×
10.08.2015
216.013.6b82

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ РАСПЫЛЕНИЕМ РАСПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области порошковой металлургии. Струю металлического расплава диспергируют окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний. Звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин, расположенных в потоке распыляющего газа параллельно его оси и закрепленных по их ширине. Частоту звуковых колебаний определяют по заданной формуле, затем с учетом полученного ее значения, упругих свойств материала пластин и при заданной длине и ширине определяют толщину пластин из заданного уравнения. Обеспечивается повышение доли мелкодисперсной фракции в пульверизате, образующемся при распылении расплава металла. 2 ил., 1 пр.
Основные результаты: Способ получения металлических порошков распылением расплавов, включающий диспергирование струи металлического расплава окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний, отличающийся тем, что звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин, расположенных в потоке распыляющего газа параллельно его оси и закрепленных по их ширине, при этом частоту звуковых колебаний f определяют по формуле (кГц): ,где u - относительная скорость потока распыляющего газа и струи расплава металла, м/с;ρ - плотность распыляющего газа в потоке, кг/м;σ - коэффициент поверхностного натяжения расплава металла, Н/м;а с учетом полученного значения частоты звуковых колебаний f, упругих свойств материала пластин и при заданной длине и ширине определяют толщину пластин из уравнения где f - частота звуковых колебаний, кГц;Е - модуль упругости материала пластины, Па;ν - коэффициент Пуассона материала пластины;ρ - плотность материала пластины, кг/м; - длина пластины, м;b - ширина пластины, м;h - толщина пластины, м.

Изобретение относится к области порошковой металлургии, в частности к способам получения порошков алюминия, магния и их сплавов распылением расплавленных металлов газовым потоком.

Известен способ распыления расплавленных металлов, включающий диспергирование расплава металла внешним потоком газа, концентричным струе расплава [1]. Известны способы распыления расплавов металлов, обеспечивающие повышение дисперсности получаемого порошка (пульверизата) дополнительным нагревом вспомогательного газа [2], снижением давления в камере распыления [3], дополнительным рассредоточенным вводом горячего газа в зону распыления [4] или в металлопровод [5], установкой рассекателей-дестабилизаторов в зоне распыления [6].

Наиболее близким по технической сущности является способ распыления жидких металлов диспергированием струи расплава окружающим ее концентрическим потоком газа с наложенными звуковыми колебаниями [7]. Звуковые колебания с несколькими дискретными частотами генерируют кольцевой резонансной полостью, расположенной в канале для подачи распыляющего газа. Недостатком данного способа является отсутствие взаимосвязи частот генерируемых звуковых колебаний с собственной частотой колебаний струи расплава при ее взаимодействии с распыляющим газом.

Техническим результатом изобретения является повышение массовой доли высокодисперсной фракции в пульверизате, образующемся при распылении расплава металла.

Технический результат достигается тем, что разработан способ получения металлических порошков распылением расплавов, включающий диспергирование струи металлического расплава окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний, отличающийся тем, что звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин, расположенных в потоке распыляющего газа параллельно его оси и закрепленных по их ширине, при этом частоту звуковых колебаний f определяют по формуле (кГц):

где u - относительная скорость потока распыляющего газа и струи расплава металла, м/с;

ρ - плотность распыляющего газа в потоке, кг/м3;

σ - коэффициент поверхностного натяжения расплава металла, Н/м;

а с учетом полученного значения частоты звуковых колебаний f, упругих свойств материала пластин и при заданной длине и ширине определяют толщину пластин из уравнения

где f - частота звуковых колебаний, кГц;

Е - модуль упругости материала пластины, Па;

ν - коэффициент Пуассона материала пластины;

ρр - плотность материала пластины, кг/м3;

а - длина пластины, м;

b - ширина пластины, м;

h - толщина пластины, м.

Полученный положительный эффект изобретения связан со следующими факторами.

1. При движении газа вдоль пластины, закрепленной с одного края, пластина начинает вибрировать с частотой, равной частоте ее собственных колебаний. Колебания пластины, в свою очередь, передаются обтекающему ее потоку газа, что приводит к нестационарности поля скоростей в газовом потоке. Если наложенная частота колебаний газового потока совпадает с наиболее неустойчивой частотой струи жидкости, то амплитуда малых возмущений на поверхности струи быстро нарастает (явление резонанса), что приводит к отрыву мелких капель с поверхности струи и, следовательно, улучшает условия распыла.

2. Явление распыления жидкости (разрушение ее поверхности с образованием большого числа мелких капель) связано с возрастанием амплитуды и появлением неустойчивости коротких волн на поверхности жидкости при динамическом воздействии газового потока. Анализ задачи о распаде струи жидкости высокоскоростным обдувающим потоком газа показал [8], что инкремент колебаний поверхности жидкости имеет максимум при значении волнового числа

где ug - относительная скорость газа и струи у поверхности жидкости;

λmax - длина волны наиболее неустойчивых колебаний.

Из уравнения (1) следует выражение для частоты колебаний наиболее неустойчивых коротких волн:

При частоте колебаний поверхности жидкости fmax достигается максимальное значение инкремента колебаний:

где ρж - плотность жидкости.

За время t, равное , амплитуда колебаний ζ поверхности жидкости увеличивается в е раз, поскольку ζ~ехр(α·t).

При движении газа относительно поверхности жидкости в газе образуется турбулентный пограничный слой. Амплитуда волн (шероховатостей) на поверхности жидкости ζ и скорость газа в ядре потока и (равная скорости газа на выходе из сопла форсунки) связаны со скоростью газа у поверхности жидкости соотношением

где δ - характерный размер струи жидкости. Амплитуда начальных возмущений на поверхности жидкости обычно не превосходит ζ=10-2δ [8], поэтому скорость газа у поверхности жидкости ug=0.217 u. Подставляя это значение в (1), получим значение частоты колебаний, оказывающих максимальное возмущающее воздействие на струю жидкости (расплава)

3. При движении газа вдоль пластины она начинает колебаться с собственной частотой, определяемой ее размерами и физическими свойствами материала [9]:

где - цилиндрическая жесткость пластины;

Gx, Gy, Нх, Ну,Jx, Jy - коэффициенты, зависящие от условий закрепления пластины и моды колебаний.

Для продольных колебаний защемленной с одного края пластины и первой моды выражение (5) упрощается (Gx=0.597, Нх=-0.087, Gyу=0, Jx=0.471, Jy=12/π2) и имеет следующий вид:

Для практических расчетов формула (6) может быть представлена в виде

Выбором материала пластины (Е, ρр, ν) и ее геометрических размеров (a, b, h) можно добиться, чтобы частотный диапазон собственных колебаний пластины располагался в области частот, близких к частоте максимального возмущающего воздействия на поверхность струи расплава (4), тем самым обеспечивая ее эффективное разрушение (диспергирование).

4. Поток распыляющего газа имеет кольцевую форму, поэтому для равномерного распределения наложенных на поток распыляющего газа звуковых колебаний количество пластин должно быть не менее двух, при этом пластины должны быть равномерно расположены по периметру кольцевой полости и направлены параллельно оси потока распыляющего газа. При большем количестве пластин эффективность их воздействия на газовый поток и, следовательно, на струю расплава повышается.

Сущность изобретения поясняется следующими чертежами.

Фиг. 1. Схема форсунки для распыления расплавов.

Фиг. 2. Схема размещения пластин в кольцевом канале форсунки.

Пример реализации способа

На фиг. 1 показан пример реализации заявленного способа получения металлических порошков распылением расплавов. Форсунка для распыления расплавов состоит из корпуса 1, крышки 2, ниппеля с центральным каналом для подачи расплава 3, защитного стального чехла 4, трубопровода 5 для подачи горячего сжатого газа и патрубка 6 для подачи расплава. В корпусе 1 выполнена кольцевая полость 7 для подачи сжатого газа в кольцевое сопло 8, образованное выходными конусами крышки 2 и ниппеля 3. В кольцевой полости 7 установлены пластины 9, равномерно расположенные по сечению кольцевой полости (фиг. 2) и жестко закрепленные со стороны входной части 10 кольцевой полости 7 (на фиг. 2 приведен вариант выполнения форсунки с шестью пластинами). На внешней поверхности защитного стального чехла 4 выполнен кольцевой прилив 11, высота которого не менее ширины щели кольцевого сопла 8, способствующий развитию колебаний пластин за счет отклонения газового потока.

Форсунка работает следующим образом. По трубопроводу 5 через входную часть 10 кольцевой полости 7 газ поступает в пространство между пластинами 9. При движении газа вдоль пластин и обтекании кольцевого прилива 11 пластины начинают вибрировать с собственной частотой, определяемой формулой (7). Колебания пластин, в свою очередь, передаются обтекающему их потоку распыляющего газа, что способствует более эффективному диспергированию расплава.

Проведем оценку эффективности заявленного способа на примере получения порошка алюминия по технологии ООО «СУАЛ-ПМ» [10]. Для получения пульверизата используется распыление расплава алюминия горячим газом - азотом. Распыление проводится эжекционной форсункой с массовым расходом расплава алюминия 0.04 кг/с через сопло диаметром 4 мм при температуре 900°C (σ=0.84 Н/м) и массовым расходом азота 0.2 кг/с при температуре 600°C и давлении 6 МПа. Подача распыляющего газа осуществляется через кольцевое сопло с шириной щели 0.8 мм. Форсунка имеет кольцевую газовую полость с внешним и внутренним диаметрами 42 мм и 26 мм и длиной 40 мм.

Для указанных условий распыления скорость газа на выходе из сопла форсунки u=550 м/с, скорость струи расплава um=1.3 м/с, плотность распыляющего газа в потоке ρ=0.4 кг/м3. Рассчитанное по формуле (4) значение частоты, обеспечивающей максимальное воздействие на процесс диспергирования, составляет f~87 кГц.

С учетом размеров кольцевой полости для подачи распыляющего газа (фиг. 2) выбираем размеры пластин: b=12 мм, а=25 мм. В качестве материала пластин можно использовать сталь марки 1Х18Н9Т (модуль упругости E=200 ГПа, плотность ρр=7800 кг/м3, коэффициент Пуассона ν=0.3) [11].

Подставляя в формулу (7) выбранные значения размеров пластины (а, b) и характеристики материала (E=200 ГПа, ρр=7800 кг/м3, ν=0.3), получим соотношение для определения толщины пластины h, обеспечивающей необходимое значение частоты собственных колебаний f=87 кГц. Расчетное значение h=1.92 мм.

Пластины с приведенными характеристиками создают наложенные звуковые колебания на поток распыляющего газа с частотой, обеспечивающей оптимальные условия распыления струи алюминия.

Таким образом, заявляемый способ получения металлических порошков распылением расплавов увеличивает динамическое воздействие распыляющего газового потока на струю расплава за счет резонансного усиления колебаний поверхности жидкости, что обеспечивает достижение заявленного положительного эффекта - повышение массовой доли высокодисперсной фракции в пульверизате, образующемся при распылении расплава металла.

Литература

1. Федорченко И.М., Андриевский Р. А. Основы порошковой металлургии. - Киев: Изд-во АН УССР, 1963. - 420 с.

2. Пат. РФ 2022715, МПК B22F 9/08. Способ получения высокодисперсного сферического алюминиевого порошка / В.Н. Буньков, В.А. Кондырев, Л.С. Голубцов, Н.Т. Филимонов, В.А. Ковалев. - №4936976/02; заявл. 16.05.1991; опубл. 15.11.1994.

3. Пат. РФ 2026157, МПК B22F 9/08. Способ получения алюминиевого порошка / В.Н. Буньков, В.А. Кондырев, Н.Т. Филимонов, В.А. Ковалев, Л.С. Голубцов. - №4841131/02; заявл. 19.06.1990; опубл. 09.01.1995.

4. Пат. РФ 2296648, МПК B22F 9/08. Форсунка для распыления расплавленных металлов / А.В. Кукса, А.В. Мольков, А.В. Губанов. - №2005132356/02; заявл. 19.10.2005; опубл. 10.04.2007.

5. Пат. РФ 2283728, МПК B22F 9/08. Форсунка для распыления расплавленных металлов / А.В. Кукса, А.В. Мольков, М.П. Кононов, А.В. Губанов, С.В. Линьков. - №2005105853; заявл. 02.03.2005; опубл. 20.09.2006.

6. Пат. РФ 2321475, МПК B22F 9/08. Форсунка для распыления расплавленных металлов / А.В. Кукса, А.В. Мольков, А.В. Губанов, С.В. Линьков. - №2006115192/02; заявл. 02.05.2006; опубл. 10.04.2008.

7. Patent US №4640806, МПК B22F 9/08. Process for atomizing liquid metals to produce finely granular powder / Thomas Duerig, Marcel Escudier, Jakob Keller, Killwangen. - заявл. 01.10.1985; опубл. 03.02.1987.

8. Левич В.Г. Физико-химическая гидродинамика. - М.: Физматгиз, 1950. - 699 с.

9. Гонткевич B.C. Собственные колебания пластинок и оболочек. - Киев: Наукова думка, 1964. - 278 с.

10. Технологическая инструкция по производству сферического дисперсного, высокодисперсного и с присадками титана и кремния пульверизатов распылением расплавленного алюминия в отделении №2 предприятия ООО «СУАЛ-ПМ». - ТИ 48-0106-36-1-10, г. Шелехов, 2010.

11. Справочник машиностроителя в 6-ти т. Т. 1-6. Под. ред. Ачеркана Н.С. - Л.: Машгиз, 1960. - 740 с.

Способ получения металлических порошков распылением расплавов, включающий диспергирование струи металлического расплава окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний, отличающийся тем, что звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин, расположенных в потоке распыляющего газа параллельно его оси и закрепленных по их ширине, при этом частоту звуковых колебаний f определяют по формуле (кГц): ,где u - относительная скорость потока распыляющего газа и струи расплава металла, м/с;ρ - плотность распыляющего газа в потоке, кг/м;σ - коэффициент поверхностного натяжения расплава металла, Н/м;а с учетом полученного значения частоты звуковых колебаний f, упругих свойств материала пластин и при заданной длине и ширине определяют толщину пластин из уравнения где f - частота звуковых колебаний, кГц;Е - модуль упругости материала пластины, Па;ν - коэффициент Пуассона материала пластины;ρ - плотность материала пластины, кг/м; - длина пластины, м;b - ширина пластины, м;h - толщина пластины, м.
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ РАСПЫЛЕНИЕМ РАСПЛАВОВ
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ РАСПЫЛЕНИЕМ РАСПЛАВОВ
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ РАСПЫЛЕНИЕМ РАСПЛАВОВ
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ РАСПЫЛЕНИЕМ РАСПЛАВОВ
Источник поступления информации: Роспатент

Showing 11-20 of 90 items.
10.09.2013
№216.012.6846

Способ высотных испытаний крупногабаритного рдтт и установка для его осуществления

При высотных испытаниях ракетного двигателя создают разрежение за счет предварительного вакуумирования пространства вокруг двигателя, эжектирующих свойств струи продуктов сгорания в диффузоре и инжекции дополнительного газа в выхлопную магистраль. Запуск диффузора обеспечивают до момента...
Тип: Изобретение
Номер охранного документа: 0002492341
Дата охранного документа: 10.09.2013
27.09.2013
№216.012.7047

Способ определения единичного импульса твердого топлива

Изобретение относится к измерению характеристик твердых топлив для ракетных двигателей. Способ включает измерение реактивной силы продуктов газификации при сжигании образца твердого топлива, бронированного по боковой поверхности, причем измеряют реактивную силу и время полного сгорания образца...
Тип: Изобретение
Номер охранного документа: 0002494394
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.7432

Способ определения дисперсного состава капель в факеле распыла форсунки

Изобретение относится к методам исследования жидкокапельных аэрозолей и предназначено для определения дисперсных характеристик распыла форсунок в широком диапазоне размеров частиц, в том числе нанометровом. Способ основан на распылении раствора неиспаряемой примеси в исследуемой жидкости с...
Тип: Изобретение
Номер охранного документа: 0002495403
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.789d

Накладной шнуровой заряд для локализации низовых лесных и степных пожаров

Рассматривается накладной шнуровой заряд, предназначенный для локализации низовых лесных и степных пожаров. Эффективность использования энергии взрыва взрывчатых веществ достигается за счет того, что в оплетке заряда по всей ее длине выполнен разрез, ширина которого выбирается в диапазоне:...
Тип: Изобретение
Номер охранного документа: 0002496539
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a71

Ракетный двигатель твердого топлива

Ракетный двигатель твердого топлива содержит корпус с днищами, скрепленный с ним по наружной поверхности заряд твердого топлива, по крайней мере, с одним торцом, раскрепленным от элементов корпуса, и центральным сквозным или глухим каналом, снабженным компенсатором поверхности горения топлива....
Тип: Изобретение
Номер охранного документа: 0002497007
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a96

Источник направленного инфракрасного излучения

Изобретение относится к области теплоэнергетики и может быть использовано при разработке инфракрасных нагревателей направленного действия с высокими технико-экономическими свойствами для промышленных и бытовых нужд. Источник направленного инфракрасного излучения включает излучатель,...
Тип: Изобретение
Номер охранного документа: 0002497044
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7ac2

Способ определения равномерного натяжения мембраны из изотропного материала

Изобретение относится к измерительной технике и может использоваться для измерения натяжений мембранных элементов конструкций. Способ состоит в том, что мембрану защемляют двумя кольцами, расположенными по разные стороны поверхности мембраны, и прикладывают поперечную нагрузку, распределенную...
Тип: Изобретение
Номер охранного документа: 0002497088
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.8013

Рентгеновский детектор

Изобретение может найти применение для регистрации излучений в ядерной физике, в физике высоких энергий, а также при создании цифровых рентгеновских аппаратов, преимущественно маммографов. Рабочий объем детектора выполнен из пластины полуизолирующего монокристаллического полупроводникового...
Тип: Изобретение
Номер охранного документа: 0002498460
Дата охранного документа: 10.11.2013
27.12.2013
№216.012.90a9

Способ получения диэтилентриаминпентауксусной кислоты

Изобретение относится к области органической химии, а именно к способу получения диэтилентриаминпентауксусной кислоты, которая находит применение в медицине благодаря своей комплексообразующей способности. Способ заключается в синтезе диэтилентриаминпентауксусной кислоты путем взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002502726
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.910a

Способ изготовления тонкой никелид-титановой проволоки

Изобретение относится к области металлургии, а именно к производству проволоки волочением, и может быть использовано для нагрева при изготовлении тонкой и тончайшей проволоки из никелида титана. Способ нагрева проволоки перед волочением, включающий дозированный нагрев потоком инфракрасного...
Тип: Изобретение
Номер охранного документа: 0002502823
Дата охранного документа: 27.12.2013
Showing 11-20 of 135 items.
27.09.2013
№216.012.7047

Способ определения единичного импульса твердого топлива

Изобретение относится к измерению характеристик твердых топлив для ракетных двигателей. Способ включает измерение реактивной силы продуктов газификации при сжигании образца твердого топлива, бронированного по боковой поверхности, причем измеряют реактивную силу и время полного сгорания образца...
Тип: Изобретение
Номер охранного документа: 0002494394
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.7432

Способ определения дисперсного состава капель в факеле распыла форсунки

Изобретение относится к методам исследования жидкокапельных аэрозолей и предназначено для определения дисперсных характеристик распыла форсунок в широком диапазоне размеров частиц, в том числе нанометровом. Способ основан на распылении раствора неиспаряемой примеси в исследуемой жидкости с...
Тип: Изобретение
Номер охранного документа: 0002495403
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.789d

Накладной шнуровой заряд для локализации низовых лесных и степных пожаров

Рассматривается накладной шнуровой заряд, предназначенный для локализации низовых лесных и степных пожаров. Эффективность использования энергии взрыва взрывчатых веществ достигается за счет того, что в оплетке заряда по всей ее длине выполнен разрез, ширина которого выбирается в диапазоне:...
Тип: Изобретение
Номер охранного документа: 0002496539
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a71

Ракетный двигатель твердого топлива

Ракетный двигатель твердого топлива содержит корпус с днищами, скрепленный с ним по наружной поверхности заряд твердого топлива, по крайней мере, с одним торцом, раскрепленным от элементов корпуса, и центральным сквозным или глухим каналом, снабженным компенсатором поверхности горения топлива....
Тип: Изобретение
Номер охранного документа: 0002497007
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a96

Источник направленного инфракрасного излучения

Изобретение относится к области теплоэнергетики и может быть использовано при разработке инфракрасных нагревателей направленного действия с высокими технико-экономическими свойствами для промышленных и бытовых нужд. Источник направленного инфракрасного излучения включает излучатель,...
Тип: Изобретение
Номер охранного документа: 0002497044
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7ac2

Способ определения равномерного натяжения мембраны из изотропного материала

Изобретение относится к измерительной технике и может использоваться для измерения натяжений мембранных элементов конструкций. Способ состоит в том, что мембрану защемляют двумя кольцами, расположенными по разные стороны поверхности мембраны, и прикладывают поперечную нагрузку, распределенную...
Тип: Изобретение
Номер охранного документа: 0002497088
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.8013

Рентгеновский детектор

Изобретение может найти применение для регистрации излучений в ядерной физике, в физике высоких энергий, а также при создании цифровых рентгеновских аппаратов, преимущественно маммографов. Рабочий объем детектора выполнен из пластины полуизолирующего монокристаллического полупроводникового...
Тип: Изобретение
Номер охранного документа: 0002498460
Дата охранного документа: 10.11.2013
27.12.2013
№216.012.90a9

Способ получения диэтилентриаминпентауксусной кислоты

Изобретение относится к области органической химии, а именно к способу получения диэтилентриаминпентауксусной кислоты, которая находит применение в медицине благодаря своей комплексообразующей способности. Способ заключается в синтезе диэтилентриаминпентауксусной кислоты путем взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002502726
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.910a

Способ изготовления тонкой никелид-титановой проволоки

Изобретение относится к области металлургии, а именно к производству проволоки волочением, и может быть использовано для нагрева при изготовлении тонкой и тончайшей проволоки из никелида титана. Способ нагрева проволоки перед волочением, включающий дозированный нагрев потоком инфракрасного...
Тип: Изобретение
Номер охранного документа: 0002502823
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.91d3

Способ контроля внутреннего квантового выхода полупроводниковых светодиодных гетероструктур на основе gan

Изобретение относится к измерительной технике, в частности к способам тестирования параметров планарных полупроводниковых светодиодных гетероструктур (ППСГ) на основе GaN. Способ включает облучение светоизлучающей полупроводниковой гетероструктуры пучком электронов и возбуждение...
Тип: Изобретение
Номер охранного документа: 0002503024
Дата охранного документа: 27.12.2013
+ добавить свой РИД