×
10.08.2015
216.013.6b48

Результат интеллектуальной деятельности: ИМПУЛЬСНЫЙ ИОННЫЙ УСКОРИТЕЛЬ

Вид РИД

Изобретение

Аннотация: Импульсный ионный ускоритель предназначен для получения мощных пучков заряженных частиц. Ускоритель содержит генератор импульсного напряжения (1) и установленные в корпусе основной и предварительный газовые разрядники (4, 7), двойную формирующую линию, средний электрод (3) которой соединен с генератором импульсного напряжения (1) и через основной газовый разрядник (4) с корпусом ускорителя, а также вакуумный полосковый диод, потенциальный электрод (6) которого соединен через предварительный газовый разрядник (7) с внутренним электродом (5) двойной формирующей линии. В заземленном электроде основного газового разрядника (4) установлен дополнительный запускающий электрод (12), соединенный через линию задержки (10) с выходом двойной формирующей линии. Технический результат - повышение стабильности напряжения пробоя основного газового разрядника в серии импульсов. 5 ил., 1 табл.
Основные результаты: Импульсный ионный ускоритель, содержащий генератор импульсного напряжения и установленные в корпусе предварительный газовый разрядник, основной газовый разрядник, включающий заземленный и потенциальный электроды, двойную формирующую линию, средний электрод которой соединен с генератором импульсного напряжения и через основной газовый разрядник с корпусом ускорителя, а также вакуумный полосковый диод, потенциальный электрод которого соединен через предварительный газовый разрядник с внутренним электродом двойной формирующей линии, отличающийся тем, что в заземленном электроде основного газового разрядника установлен дополнительный запускающий электрод, соединенный через линию задержки с выходом двойной формирующей линии.

Изобретение относится к ускорительной технике и предназначено для получения мощных пучков заряженных частиц, которые используются для радиационно-пучкового модифицирования изделий из металлов с целью повышения их эксплуатационных характеристик.

Известен импульсный ионный ускоритель [Ремнев Г.Е., Исаков И.Ф., Опекунов М.С., Матвиенко В.М. Источники мощных ионных пучков для практического применения // Известия вузов. Физика. 1998. №4 (приложение), с.92-110]. Ускоритель содержит генератор импульсного напряжения, корпус, двойную формирующую линию (ДФЛ), зарядную индуктивность, основной и предварительный газовые разрядники, вакуумный полосковый диод, состоящий из потенциального и заземленного электродов. Для создания плотной плазмы необходимого состава на поверхности потенциального электрода диода используется явление взрывной электронной эмиссии. Недостатком известного устройства является низкая эффективность передачи энергии из ДФЛ в диод из-за потери энергии в зарядной индуктивности. В течение генерации ионного пучка часть энергии, накопленной в ДФЛ, потребляется зарядной индуктивностью. Потери энергии достигают 40%.

Наиболее близким к предлагаемому устройству является выбранный нами за прототип импульсный ионный ускоритель ТЕМП-4М [Патент РФ на ПМ №86374, опубл. 27.08.2009]. Ускоритель ТЕМП-4М содержит генератор импульсного напряжения, корпус, двойную формирующую линию, основной и предварительный газовые разрядники, вакуумный полосковый диод, состоящий из потенциального и заземленного электродов. Потенциальный графитовый электрод диода соединен через предварительный газовый разрядник с внутренним электродом ДФЛ. Средний электрод ДФЛ соединен с корпусом ускорителя через основной газовый разрядник и с генератором импульсного напряжения. Зарядная индуктивность отсутствует.

Ускоритель ТЕМП-4М работает следующим образом. Генератор импульсного напряжения (ГИН) заряжает емкость, образованную средним электродом ДФЛ и корпусом ускорителя. Емкость внутреннего электрода ДФЛ относительно среднего электрода много больше емкости внутреннего электрода ДФЛ относительно корпуса, поэтому потенциал внутреннего электрода приблизительно равен потенциалу среднего электрода. При достижении на предварительном газовом разряднике пробивного напряжения он срабатывает и происходит зарядка емкости между внутренним и средним электродами ДФЛ. Зарядка происходит через предварительный газовый разрядник и диод. При этом на диоде формируется импульс отрицательного напряжения. В течение первого импульса на поверхности графитового потенциального электрода диода образуется взрывоэмиссионная плазма. Пробивное напряжение основного разрядника выше, чем у предварительного разрядника, и его пробой происходит через паузу, контролируемую давлением газа в основном разряднике. В течение паузы происходит дополнительная зарядка емкостей среднего электрода относительно корпуса и внутреннего электрода ДФЛ. После срабатывания основного газового разрядника генерируется второй импульс напряжения положительной полярности. В течение второго импульса из взрывоэмиссионной плазмы формируется пучок-ионов, который ускоряется в диодном зазоре. При работе ускорителя без зарядной индуктивности потери передачи энергии из ДФЛ в нагрузку снизились до 30-31%.

Недостатком устройства-прототипа является низкая стабильность работы основного газового разрядника. Стандартная девиация напряжения пробоя в серии 50 импульсов составляет 5-9%. Большой коммутируемый ток, превышающий 40 кА, вызывает сильную эрозию электродов. При искровом пробое основного разрядника формируются капли расплавленного металла, которые оседают на поверхности электрода. Формируемые при этом микроострия снижают электрическую прочность разрядного промежутка и вызывают разброс напряжения пробоя в серии импульсов.

Основной технический результат предлагаемого изобретения заключается в повышении стабильности напряжения пробоя основного газового разрядника в серии импульсов. Экспериментально нами получено снижение стандартной девиации напряжения пробоя до 1-2% в серии 50 импульсов. Кроме того, выполненные исследования показали, что управляемый режим работы основного разрядника обеспечивает снижение потерь передачи энергии из ДФЛ в нагрузку до 15-16%.

Указанный технический результат достигается тем, что в импульсном ионном ускорителе, содержащем как и прототип, генератор импульсного напряжения и установленные в корпусе предварительный газовый разрядник, основной газовый разрядник, включающий заземленный и потенциальный электроды, двойную формирующую линию, средний электрод которой соединен с генератором импульсного напряжения и через основной газовый разрядник с корпусом ускорителя, а также вакуумный полосковый диод, потенциальный электрод которого соединен через предварительный газовый разрядник с внутренним электродом двойной формирующей линии, согласно предложенному решению, в заземленном электроде основного газового разрядника установлен дополнительный запускающий электрод, соединенный через линию задержки с выходом двойной формирующей линии.

Изобретение поясняется графическими материалами.

Фиг.1 - функциональная схема примера выполнения импульсного ионного ускорителя, где обозначено: 1 - генератор импульсного напряжения, 2 - корпус двойной формирующей линии, 3 - средний электрод двойной формирующей линии, 4 - основной газовый разрядник, 5 - внутренний электрод двойной формирующей линии, 6 - потенциальный электрод вакуумного полоскового диода, 7 - предварительный газовый разрядник, 8 - заземленный электрод вакуумного полоскового диода, 9 - делитель напряжения, 10 -линия задержки, 11 - резистор, 12 - запускающий электрод.

Фиг.2 - осциллограммы напряжения на выходе ДФЛ и импульса запуска, где обозначено: 13 - осциллограммы напряжения на выходе ДФЛ, 14 - осциллограммы импульса запуска основного разрядника.

Фиг.3 - статистический анализ работы ДФЛ на резистивную нагрузку, где обозначено: 15 - изменение напряжения пробоя основного разрядника, 16 - изменение напряжения пробоя предварительного разрядника в серии импульсов.

Фиг.4 - статистический анализ работы ДФЛ на диод, где обозначено: 17 - изменение напряжения пробоя основного разрядника, 18 - изменение напряжения пробоя предварительного разрядника в серии импульсов.

Фиг.5 - баланс энергии в ДФЛ, где обозначено: зависимость энергии, переданной из ДФЛ в диодный узел от энергии в ДФЛ при работе основного разрядника в управляемом (19) и неуправляемом (20) режимах.

Импульсный ионный ускоритель (фиг.1) содержит генератор импульсного напряжения 1, корпус 2, двойную формирующую линию, основной 4 и предварительный 7 газовые разрядники, вакуумный полосковый диод, состоящий из потенциального 6 и заземленного 8 электродов, линию задержки 10, делитель напряжения 9 и запускающий электрод 12, установленный в основном газовом разряднике 4.

Генератор импульсного напряжения 1, собранный по схеме Аркадьева-Маркса, содержит восемь ступеней конденсаторов ИК100-0.4 (100 кВ, 0.4 мкФ) и разрядную штангу. Собственная индуктивность ГИН~5 мкГн. Двойная формирующая линия с деионизированной водой в качестве диэлектрика имеет емкость среднего электрода 3 относительно корпуса 2 и внутреннего электрода 5 ДФЛ 14 нФ и 10 нФ соответственно. Средний электрод 3 двойной формирующей линии коммутируется на корпус 2 основным газовым разрядником 4 (зазор 11 мм, давление до 8 атм. технического азота). Внутренний электрод 5 двойной формирующей линии соединен с потенциальным электродом 6 вакуумного полоскового диода через предварительный газовый разрядник 7. Заземленный электрод 8 диода соединен с корпусом 2 только с одной стороны. Запускающий электрод 12 основного газового разрядника 4 соединен с потенциальным электродом 6 диода через делитель 9, линию задержки 10 (например, коаксиальный кабель РК 50-15 длиной 80 м) и резистор 11.

Задержку пробоя основного газового разрядника относительно времени пробоя предварительного газового разрядника регулировали изменением длины коаксиального кабеля.

Ускоритель работает следующим образом. Генератор импульсного напряжения 1 заряжает емкость между средним электродом 3 ДФЛ и корпусом 2. Емкость внутреннего электрода 5 ДФЛ относительно среднего электрода 3 много больше емкости между средним электродом 3 ДФЛ и корпусом 2, поэтому потенциал внутреннего электрода 5 ДФЛ приблизительно равен потенциалу среднего электрода 3 ДФЛ. Внутренняя формирующая линия ДФЛ практически не заряжается. При достижении на предварительном газовом разряднике 7 пробивного напряжения он срабатывает и происходит зарядка емкости между внутренним 5 и средним 3 электродами ДФЛ. Зарядка происходит через предварительный газовый разрядник 7 и диод. При этом на диоде формируется импульс отрицательного напряжения. Этот импульс через делитель 9, линию задержки 10 и резистор 11 поступает на запускающий электрод 12 основного газового разрядника 4. Пробивное напряжение основного разрядника 4 ниже напряжения на выходе ГИН, и его пробой происходит при поступлении импульса запуска на запускающий электрод 12 через паузу, контролируемую длиной коаксиального кабеля линии задержки 10. В течение паузы происходит дополнительная зарядка емкостей среднего электрода 3 относительно корпуса 2 и внутреннего электрода 5 ДФЛ. На поверхности потенциального электрода 6 диода формируется взрывоэмиссионная плазма. После пробоя основного газового разрядника 4 генерируется второй импульс напряжения положительной полярности. В течение второго импульса из взрывоэмиссионной плазмы формируется пучок ионов, который ускоряется в диодном зазоре.

Пример 1 конкретного выполнения. Ускоритель работал на резистивную нагрузку, установленную в диодной камере между потенциальным электродом и корпусом. Заземленный электрод диода отсутствовал. Ускоритель ТЕМП-4М в двухимпульсном режиме формирует сдвоенные разнополярные импульсы - первый отрицательный (300-600 нс, 150-200 кВ) и второй положительный (150 нс, 250-300 кВ). Делитель напряжения 9 обеспечивал снижение амплитуды импульса запуска основного газового разрядника 4 до 60-65 кВ. Запускающий Управляющий электрод 12 диаметром 3 мм расположен в центре заземленного электрода основного разрядника 4. При величине основного промежутка 10 мм зазор между управляющим электродом и корпусом заземленного электрода составлял 2 мм. На фиг.2 показаны осциллограммы напряжения на выходе ускорителя и импульса запуска основного разрядника.

На фиг.3 и в таблице приведены результаты исследования стабильности работы ускорителя в серии импульсов. Управляемый режим работы основного разрядника 4 обеспечивает высокую стабильность напряжения пробоя и длительности первого импульса в серии импульсов. Стандартная девиация напряжения пробоя основного разрядника снизилась с 5-9% до 1-2% в серии 50 импульсов.

Пример 2 конкретного выполнения. Ускоритель работал на ионный диод. Исследования выполнены на полосковом фокусирующем диоде размером 22 см×4,5 см, фокусное расстояние 15 см. Зазор между потенциальным 6 и заземленным 8 электродами выбирали из условия согласования импеданса диода с волновым сопротивлением двойной формирующей линии (4,9 Ом), он составлял 8 мм в начале диода (вблизи точки заземления) и 10 мм в конце диода. Потенциальный электрод 6 изготовлен из графита, заземленный электрод 8 - из нержавеющей стали с прорезями 2 см×0,5 см, прозрачность 80%. Электроды фокусирующего ионного диода имеют полуцилиндрическую конфигурацию, и геометрическая фокусировка происходит только в вертикальном сечении диода. На фиг.4 приведены данные исследования стабильности работы ускорителя в серии импульсов. Стандартная девиация напряжения пробоя основного разрядника составила 1-2% в серии 50 импульсов.

Использование выходного напряжения ДФЛ для запуска основного разрядника не снизило эффективность ее работы. Результаты исследования баланса энергии в ДФЛ при работе ускорителя на диод показаны на фиг.4. Расчет энергии, переданной из ДФЛ в диод, проводили интегрированием произведения ускоряющего напряжения на полный ток диодного узла в течение второго импульса и после импульсов. Энергию, передаваемую из ГИН в ДФЛ, рассчитывали интегрированием произведения напряжения и тока на выходе ГИН. Выполненные исследования показали, что управляемый режим работы основного разрядника обеспечивает снижение потерь энергии в ДФЛ с 30-31% до 15-16%.

Импульсный ионный ускоритель, содержащий генератор импульсного напряжения и установленные в корпусе предварительный газовый разрядник, основной газовый разрядник, включающий заземленный и потенциальный электроды, двойную формирующую линию, средний электрод которой соединен с генератором импульсного напряжения и через основной газовый разрядник с корпусом ускорителя, а также вакуумный полосковый диод, потенциальный электрод которого соединен через предварительный газовый разрядник с внутренним электродом двойной формирующей линии, отличающийся тем, что в заземленном электроде основного газового разрядника установлен дополнительный запускающий электрод, соединенный через линию задержки с выходом двойной формирующей линии.
ИМПУЛЬСНЫЙ ИОННЫЙ УСКОРИТЕЛЬ
ИМПУЛЬСНЫЙ ИОННЫЙ УСКОРИТЕЛЬ
ИМПУЛЬСНЫЙ ИОННЫЙ УСКОРИТЕЛЬ
ИМПУЛЬСНЫЙ ИОННЫЙ УСКОРИТЕЛЬ
ИМПУЛЬСНЫЙ ИОННЫЙ УСКОРИТЕЛЬ
ИМПУЛЬСНЫЙ ИОННЫЙ УСКОРИТЕЛЬ
Источник поступления информации: Роспатент

Showing 141-146 of 146 items.
27.01.2016
№216.014.c35b

Фильтр тока обратной последовательности

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для выявления токов обратной последовательности в токопроводах фаз электроустановки. Фильтр тока обратной последовательности для электроустановки с токопроводами фаз А, В, С, расположенными по...
Тип: Изобретение
Номер охранного документа: 0002574038
Дата охранного документа: 27.01.2016
20.04.2016
№216.015.342a

Сверло одностороннего резания с твердосплавным стеблем

Изобретение относится к машиностроению и может быть использовано при сверлении глубоких отверстий малых диаметров. Сверло содержит стебель из твердого сплава, соединенный посредством цапфы с хвостовиком из стали. В стебле выполнены наружный V-образный прямой канал и внутренний прямой канал...
Тип: Изобретение
Номер охранного документа: 0002581541
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3c6d

Линейный индукционный ускоритель

Изобретение относится к ускорительной технике и может быть использовано для создания пучков заряженных частиц наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему 1 в виде набора ферромагнитных сердечников, охваченных...
Тип: Изобретение
Номер охранного документа: 0002583039
Дата охранного документа: 10.05.2016
25.08.2017
№217.015.9ffc

Ионный диод с магнитной самоизоляцией

Изобретение относится к ускорительной технике и предназначено для получения мощных пучков заряженных частиц, которые используются для радиационно-пучкового модифицирования изделий из металлов с целью повышения их эксплуатационных характеристик. Ионный диод с магнитной самоизоляцией содержит...
Тип: Изобретение
Номер охранного документа: 0002606404
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b0de

Способ установления состояния предразрушения конструкционного изделия

Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции....
Тип: Изобретение
Номер охранного документа: 0002613486
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b77c

Способ получения известково-аммиачной селитры

Изобретение относится к сельскому хозяйству. Способ получения известково-аммиачной селитры включает смешение плава нитрата аммония с карбонатным сырьем в присутствии ингибирующей добавки, гранулирование и охлаждение готового продукта, причем в качестве добавки используют порошок оксида магния,...
Тип: Изобретение
Номер охранного документа: 0002614874
Дата охранного документа: 30.03.2017
Showing 191-200 of 242 items.
10.05.2015
№216.013.4891

Устройство для защиты от коротких замыканий n присоединений, отходящих от общих шин

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты присоединений подстанции от коротких замыканий. Технический результат заключается в повышении чувствительности устройства и расширении области его использования. Для этого...
Тип: Изобретение
Номер охранного документа: 0002550084
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4bde

Способ определения липоевой кислоты в биологически активных добавках методом катодной вольтамперометрии

Изобретение относится к медицине и описывает способ определения липоевой кислоты в биологически активных добавках методом катодной вольтамперометрии, включающий перевод вещества из пробы в раствор и вольтамперометрическое определение, при этом проводят катодную вольтамперометрию на...
Тип: Изобретение
Номер охранного документа: 0002550936
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c95

Времяпролетный спектрометр ионов

(57) Изобретение относится к области спектрометрии заряженных частиц и может быть использовано для измерения зарядового и массового состава ионов плазмы. Времяпролетный спектрометр содержит вакуумную камеру (1), в которой последовательно расположены труба дрейфа (2) и детектор ионов (7), на...
Тип: Изобретение
Номер охранного документа: 0002551119
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d7f

Релятивистский магнетрон

Изобретение относится к области релятивистской высокочастотной электроники и может быть использовано для генерации мощного СВЧ-излучения. Релятивистский магнетрон содержит многорезонаторный анодный блок (1), коаксиальный с ним взрывоэмиссионный катод (3), внешнюю магнитную систему (4),...
Тип: Изобретение
Номер охранного документа: 0002551353
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4e1b

Способ получения нитрида алюминия

Изобретение относится к технологии получения керамических порошков нитрида алюминия, которые могут быть использованы в электронике, электротехнике, в частности, в качестве материала подложек мощных силовых и СВЧ-полупроводниковых приборов. Нитрид алюминия получают путем сжигания...
Тип: Изобретение
Номер охранного документа: 0002551513
Дата охранного документа: 27.05.2015
27.05.2015
№216.013.4e7c

Органоминеральное вяжущее

Изобретение относится к производству строительных материалов. Технический результат - повышение прочности и водостойкости. Вяжущее, включающее жидкое стекло и интенсификатор твердения - портландцемент, содержит жидкое стекло с силикатным модулем 2,5-3,5 и плотностью 1,40-1,50 г/см и...
Тип: Изобретение
Номер охранного документа: 0002551610
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.510a

Комплекс для отбора проб газа

Изобретение относится к гидрогеохимическим исследованиям скважин и предназначено для отбора спонтанного и растворенного в воде газа, выделяемого в различных генетически разнородных слоях торфа с различных фиксированных по глубине горизонтов торфяной залежи. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002552267
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.536b

Электрокардиограф для неинвазивной регистрации микропотенциалов на электрокардиограмме в реальном масштабе времени

Изобретение относится к медицинской технике, а именно к устройствам для измерения биоэлектрических потенциалов сердца. Электрокардиограф содержит блок питания, электроды, микроконтроллер, компьютер, аналого-цифровой преобразователь, цифроаналоговый преобразователь. Электрокардиограф имеет...
Тип: Изобретение
Номер охранного документа: 0002552876
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5500

Устройство для обнаружения частичных разрядов

Изобретение относится к области измерения электрических величин и может быть использовано при диагностике возникновения дефектов электрической изоляции. Устройство для обнаружения частичных разрядов содержит высоковольтный источник питания постоянного тока, параллельно которому подключен...
Тип: Изобретение
Номер охранного документа: 0002553281
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.566c

Способ получения модифицированной нефтеполимерной смолы

Изобретение относится к технологии полимеров, а именно к способу получения нефтеполимерных смол, применяемых в качестве пленкообразующих для получения лакокрасочных материалов. Описан способ получения модифицированной нефтеполимерной смолы сополимеризацией непредельных соединений фракции жидких...
Тип: Изобретение
Номер охранного документа: 0002553654
Дата охранного документа: 20.06.2015
+ добавить свой РИД