯ
Источник поступления информации: Роспатент

Showing 41-50 of 130 items.
10.05.2014
№216.012.c122

Способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления

Изобретение относится к области геофизики и может быть использовано для поиска засыпанных биообъектов или их останков. Заявлен способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления. Устройство содержит сканирующий блок и приемопередатчик....
Тип: Изобретение
Номер охранного документа: 0002515191
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.c9c3

Панорамный приемник

Настоящее изобретение относится к области радиоэлектроники и может быть использовано для определения несущей частоты и вида модуляции сигналов, принимаемых в заданном диапазоне частот. Техническим результатом изобретения является повышение достоверности визуального распознавания сложных...
Тип: Изобретение
Номер охранного документа: 0002517417
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.ccb3

Запросный способ измерения радиальной скорости и местоположения спутника глобальной навигационной системы глонасс и система для его осуществления

Изобретение относится к области радиотехники, а именно к области навигационных измерений, и может быть использовано в наземном комплексе управления орбитальной группировкой навигационных космических аппаратов (НКА). Технический результат заключается в расширении функциональных возможностей и...
Тип: Изобретение
Номер охранного документа: 0002518174
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdb1

Фазовый способ пеленгации и фазовый пеленгатор для его осуществления

Предлагаемые способ и устройство относятся к области радиоэлектроники и могут быть использованы для определения координат источников излучения сложных сигналов с комбинированной фазой и частотной манипуляциями (ФМн-ЧМн), размещенных на борту летательного аппарата (самолет, вертолет, дирижабль,...
Тип: Изобретение
Номер охранного документа: 0002518428
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d096

Система идентификации автотранспорта и оповещения водителя для предотвращения аварий на железнодорожном переезде

Изобретение относится к средствам обеспечения безопасности на железнодорожных переездах. Система идентификации автотранспорта и оповещения водителя для предотвращения аварий на железнодорожном переезде содержит размещенную в районе переезда аппаратуру обнаружения и контроля за движением...
Тип: Изобретение
Номер охранного документа: 0002519169
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d97e

Система для обнаружения и определения местоположения человека, терпящего бедствие на воде

Изобретение относится к спасательным средствам. Система содержит спасательный жилет на человеке и аппаратуру, размещенную на борту вертолета. Спасательный жилет содержит источники света (1) и (2), источник (3) энергии, мембраны (8) и (9), рычаги (10), (11) с контактами (12), (13), воздушные...
Тип: Изобретение
Номер охранного документа: 0002521456
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da74

Асинхронный панорамный радиоприемник

Изобретение относится к радиоизмерительной технике. Асинхронный панорамный радиоприемник содержит последовательно соединенные антенну, входную цепь, усилитель высокой частоты, первый асинхронный детектор, первый видеоусилитель, дифференцирующую цепь и вертикально-отклоняющие пластины первого...
Тип: Изобретение
Номер охранного документа: 0002521702
Дата охранного документа: 10.07.2014
10.09.2014
№216.012.f190

Электронные шахматные часы

Изобретение относится к электронным часам и может быть использовано для контроля времени в шахматной партии между удаленными соперниками в режиме реального времени. Шахматные часы для игры с удаленным соперником содержат блок 1.1(1.2) питания, блок 2.1(2.2) формирования хронирующих импульсов,...
Тип: Изобретение
Номер охранного документа: 0002527662
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f46c

Способ синхронизации часов и устройство для его реализации

Изобретение относится к области радиотехники и может быть использовано в радиоинтерферометрии со сверхдлинными базами, а также в службе единого времени и частоты. Технический результат заключается в повышении помехоустойчивости и точности синхронизации удаленных шкал времени путем полного...
Тип: Изобретение
Номер охранного документа: 0002528405
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fa15

Способ управления движением судов

Предлагаемый способ относится к области радиолокации, в частности к области радиолокационных систем активного запроса-ответа (САЗО), и может быть использован для управления движением судов как надводных, так и воздушных в сложных метеоусловиях вплоть до полного отсутствия видимости. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002529867
Дата охранного документа: 10.10.2014
Showing 41-50 of 179 items.
10.06.2014
№216.012.cdb1

Фазовый способ пеленгации и фазовый пеленгатор для его осуществления

Предлагаемые способ и устройство относятся к области радиоэлектроники и могут быть использованы для определения координат источников излучения сложных сигналов с комбинированной фазой и частотной манипуляциями (ФМн-ЧМн), размещенных на борту летательного аппарата (самолет, вертолет, дирижабль,...
Тип: Изобретение
Номер охранного документа: 0002518428
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d096

Система идентификации автотранспорта и оповещения водителя для предотвращения аварий на железнодорожном переезде

Изобретение относится к средствам обеспечения безопасности на железнодорожных переездах. Система идентификации автотранспорта и оповещения водителя для предотвращения аварий на железнодорожном переезде содержит размещенную в районе переезда аппаратуру обнаружения и контроля за движением...
Тип: Изобретение
Номер охранного документа: 0002519169
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d97e

Система для обнаружения и определения местоположения человека, терпящего бедствие на воде

Изобретение относится к спасательным средствам. Система содержит спасательный жилет на человеке и аппаратуру, размещенную на борту вертолета. Спасательный жилет содержит источники света (1) и (2), источник (3) энергии, мембраны (8) и (9), рычаги (10), (11) с контактами (12), (13), воздушные...
Тип: Изобретение
Номер охранного документа: 0002521456
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da74

Асинхронный панорамный радиоприемник

Изобретение относится к радиоизмерительной технике. Асинхронный панорамный радиоприемник содержит последовательно соединенные антенну, входную цепь, усилитель высокой частоты, первый асинхронный детектор, первый видеоусилитель, дифференцирующую цепь и вертикально-отклоняющие пластины первого...
Тип: Изобретение
Номер охранного документа: 0002521702
Дата охранного документа: 10.07.2014
10.09.2014
№216.012.f190

Электронные шахматные часы

Изобретение относится к электронным часам и может быть использовано для контроля времени в шахматной партии между удаленными соперниками в режиме реального времени. Шахматные часы для игры с удаленным соперником содержат блок 1.1(1.2) питания, блок 2.1(2.2) формирования хронирующих импульсов,...
Тип: Изобретение
Номер охранного документа: 0002527662
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f46c

Способ синхронизации часов и устройство для его реализации

Изобретение относится к области радиотехники и может быть использовано в радиоинтерферометрии со сверхдлинными базами, а также в службе единого времени и частоты. Технический результат заключается в повышении помехоустойчивости и точности синхронизации удаленных шкал времени путем полного...
Тип: Изобретение
Номер охранного документа: 0002528405
Дата охранного документа: 20.09.2014
27.10.2014
№216.013.017d

"чёрный ящик" с сигнализацией

Изобретение относится к области авиации и может быть использовано для поиска чёрного ящика после катастрофы самолета. Чёрный ящик (2) с сигнализацией содержит блок (5) генераторов звука и электромагнитных волн, блок (6) электропитания, рычаг-переключатель (7), камеру 8 сжатого воздуха,...
Тип: Изобретение
Номер охранного документа: 0002531779
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.0387

Экологический дирижабль

Экологический дирижабль для ведения дистанционного экологического мониторинга линейно-протяженных техногенных транспортно-коммуникационных сооружений. Аппаратура, размещенная на дирижабле, содержит приемную антенну (1), приемник (2) GPS-сигналов, приборы (3) дистанционного зондирования земной...
Тип: Изобретение
Номер охранного документа: 0002532301
Дата охранного документа: 10.11.2014
20.12.2014
№216.013.1086

Способ синхронизации часов и устройство для его реализации

Изобретение относится к технике связи и может быть использовано в радиоинтерферометрии со сверхдлинными базами (PCДБ), а также в службе единого времени и частоты. Устройство для синхронизации часов, реализующее предлагаемый способ, содержит ИСЗ-ретранслятор, первый и второй наземные пункты,...
Тип: Изобретение
Номер охранного документа: 0002535653
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.1627

Способ учета электрической энергии

Изобретение относится к измерительной технике, в частности к способам учета энергии. Устройство, реализующее способ измерения энергии, содержит аналоговые полосовые фильтры напряжений и токов 50 Гц, аналоговые полосовые фильтры «пробка» 50 Гц напряжений и токов, аналого-цифровые...
Тип: Изобретение
Номер охранного документа: 0002537095
Дата охранного документа: 27.12.2014
+ добавить свой РИД