×
10.08.2015
216.013.6a31

Результат интеллектуальной деятельности: ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к жаропрочным хромистым сталям мартенситного класса, применяемым в энергетической промышленности в качестве конструкционных материалов для производства котлов, роторов и другого оборудования тепловых электростанций нового поколения, работающих при температуре до 640°C. Сталь содержит, мас.%: углерод 0,08-0,12, кремний не более 0,13, марганец 0,4-0,6, хром 9,0-9,5, никель от более 0,1 до 0,3, вольфрам 1,2-1,7, молибден 0,5-0,8, ванадий 0,18-0,25, ниобий 0,04-0,07, азот до менее 0,005, бор 0,01-0,014, кобальт от более 3,0 до 3,5, сера не более 0,006, фосфор не более 0,01, алюминий не более 0,01, медь не более 0,03, титан до менее 0,01, железо остальное. Сталь обладает повышенным сопротивлением ползучести при температуре до 640°C. 4 табл., 1 пр.
Основные результаты: Жаропрочная сталь мартенситного класса, содержащая углерод, кремний, марганец, хром, никель, вольфрам, молибден, ванадий, ниобий, азот, бор, кобальт, серу, фосфор, алюминий, медь, титан и железо, отличающаяся тем, что она содержит компоненты при следующем соотношении, мас.%:

Жаропрочная сталь мартенситного класса

Изобретение относится к области металлургии, в частности, к жаропрочным хромистым сталям мартенситного класса, содержащим 9-12% хрома. Предлагаемая сталь может применяться в энергетической промышленности в качестве конструкционных материалов для производства котлов, роторов и другого оборудования тепловых электростанций нового поколения, работающих при температуре до 640°C.

В настоящее время для изготовления элементов тепловых электростанций в Японии и Америке используют сталь марки P92 согласно классификации ASTM A 335 - American Society for Testing and Materials (Американское общество по материалам и методам испытаний). Сталь содержит, масс. %

углерод 0,070-0,130
кремний не более 0,500
марганец 0,300-0,600
хром 8,900-9,500
никель не более 0,400
вольфрам 1,500-2,000
молибден 0,300-0,600
ванадий 0,150-0,250
ниобий 0,040-0,090
азот 0,030-0,070
бор 0,001-0,006
сера не более 0,010
фосфор не более 0,020
алюминий не более 0,040
железо остальное

Сталь Р92 обладает высоким уровнем прочности и сопротивления ползучести до температуры 620°C. В результате специальной термической обработки формируется троостомартенситная структура и выделяются частицы вторичных фаз, что объясняет повышенное сопротивление ползучести данной стали и позволяет использовать ее в качестве конструкционных материалов котлов, роторов и другого оборудования для тепловых электростанций. Дисперсионное упрочнение стали достигается за счет выделения карбидов типа M23C6 и наноразмерных карбонитридов типа (VNb)(C,N). Эта сталь сохраняет высокое сопротивление ползучести до тех пор, пока стабильна дислокационная структура мартенсита отпуска (троостомартенсита).

Недостатком стали Р92 является интенсивная коагуляция карбидов типа M23C6 и частиц фазы Лавеса при температурах выше 620°C, что способствует значительному снижению сопротивления ползучести данной стали и делает невозможным ее применение для деталей энергетических установок, работающих при суперсверхкритических параметрах пара (30 МПа, 630-650°С).

Наиболее близкой по принципу легирования и достигаемому результату к предлагаемому изобретению является жаропрочная сталь мартенситного класса, раскрытая в патенте №RU 2447184 C22C38/54. Сталь содержит, масс. %

углерод 0,080 - 0,120
кремний не более 0,100
марганец 0,050-0,100
хром 9,500-10,000
никель не более 0,200
вольфрам 1,800-2,200
молибден 0,600-0,800
ванадий 0,180-0,250
ниобий 0,040-0,070
азот не более 0,003
бор 0,008-0,010
кобальт 2,500-3,500
сера не более 0,006
фосфор не более 0,010
алюминий не более 0,010
медь не более 0,010
титан не более 0,010
железо остальное

В этой стали, по сравнению со сталью P92, увеличено содержание молибдена и бора, уменьшено содержание азота и дополнительно введены медь и титан. Благодаря повышению содержания молибдена до 0,6-0,8% происходит упрочнение твердого раствора, а также уменьшение скорости коагуляции карбидов типа M23C6, что повышает жаропрочные свойства стали. Содержание молибдена менее 0,6% не обеспечивает прочность стали при повышенных температурах, свыше 0,8% - способствует образованию дельта-феррита и фазы Лавеса. Дополнительное повышение сопротивления деформации при ползучести, а так же увеличение сопротивления коррозии под напряжением достигается за счет легирования бором в количестве 0,008-0,01%. Бор сегрегирует по границам зерен, преимущественно бывшим аустенитным, что подавляет зернограничное проскальзывание и тем самым повышает время до разрушения. При содержании бора свыше 0,01% снижается свариваемость и ковкость стали. При повышенном содержании бора (до 0,01%) целесообразно уменьшение содержания азота (0,003% и менее) с целью предотвращения образования крупных нитридов бора, которые являются причиной низкой ударной вязкости стали. Медь в количестве менее 0,01% введена для предотвращения образования дельта-феррита. Титан в количестве не более 0,01% способствует формированию и стабилизации наноразмерных карбонитридов типа MX. При содержании титана свыше 0,01% происходит образование крупных карбонитридов, что снижает сопротивление ползучести.

Недостатком данной стали является невозможность ее применения для деталей энергетических установок, работающих при температуре выше 630°С, в связи с недостаточно высокими значениями прочности и ударной вязкости, что отрицательно влияет на сопротивление ползучести стали.

Задачей предлагаемого изобретения является разработка стали, обладающей повышенным сопротивлением ползучести и работоспособной при температуре 640°C, что на 10-20°C выше, по сравнению с имеющимися аналогами.

Для решения поставленной задачи предложена жаропрочная сталь мартенситного класса, содержащая углерод, кремний, марганец, хром, никель, вольфрам, молибден, ванадий, ниобий, азот, бор, кобальт, серу, фосфор, алюминий, медь, титан и железо, причем в ней уменьшено содержание вольфрама, увеличено содержание меди, бора и марганца при следующем соотношении компонентов, масс. %: углерод 0,080-0,120; кремний не более 0,130; марганец 0,400-0,600; хром 9,000-9,500; никель от более 0,1 до 0,300; вольфрам 1,200-1,700; молибден 0,500-0,800; ванадий 0,180-0,250; ниобий 0,040-0,070; азот до менее 0,005; бор 0,010-0,014; кобальт от более 3,0 до 3,500; сера не более 0,006; фосфор не более 0,010; алюминий не более 0,010; медь не более 0,030; титан до менее 0,010; железо остальное.

В представленной стали уменьшено содержание вольфрама, увеличено содержание меди, бора и марганца, по сравнению со сталью прототипа. Благодаря повышению содержания бора происходит стабилизация карбидов типа М23С6, а также мартенситной микроструктуры за счет снижения скорости коагуляции карбидов типа М23С6, что, в свою очередь, увеличивает жаропрочность данной стали (F. Abe et al. «Suppression of Type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition). Содержание в стали Σ(W+Mo) в размере 2,0-2,4% уменьшает скорость диффузии в твердом растворе [Vaillant J. et al. «New grades for advanced coal-fired power plants-Properties and experience», Abe F. Et al. «Alloy design of creep resistant 9Cr steel using a dispersion of nanosizedcarbonitrides»] и, соответственно, подавляет переползание дислокаций, что является одним из основных способов повышения сопротивления ползучести сталей мартенситного класса с содержанием хрома 9%. Медь вносит вклад в расширение области существования аустенита, а также образует выделения, которые увеличивают прочность при повышенных температурах. Также медь играет роль дополнительных зародышей фаз, выделяемых при ползучести, благодаря чему образуется более мелкодисперсное распределение фаз, что повышает сопротивление ползучести стали. Кремний в количестве<0,15% и марганец в количестве 0,4-0,6% использованы для раскисления стали. При содержании кремния более 0,15% усиливается склонность стали к тепловой хрупкости. При введении марганца менее 0,4% - низкая раскислительная способность кремния, более 0,6% - практически не влияет на раскислительную способность, поэтому введение высокого содержания данного элемента нецелесообразно. При содержании азота менее 0,008% образования крупных нитридов бора, являющихся причиной низкой ударной вязкости, в этой стали не происходит.

Пример осуществления.

Был отлит сплав предлагаемого химического состава (табл.1). Сплав был подвергнут закалке с температуры 1060°C и отпуску при 750°C, в течение 3 часов.

Таблица 1
Химический состав предлагаемой стали
C Si Mn Cr Ni Co Mo W V Nb N B Al S Ti P Cu
0,1 0,12 0,4 9 0,24 2,8 0,57 1,5 0,2 0,05 0,007 0,012 0,01 0,006 0.002 0,008 0,027

Механические испытания на растяжение были проведены по ГОСТ 1497-84 при комнатной температуре и по ГОСТ 9651-84 при повышенных температурах (табл.2). Испытания на ударную вязкость были проведены по ГОСТ 9454-78 (табл.3). Испытания на ползучесть были проведены по ГОСТ 3248-81 (табл.4). Как видно из таблиц 2, 3, 4 механические свойства предлагаемой стали выше по сравнению с прототипом.

Таблица 2
Механические свойства стали в зависимости от температуры испытания
Температура испытания, °С Прототип Предлагаемая сталь
у0,2, MПa ув, МПa д, % у0,2, MПa ув, МПa д, %
20 540 700 15 590 810 16
450 450 540 12 430 630 12
500 400 500 13 375 590 14
550 340 455 14 370 530 17
600 365 390 20 420 455 20
650 300 320 25 345 370 23
700 215 240 33 250 270 25

В таблице 2: σ0,2 - предел текучести условный; σв - предел прочности; δ, % - относительное удлинение после разрыва.

Таблица 3
Ударная вязкость стали при температуре 20°С
Прототип Предлагаемая сталь
КСV, Дж/см2 237 248

В таблице 3: КСV - ударная вязкость

Таблица 4
Испытания на ползучесть при температуре 650°С
Приложенное напряжение, МПа Время до разрушения образца, ч
Прототип Предлагаемая сталь
140 1425 3430
160 210 1035
180 18 243

Как видно из таблиц, свойства предлагаемой стали позволяют применять ее для изготовления котлов, роторов и других элементов энергетических установок. Использование стали в теплоэнергетике позволит поднять рабочую температуру тепловых электростанций до 640°C.

Жаропрочная сталь мартенситного класса, содержащая углерод, кремний, марганец, хром, никель, вольфрам, молибден, ванадий, ниобий, азот, бор, кобальт, серу, фосфор, алюминий, медь, титан и железо, отличающаяся тем, что она содержит компоненты при следующем соотношении, мас.%:
Источник поступления информации: Роспатент

Showing 71-80 of 85 items.
25.08.2017
№217.015.af4b

Способ термомеханической обработки медных сплавов

Изобретение относится к области металлургии, а именно к технологии обработки медных сплавов, применяемых в электротехнической промышленности для изготовления деталей, работающих в условиях повышенных механических нагрузок. Способ включает нагрев медного сплава в интервале температур 850-980°С и...
Тип: Изобретение
Номер охранного документа: 0002610998
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.af60

Способ повышения прочностных свойств сварных соединений, полученных сваркой трением с перемешиванием

Изобретение может быть использовано для повышения технологических и эксплуатационных характеристик сварных конструкций и сложных деталей, изготовленных из термически упрочняемых алюминиевых сплавов, полученных сваркой трением с перемешиванием, в частности, при изготовлении различных конструкций...
Тип: Изобретение
Номер охранного документа: 0002610996
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.baf1

Высокопрочная сталь системы fe-mn-al-c, обладающая эффектом twip и trip

Изобретение относится к области металлургии, а именно к получению конструкционной высокопрочной аустенитной высокомарганцевой стали, обладающей эффектами пластичности, наведенной двойникованием (TWIP) и наведенной превращением (TRIP), используемой в строительстве для изготовления демпфирующих...
Тип: Изобретение
Номер охранного документа: 0002615738
Дата охранного документа: 10.04.2017
25.08.2017
№217.015.c062

Способ получения сварных конструкций алюминиевого сплава с высокой вязкостью разрушения

Изобретение может быть использовано для получения сварных конструкций алюминиевых сплавов методом сварки трением с перемешиванием, в частности для соединения листов из сплавов системы Al-Mg. Листовые полуфабрикаты сплава получают с использованием интенсивной пластической деформации в интервале...
Тип: Изобретение
Номер охранного документа: 0002616684
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c597

Способ деформационно-термической обработки аустенитной высокомарганцевой стали

Изобретение относится к области металлургии, а именно к деформационно-термической обработке аустенитных высокомарганцевых сталей с TWIP-эффектом, и может быть применено в автомобилестроении для производства несущих конструкций автомобиля. Для получения оптимальной комбинации прочности и...
Тип: Изобретение
Номер охранного документа: 0002618678
Дата охранного документа: 10.05.2017
25.08.2017
№217.015.c6b5

Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов систем al-cu, al-cu-mg и al-cu-mn-mg для получения изделий с повышенной прочностью и приемлемой пластичностью

Изобретение относится к области металлургии, а именно к термомеханической обработке полуфабрикатов из алюминиевых сплавов систем Al-Cu, Al-Cu-Mg и Al-Cu-Mn-Mg, и может быть использовано в авиастроении, судостроении, транспортном машиностроении и других областях промышленности для получения...
Тип: Изобретение
Номер охранного документа: 0002618593
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.cc4b

Износостойкое покрытие для режущего инструмента

Износостойкое покрытие для режущего инструмента может быть использовано в металлообработке. Покрытие представляет собой сложный нитрид титана, циркония, гафния, ванадия, ниобия и тантала (TiZrNbVHfTa)N со стабильной однофазной структурой. При этом суммарное количество элементов покрытия Ti,...
Тип: Изобретение
Номер охранного документа: 0002620521
Дата охранного документа: 26.05.2017
29.12.2017
№217.015.f419

Способ получения листов из сплава системы алюминий-магний-марганец

Изобретение относится к области металлургии, а именно к способам получения листов из алюминиевых сплавов на основе системы алюминий-магний-марганец, применяемых для изготовления ряда ответственных конструкций в судостроении, авиационной и ракетной промышленности, в вагоностроении для скоростных...
Тип: Изобретение
Номер охранного документа: 0002637444
Дата охранного документа: 04.12.2017
19.01.2018
№218.016.061e

Способ получения листов из высокомарганцевой стали

Изобретение относится к области металлургии, а именно к получению листов из высокомарганцевой стали, используемых в областях, требующих хорошей способности к холодной формовке, в частности в автомобилестроении. Для повышения пластичности на уровне 30% и прочности стали осуществляют...
Тип: Изобретение
Номер охранного документа: 0002631069
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.063b

Способ получения листов из хладостойкой высокопрочной аустенитной стали

Изобретение относится к области металлургии и может быть применено для изготовления элементов конструкций различного назначения, включая объекты инфраструктуры, транспорт и судостроение, рассчитанные для применения в условиях Крайнего Севера. Для повышения показателя ударной вязкости при...
Тип: Изобретение
Номер охранного документа: 0002631067
Дата охранного документа: 18.09.2017
Showing 71-80 of 104 items.
13.01.2017
№217.015.75bb

Способ прогнозирования риска развития iii стадии гипертонической болезни у больных гипертонической болезнью с метаболическим синдромом

Изобретение относится к области медицинской диагностики и может быть использовано как способ прогнозирования риска развития III стадии гипертонической болезни у индивидуумов русской национальности, являющихся уроженцами Центрального Черноземья РФ, больных гипертонической болезнью с...
Тип: Изобретение
Номер охранного документа: 0002598745
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.76af

Способ формирования биоактивного покрытия на поверхности эндопротезов крупных суставов

Изобретение относится к медицине. Описан способ получения покрытий на элементах эндопротезов крупных суставов человека, выполненных из титана и его сплавов, включающий помещение имплантата в ванну с раствором электролита, содержащего ионы Са и Р, подключение имплантата и вспомогательного...
Тип: Изобретение
Номер охранного документа: 0002598626
Дата охранного документа: 27.09.2016
25.08.2017
№217.015.a6a2

Хладостойкая аустенитная высокопрочная сталь

Изобретение относится к области металлургии, а именно к получению конструкционной коррозионностойкой и хладостойкой аустенитной высокопрочной стали, используемой в машиностроении, в частности, для изготовления высокопрочных конструкций, работающих в условиях пониженных климатических температур,...
Тип: Изобретение
Номер охранного документа: 0002608251
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a88f

Способ получения высокопрочного проката аустенитной нержавеющей стали с наноструктурой

Изобретение относится к области металлургии, преимущественно к обработке металлов давлением, а именно к технологии получения высокопрочного проката аустенитной нержавеющей стали с нанокристаллической структурой, который может быть использован в качестве конструкционного материала. Способ...
Тип: Изобретение
Номер охранного документа: 0002611252
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.af4b

Способ термомеханической обработки медных сплавов

Изобретение относится к области металлургии, а именно к технологии обработки медных сплавов, применяемых в электротехнической промышленности для изготовления деталей, работающих в условиях повышенных механических нагрузок. Способ включает нагрев медного сплава в интервале температур 850-980°С и...
Тип: Изобретение
Номер охранного документа: 0002610998
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.af60

Способ повышения прочностных свойств сварных соединений, полученных сваркой трением с перемешиванием

Изобретение может быть использовано для повышения технологических и эксплуатационных характеристик сварных конструкций и сложных деталей, изготовленных из термически упрочняемых алюминиевых сплавов, полученных сваркой трением с перемешиванием, в частности, при изготовлении различных конструкций...
Тип: Изобретение
Номер охранного документа: 0002610996
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.baf1

Высокопрочная сталь системы fe-mn-al-c, обладающая эффектом twip и trip

Изобретение относится к области металлургии, а именно к получению конструкционной высокопрочной аустенитной высокомарганцевой стали, обладающей эффектами пластичности, наведенной двойникованием (TWIP) и наведенной превращением (TRIP), используемой в строительстве для изготовления демпфирующих...
Тип: Изобретение
Номер охранного документа: 0002615738
Дата охранного документа: 10.04.2017
25.08.2017
№217.015.c062

Способ получения сварных конструкций алюминиевого сплава с высокой вязкостью разрушения

Изобретение может быть использовано для получения сварных конструкций алюминиевых сплавов методом сварки трением с перемешиванием, в частности для соединения листов из сплавов системы Al-Mg. Листовые полуфабрикаты сплава получают с использованием интенсивной пластической деформации в интервале...
Тип: Изобретение
Номер охранного документа: 0002616684
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c597

Способ деформационно-термической обработки аустенитной высокомарганцевой стали

Изобретение относится к области металлургии, а именно к деформационно-термической обработке аустенитных высокомарганцевых сталей с TWIP-эффектом, и может быть применено в автомобилестроении для производства несущих конструкций автомобиля. Для получения оптимальной комбинации прочности и...
Тип: Изобретение
Номер охранного документа: 0002618678
Дата охранного документа: 10.05.2017
25.08.2017
№217.015.c6b5

Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов систем al-cu, al-cu-mg и al-cu-mn-mg для получения изделий с повышенной прочностью и приемлемой пластичностью

Изобретение относится к области металлургии, а именно к термомеханической обработке полуфабрикатов из алюминиевых сплавов систем Al-Cu, Al-Cu-Mg и Al-Cu-Mn-Mg, и может быть использовано в авиастроении, судостроении, транспортном машиностроении и других областях промышленности для получения...
Тип: Изобретение
Номер охранного документа: 0002618593
Дата охранного документа: 04.05.2017
+ добавить свой РИД