×
20.08.2015
216.013.6f67

Результат интеллектуальной деятельности: СПОСОБ ПАССИВНОЙ РАДИОЛОКАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиотехнике и может быть использовано в многопозиционных системах пассивной радиолокации для определения местоположения и скорости движения радиоизлучающих объектов. Достигаемый технический результат - обеспечение измерения скорости движения объекта при одновременном увеличении точности определения координат в моноимпульсном режиме. Указанный результат достигается за счет того, что способ включает прием радиосигналов объекта в пространственно-разнесенных пунктах приема и передачу их с периферийных на центральный пункт приема, где измеряют и компенсируют разности доплеровских частот радиосигналов периферийных и центрального пункта приема. Затем, с учетом времени распространения электромагнитных волн в пункты приема, выполняют пространственно-временную обработку преобразованных радиосигналов и определяют координаты объекта, а по измеренным разностям частот и координатам объекта вычисляют вектор его скорости. 5 ил.
Основные результаты: Способ пассивной радиолокации, включающий прием радиосигналов объекта в пространственно-разнесенных пунктах приема и передачу их с периферийных на центральный пункт приема, где выполняют пространственно-временную обработку радиосигналов и определяют координаты объекта с учетом времени распространения электромагнитных волн от него в пункты приема, отличающийся тем, что на центральном пункте приема дополнительно измеряют и компенсируют разности доплеровских частот радиосигналов периферийных и центрального пункта приема и выполняют пространственно-временную обработку преобразованных радиосигналов, а по измеренным разностям частот и ранее определенным координатам объекта вычисляют вектор его скорости.

Изобретение относится к радиотехнике и может быть использовано в многопозиционных системах пассивной радиолокации для определения местоположения и скорости движения радиоизлучающих объектов, прежде всего, непрерывных узкополосных радиоизлучений бортовых передатчиков радиосвязи и передачи данных.

Известен разностно-доплеровский способ пассивной радиолокации (Кондратьев B.C. и др. Многопозиционные радиотехнические системы / В.С. Кондратьев, А.Ф. Котов, Л.Н. Марков; Под ред. проф. В.В. Цветнова. - М.: Радио и связь, 1986, с. 252-253), включающий прием радиосигналов объекта в пространственно-разнесенных пунктах приема, ретрансляцию принятых периферийными пунктами радиосигналов на центральный пункт, измерение разности доплеровских частот и их производных для радиосигналов периферийных и центрального пунктов, определение по результатам измерений местоположения и вектора скорости движения объекта на плоскости путем решения системы четырех нелинейных уравнений.

Данному способу присущи следующие недостатки. Не обеспечивается моноимпульсная локация объекта (по результатам однократного приема), поскольку для определения производных необходимы измерения исходных разностей доплеровских частот в различающиеся моменты времени. Трудоемок процесс решения системы нелинейных уравнений.

Из известных способов наиболее близким к предлагаемому по технической сущности является разностно-дальномерный способ пассивной радиолокации (патент РФ №2285937, G01S 13/00; G01S 5/00, 2006), включающий прием радиосигналов объекта в пространственно-разнесенных пунктах приема и передачу их с периферийных на центральный пункт приема, где выполняют пространственно-временную обработку принятых радиосигналов и определяют координаты объекта с учетом времени распространения электромагнитных волн от него в пункты приема.

Условие «с учетом времени распространения электромагнитных волн» строго ограничивает класс пространственно-временной обработки, определяет ее существо и способы. Вместе с тем, в зависимости от критерия оптимальности, операции пространственно-временной обработки и определения координат могут выполняться различным образом. При основном требовании - максимум точности и помехозащищенности, целесообразен одноэтапный вариант способа-прототипа, состоящий в преобразовании принятых радиосигналов в пространственный спектр и определении положения его максимума в качестве оценки координат. При этом преобразование в пространственный спектр включает измерение и усреднение по совокупности пар пунктов приема (относительно центрального пункта) значений модуля взаимных корреляционных функций принятых радиосигналов с компенсацией расчетного запаздывания моментов прихода электромагнитных волн в пункты приема из мест возможного положения источника. Если, в первую очередь, необходима скорость обработки, предпочтительнее двухэтапная процедура (Кондратьев B.C. и др. Многопозиционные радиотехнические системы / В.С. Кондратьев, А.Ф. Котов, Л.Н. Марков; Под ред. проф. В.В. Цветнова. - М.: Радио и связь, 1986, с. 228-234), в соотвествии с которой измеряют задержки между принятыми радиосигналами, после чего прямым вычислением, для числа пунктов приема не более четырех и известной высоты подъема объекта, определяют его координаты.

Способу-прототипу присущи следующие недостатки. Область применения ограничена условием неподвижности объекта, соответственно скорость его движения не измеряется. При движении вследствие доплеровского сдвига частоты пространственно-когерентные связи электромагнитного поля в пунктах приема разрушаются. Неучет этого приводит к погрешностям определения координат, которые особенно велики при локации непрерывных узкополосных радиоизлучений бортовых передатчиков радиосвязи и передачи данных с нестационарными сигналами.

Технической задачей данного изобретения является обеспечение измерения скорости движения объекта при одновременном увеличении точности определения координат в моноимпульсном режиме.

Поставленная задача решается за счет того, что в известном способе пассивной радиолокации, включающем прием радиосигналов объекта в пространственно-разнесенных пунктах приема и передачу их с периферийных на центральный пункт приема, где выполняют пространственно-временную обработку радиосигналов и определяют координаты объекта с учетом времени распространения электромагнитных волн от него в пункты приема, новым является то, что на центральном пункте приема дополнительно измеряют и компенсируют разности доплеровских частот радиосигналов периферийных и центрального пункта приема и выполняют пространственно-временную обработку преобразованных радиосигналов, а по измеренным разностям частот и ранее определенным координатам объекта вычисляют вектор его скорости.

Решение поставленной технической задачи основывается на учете в принимаемых радиосигналах одновременно как запаздывания (способ-прототип), так и частотного доплеровского сдвига (способ-аналог) во взаимосвязи их с местоположением и вектором скорости движения объекта. Такое комплексирование снимает проблему обеспечения моноимпульсного режима локации способа-аналога и позволяет определять местоположение объекта разностно-дальномерным способом, но после компенсации доплеровских сдвигов. Компенсацией устраняются погрешности локации подвижного объекта способа-прототипа. Для определения вектора скорости результаты измерения разности доплеровских частот используют вторично, привлекая для этого полученные координаты объекта. При этом вектор скорости оказалось возможным определять аналитически, по приведенным ниже формулам, не прибегая к решению систем нелинейных уравнений способа-аналога.

Таким образом, совместный учет запаздывания и частотного доплеровского сдвига принимаемых радиосигналов в соответствии с предложенными новыми действиями, условиями и порядком их выполнения позволяет решить поставленную техническую задачу: обеспечения измерения скорости движения при одновременном увеличении точности определения координат объекта в моноимпульсном режиме.

Указанные преимущества, а также особенности настоящего изобретения поясняются вариантом его выполнения со ссылками на прилагаемые фигуры.

На фиг. 1 представлена структурная схема системы пассивной радиолокации для реализации заявленного способа;

на фиг. 2 показано положение пунктов приема и объекта на плоскости в декартовой системе координат;

на фиг. 3 - график изменения линейной ошибки определения координат в статистических экспериментах;

фиг. 4 - поле рассеяния оценок координат;

фиг. 5 - поле рассеяния оценок скорости.

Система пассивной радиолокации (фиг. 1), реализующая предложенный способ, содержит периферийные пункты приема 1.1, 1.2, каждый из которых включает антенну 2, радиоприемное устройство 3, аппаратуру передачи данных 4, выход которой является и выходом соответствующего периферийного пункта, и центральный пункт приема 5, содержащий антенну 6, аппаратуру приема данных 7.1, 7.2, радиоприемное устройство 8, выходом подключенное к первым входам измерителей разности частот 9.1, 9.2, выходы которых соединены со вторыми входами преобразователей частоты соответственно 10.1 и 10.2, к первым входам которых подключены выходы аппаратуры приема данных соответственно 7.1, 7.2, блок пространственно-временной обработки 11, первым, третьим и вторым входом соединенный соответственно с выходом преобразователей частоты 10.1, 10.2 и радиоприемного устройства 8, вычислитель скорости 12, первым, вторым и третьим входами подключенный к выходам соответственно блока пространственно-временной обработки 11 и измерителей разности частот 9.1, 9.2, и индикатор 13, первым и вторым входом соединенный с выходом вычислителя скорости 12 и блока пространственно-временной обработки 11. Выходы периферийных пунктов 1.1, 1.2 соединены с входами аппаратуры приема данных соответственно 7.1, 7.2, а антенна 6 подключена к входу радиоприемного устройства 8.

Система с тремя пунктами приема (включая центральный пункт) является минимально достаточной при локации объекта с известной высотой подъема. В случае трех неизвестных координат объекта минимальное число пунктов приема должно быть увеличено до четырех.

Антенны 2, 6 пунктов приема всенаправленные или с ориентацией их диаграмм направленности в рабочую зону, когда она ограничена некоторой областью пространства.

Разности доплеровских частот радиосигналов, принятых периферийными пунктами приема 1.1, 1.2, оценивают в измерителях 9.1, 9.2 относительно радиосигнала центрального пункта приема с выхода радиоприемного устройства 8. При этом могут быть использованы известные способы или вариант, принятый далее при моделировании, когда определяют инвариантные к запаздыванию спектры мощности радиосигналов периферийного и центрального пунктов приема, а затем взаимную корреляционную функцию спектров мощности, по положению максимума которой оценивают искомую разность частот. (Принцип аналогичен используемому при измерении задержки между сигналами, но перенесенный в частотную (спектральную) область). В преобразователях частоты 10.1, 10.2 путем соответствующего сдвига частоты измеренные разности частот компенсируют. В блоке пространственно-временной обработки 11 реализуют одноэтапный вариант обработки способа-прототипа, но применительно к радиосигналам преобразованным, после компенсации разности частот.

Локация подвижного объекта в соответствии с заявляемым способом происходит следующим образом. Радиосигналы объекта принимают в пространственно-разнесенных периферийных 1.1, 1.2 пунктах приема и центральном пункте приема 5 с помощью антенн 2, 6 и радиоприемных устройств 3, 8. Принятые периферийными пунктами 1.1, 1.2 радиосигналы передают на центральный пункт 6 с помощью аппаратуры передачи 4 и приема данных 7.1, 7.2.

При нумерации пунктов приема в последующих формулах используем следующие обозначения: n=1,…, N-1 - номер периферийного пункта приема, n=0 - номер центрального пункта приема, N - общее число пунктов приема. Введем также в рассмотрение декартову систему координат с центром в месте размещения центрального пункта приема, в которой: - комплексные координаты точки в горизонтальной плоскости касательной поверхности Земли, x - абсцисса, y - ордината, h - высота, i - мнимая единица.

Излучение радиоволн с движущегося объекта сопровождается возникновением в принимаемых радиосигналах запаздывания и частотного доплеровского сдвига

где - комплексные координаты объекта в горизонтальной плоскости, - дальность до объекта от n-го пункта приема, h0 - высота подъема объекта, - координаты пункта приема, - вектор скорости объекта, модуль которого есть линейная скорость, а фаза (курс движения) отсчитывается от оси ординат по часовой стрелке, звездочка вверху справа от величины - операция комплексного сопряжения, Re(·) - реальная часть величины, заключенной в скобки, λ - длина волны излучения.

В соответствии с формулами запаздывание (1) определяется координатами объекта, а частотный сдвиг (2) дополнительно зависит от скорости.

В измерителях разности частот 9.1, 9.2 измеряют, а в преобразователях частоты 10.1, 10.2 компенсируют разности частот радиосигналов периферийных и центрального пункта приема. После этого, с учетом запаздывания (1), в блоке пространственно-временной обработки 11 определяют координаты объекта разностно-дальномерным способом.

По результатам определения координат объекта и измерений разностей ΔFn доплеровских частот радиосигнала n-го периферийного пункта приема относительно центрального пункта в вычислителе скорости 12 рассчитывают скорость объекта по формуле

где

Re(·), Im(·) - реальная и мнимая части величины, заключенной в скобки.

Расчетная формула (3) получена на основе исходного соотношения (2) методом максимального правдоподобия с учетом коэффициента корреляции 0,5 вследствие измерений разностей доплеровских частот с общим вычитаемым (относительно общего центрального пункта приема). Эта формула не единственная пригодная для расчета, определяется критерием оптимальности, в частности, по методу наименьших квадратов весовые коэффициенты dn,n'=0 при n≠n' и следуют упрощения со снижением вычислительных затрат, но некоторым увеличением разбросов оценок скорости вследствие неучета корреляции.

Измеренные параметры объекта (местоположение, скорость движения) отражают на индикаторе 13.

Эффективность изобретения выражается в обеспечении измерения скорости движения объекта при одновременном увеличении точности определения координат в моноимпульсном режиме. Количественная оценка выполнена методом имитационного моделирования для следующих условий.

Исследовалась система пассивной радиолокации с пунктами приема, показанными на плоскости (x, y) фиг. 2 жирными точками. Удаление периферийных пунктов приема составляет 5 км. Треугольником в верхней части рисунка указано положение объекта, линия от треугольника - направление движения. Расстояние объекта от центрального пункта 10 км, высота 1000 м полагалась известной, скорость движения 200 м/с, курс 170 градусов. Имитировалось излучение связного передатчика на длине волны 0,3 м. Излучаемый сигнал узкополосный, частотно-модулированный суммой двух синусоидальных колебаний с иррациональным соотношением частот 1 и 1/π к килогерц для придания нестационарности. Девиация частоты первого колебания 12,5 КГц, второго - втрое меньше. Начальные фазы радиосигналов и модулирующих колебаний случайны в экспериментах. Длительность реализации принимаемых радиосигналов 2,56 мс. К радиосигналам, принимаемым в полосе частот приема 50 КГц, примешивался аддитивный гауссовский шум постоянной интенсивности из расчета обеспечения отношения сигнал/шум (амплитуды сигнала к среднему квадратическому значению шума) равным 20.

На фиг. 3 показаны значения линейной ошибки Δr(t) определения координат предлагаемым способом (сплошная линия с кружками) и способом-прототипом (пунктир с крестиками) в последовательности статистически независимых экспериментов с номерами t=0, 1, … , 40. Линейная ошибка определяется как модуль разности измеренных и истинных комплексных координат объекта. Видно существенное, примерно на порядок, снижение погрешности измерений с применением предлагаемого способа. Численно оно выражается следующими значениями для средней квадратичной погрешности (корень квадратный из среднего квадратов линейных ошибок) с 2847 м до 327 м. Рассеяние оценок координат предлагаемым способом показано на фиг. 4, где точками отмечены результаты определения местоположения объекта в экспериментах. Здесь центр системы координат (x', y') совмещен с истинным положением объекта. Согласно рисунку рассеяние оценок координат типичное для разностно-дальномерного способа в отсутствие движения объекта. Погрешности измерения скорости движения характеризуются полем рассеяния оценок скорости фиг. 5, представленных в координатах реальной и мнимой частей разности измеренных и истинных скоростей, соответственно по оси ординат Vy и оси абсцисс Vx. Среднее квадратическое отклонение оценок модуля скорости составило 15,2 м/с, курса 0,5 градуса, при этом в силу вытянутости области рассеяния по линии движения итоговая средняя квадратичная погрешность определения скорости составила 15,5 м/с.

Моделирующая программа разработана в системе Mathcad, имеется у авторов и патентообладателя.

Таким образом, предложенное техническое решение обеспечивает измерение скорости движения при одновременном увеличении точности определения координат объекта в моноимпульсном режиме.

Способ пассивной радиолокации, включающий прием радиосигналов объекта в пространственно-разнесенных пунктах приема и передачу их с периферийных на центральный пункт приема, где выполняют пространственно-временную обработку радиосигналов и определяют координаты объекта с учетом времени распространения электромагнитных волн от него в пункты приема, отличающийся тем, что на центральном пункте приема дополнительно измеряют и компенсируют разности доплеровских частот радиосигналов периферийных и центрального пункта приема и выполняют пространственно-временную обработку преобразованных радиосигналов, а по измеренным разностям частот и ранее определенным координатам объекта вычисляют вектор его скорости.
СПОСОБ ПАССИВНОЙ РАДИОЛОКАЦИИ
СПОСОБ ПАССИВНОЙ РАДИОЛОКАЦИИ
СПОСОБ ПАССИВНОЙ РАДИОЛОКАЦИИ
СПОСОБ ПАССИВНОЙ РАДИОЛОКАЦИИ
СПОСОБ ПАССИВНОЙ РАДИОЛОКАЦИИ
Источник поступления информации: Роспатент

Showing 501-510 of 779 items.
10.05.2018
№218.016.39de

Способ заряда литий-ионной аккумуляторной батареи

Использование: в области электротехники. Техническим результатом является повышение эффективности использования литий-ионной аккумуляторной батареи при длительной ее эксплуатации. Согласно способу при проведении заряда литий-ионной аккумуляторной батареи из n последовательно соединенных...
Тип: Изобретение
Номер охранного документа: 0002647128
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3adb

Способ контроля герметичности корпуса космического аппарата

Изобретение относится к области испытаний ракетно-космической техники и может быть использовано для контроля герметичности корпуса космического аппарата и поиска места течи из его отсеков в условиях орбитального полета или в процессе вакуумных испытаний. Сущность: создают давление воздуха...
Тип: Изобретение
Номер охранного документа: 0002647501
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3ae0

Способ территориального размещения мобильных командно-измерительных приёмопередающих станций

Изобретение относится к способу территориального размещения мобильных командно-измерительных приёмо-передающих станций (мобильных станций). Для реализации способа определяют текущее положение мобильных станций и космических аппаратов, проводящих дистанционное зондирование заданного района Земли...
Тип: Изобретение
Номер охранного документа: 0002647166
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3b7b

Способ и устройство для калибровки приемно-передающей активной фазированной антенной решетки

Изобретение относится к антенной технике и предназначено для калибровки приемно-передающих активных фазированных антенных решеток (ФАР). Способ калибровки активной ФАР, в котором для калибровки приемных каналов приемно-передающих модулей на их входы подают контрольный сигнал, на основе...
Тип: Изобретение
Номер охранного документа: 0002647514
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3be8

Регулятор давления

Регулятор давления содержит корпус с входным и выходным патрубками и расположенные внутри корпуса регулирующую пару в виде соплового вкладыша, запираемого подвижной иглой, пружину, контактирующую с шаровой опорой иглы через опорную шайбу, направляющие качения иглы и узел настройки силы пружины...
Тип: Изобретение
Номер охранного документа: 0002647814
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.476d

Устройство для определения местоположения источника электромагнитного излучения

Изобретение относится к области лазерной локации. Устройство для определения местоположения источника электромагнитного излучения содержит системы нацеливания и ослабления, регистратор, выходное устройство обработки. Система нацеливания выполнена в виде диафрагмы с отверстием D×D, с размещенным...
Тип: Изобретение
Номер охранного документа: 0002650856
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.48e7

Устройство для мытья колес военной автомобильной техники

Изобретение относится к техническим средствам мойки колес во время проведения сезонного технического обслуживания военной автомобильной техники. Устройство состоит из металлического основания с отверстиями для крепления и приваренной к нему вертикально металлической трубой. В основании трубы...
Тип: Изобретение
Номер охранного документа: 0002651307
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.490a

Клапан управления

Изобретение относится к области машиностроения. Клапан управления, содержащий корпус с входным и выходным патрубками с расходными отверстиями, соосные седло, заслонку и вал. Седло и заслонка имеют торцевые поверхности, обращенные друг к другу, торцевая поверхность заслонки контактирует с...
Тип: Изобретение
Номер охранного документа: 0002651115
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4942

Клапан расхода горячего газа

Изобретение относится к области машиностроения и направлено на создание конструкций клапанов для регулирования расхода горячего газа. Клапан расхода горячего газа состоит из корпуса, седла, заслонки, вала, подшипников и уплотнительных колец, установленных на валу, и торцового уплотнения вала....
Тип: Изобретение
Номер охранного документа: 0002651119
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.49d7

Система контроля температур топливного бака окислителя ракеты космического назначения "союз-2"

Изобретение относится к области ракетной техники, а именно к устройствам обеспечения непрерывного контроля температуры заправленного окислителя в топливном баке ракеты космического назначения (РКН) «Союз-2». Система контроля температур топливного бака окислителя снабжена системой температурных...
Тип: Изобретение
Номер охранного документа: 0002651554
Дата охранного документа: 20.04.2018
Showing 501-510 of 512 items.
11.03.2019
№219.016.da67

Способ определения местоположения радиопередатчика мобильной станцией радиоконтроля

Изобретение может быть использовано в системах радиоконтроля для определения местоположения наземных источников радиоизлучения коротковолнового и ультракоротковолнового диапазона. Местоположение радиопередатчика определяют как положение минимума, по совокупности всех точек пространства,...
Тип: Изобретение
Номер охранного документа: 0002307372
Дата охранного документа: 27.09.2007
20.03.2019
№219.016.e5d6

Способ определения структуры симплексной радиосети мобильным пеленгатором

Изобретение может быть использовано в системах радиоконтроля. Достигаемым техническим результатом является повышение точности и достоверности пеленгования. Указанный результат достигается тем, что измеряют собственные координаты мобильного пеленгатора и синхронно принимают сигналы с помощью...
Тип: Изобретение
Номер охранного документа: 0002383031
Дата охранного документа: 27.02.2010
27.04.2019
№219.017.3c4e

Способ амплитудного двухмерного пеленгования

Изобретение относится к радиотехнике и может быть использовано в наземных и авиационных радиотехнических системах для всеракурсного определения направления на источники радиоизлучений. Достигаемый технический результат – расширение области применимости на системы из четырёх антенн и сокращение...
Тип: Изобретение
Номер охранного документа: 0002686113
Дата охранного документа: 24.04.2019
27.06.2019
№219.017.98e2

Способ радиолокации

Изобретение относится к радиотехнике и может быть использовано для определения местоположения объектов по внешним радиоизлучениям, в том числе радиомаяков, радио- и телецентров. Достигаемый технический результат - расширение рабочей зоны системы, по крайней мере, в секторе 30° на излучатель и...
Тип: Изобретение
Номер охранного документа: 0002692467
Дата охранного документа: 25.06.2019
29.06.2019
№219.017.a075

Способ определения местоположения передатчика переносным пеленгатором

Изобретение относится к способу определения местоположения передатчика переносным пеленгатором. Техническим результатом является уменьшение времени и повышение точности определения местоположения передатчика, а также улучшение помехозащищенности. Для этого используют информацию о диаграммах...
Тип: Изобретение
Номер охранного документа: 0002405166
Дата охранного документа: 27.11.2010
27.07.2019
№219.017.ba13

Способ определения местоположения наземного источника радиоизлучения

Изобретение относится к области радиотехники и может быть использовано для определения местоположения наземного источника излучения по результатам его двухмерного пеленгования с борта летательного аппарата. Достигаемый технический результат – определение высоты места излучения и повышение...
Тип: Изобретение
Номер охранного документа: 0002695642
Дата охранного документа: 25.07.2019
16.08.2019
№219.017.c079

Способ определения коэффициента отражения от земной поверхности

Изобретение относится к области радиоизмерений и может быть использовано для определения коэффициента отражения от земной поверхности, в том числе с применением лётно-подъёмных средств. Способ определения коэффициента отражения от земной поверхности, включает излучение и приём узкополосного...
Тип: Изобретение
Номер охранного документа: 0002697428
Дата охранного документа: 14.08.2019
13.11.2019
№219.017.e094

Способ наведения летательного аппарата на источник излучения

Изобретение относится к области управления летательными аппаратами и может быть использовано для их гарантированного наведения на наземный источник излучения по известному лишь только пеленгу без определения координат источника. Технический результат – повышение эффективности наведения за счет...
Тип: Изобретение
Номер охранного документа: 0002705669
Дата охранного документа: 11.11.2019
21.01.2020
№220.017.f77b

Способ двухмерного пеленгования

Изобретение относится к радиотехнике и может быть использовано для двухмерного пеленгования наземных и воздушных объектов по их радиоизлучениям. Достигаемый технический результат - повышение точности определения угла места излучателя в 2-6 раз. Способ двухмерного пеленгования включает прием...
Тип: Изобретение
Номер охранного документа: 0002711341
Дата охранного документа: 16.01.2020
22.01.2020
№220.017.f876

Способ местоопределения над земной поверхностью излучателя или пеленгаторных антенн

Изобретение относится к радиотехнике, в частности к радиопеленгации, и может быть использовано для определения местоположения надземных излучающих объектов с борта летательного аппарата или позиционирования летательного аппарата по радиомаяку с известными координатами. Достигаемый технический...
Тип: Изобретение
Номер охранного документа: 0002711400
Дата охранного документа: 17.01.2020
+ добавить свой РИД