×
10.08.2015
216.013.697b

Результат интеллектуальной деятельности: СКВАЖИННЫЙ ИНКЛИНОМЕТРИЧЕСКИЙ ЗОНД И СКВАЖИННАЯ ИНКЛИНОМЕТРИЧЕСКАЯ СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ ВЕРТИКАЛЬНЫХ СДВИЖЕНИЙ ГОРНЫХ ПОРОД И ЗАКЛАДОЧНОГО МАССИВА С ЕГО ИСПОЛЬЗОВАНИЕМ

Вид РИД

Изобретение

Аннотация: Предложенная группа изобретений относится к измерительной технике, в частности к технике создания скважинных инклинометрических систем, и может быть использована в горном деле для контроля деформационных процессов горных пород и закладочного массива. Техническим результатом является повышение точности измерения угла наклона субгоризонтальной скважины относительно горизонтальной плоскости и повышение точности определения местоположения зон локализации деформаций (критических зон). Предложен скважинный инклинометрический зонд, содержащий цилиндрический корпус со средствами измерения угла наклона субгоризонтальной скважины, помещенный в обсадной трубе для установки в указанной скважине с возможностью перемещения вдоль продольной ее оси. При этом средства измерения угла наклона субгоризонтальной скважины реализованы размещенными перпендикулярно друг другу измерительным датчиком угла наклона указанной скважины относительно горизонтальной плоскости, установленным в плоскости продольной оси корпуса, и датчиком контроля положения упомянутого измерительного датчика в вертикальной плоскости путем поворота зонда досылочными элементами корпуса. Указанные датчики связаны со входами блока согласования, соединенного с выходом указанного зонда. С внешней стороны корпус имеет по меньшей мере две опоры, закрепленные в нижней части корпуса на его концах, а в верхней части - по меньшей мере два подпружинивающих элемента для постоянного контакта опор в нижней части корпуса с внутренней поверхностью обсадной трубы. Предложена также система для определения вертикальных сдвижений горных пород и закладочного массива, включающая последовательно соединенные упомянутый зонд, электронный блок, выполненный на основе аналого-цифрового преобразователя с блоком питания, интерфейсную подсистему с прикладным программным обеспечением сбора и хранения информации. При этом электронный блок снабжен соединенным с аналого-цифровым преобразователем и блоком питания модулем передачи данных в цифровой форме в режиме реального времени в указанную интерфейсную подсистему, которая реализована в виде персонального компьютера с общим и прикладным программным обеспечением обработки и преобразования информации, дополнительно включающим блок предварительной обработки сигналов указанных датчиков и блок выбора режимов проведения эксперимента, соединенные со входами блока отображения текущей информации в графической форме и управления экспериментом, выход которого соединен со входом блока представления данных и хранения файлов. 2 н. и 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к измерительной технике, а именно к технике создания инклинометрических систем, и может быть использована в горном деле для контроля деформационных процессов горных пород и закладочного массива.

Известны гироскопические инклинометрические зонды (http://www.gyrodata.com/) для определения пространственного положения скважин, которые имеют большую базу измерения (от 2 до 6 м) при диаметре зонда более 42 мм и обеспечивают наибольшую точность измерений углов. Такие приборы, как правило, используются для определения пространственного положения скважин в трех плоскостях глубиной до нескольких километров. В качестве первичных измерительных датчиков в основном в них используют ферромагнитные, магниторезистивные датчики и твердотельные акселерометры, что не позволяет применять их в шахтных условиях, так как недостатком магнитных навигационных систем является сильная зависимость точности измерения от наличия вблизи магнитометров магнитных масс, например, бурильных труб, обсадных колонн и т.п. Погрешность твердотельных акселерометров зависит от уровня вибраций, что также ограничивает их использование в шахтных условиях.

Известен скважинный инклинометрический зонд компании Sisgeo (Inclinometr sistem http://www..sisgeo.com/), взятый в качестве прототипа, который включает средства измерения угла наклона субгоризонтальной скважины, помещенный в обсадной трубе для установки в указанной скважине с возможностью перемещения вдоль продольной ее оси. Сущность такого устройства заключается в том, что в качестве измерительного датчика угла наклона указанной скважины относительно горизонтальной оси обсадной трубы применен зонд спиральности, данные которого используют для коррекции данных измерений углов наклона соединенных между собой составных частей обсадных труб.

Недостатком такого устройства является необходимость проведения дополнительных измерений с помощью дополнительного оборудования - зонда спиральности, который перемещается по направляющим пазам на внутренней поверхности обсадной трубы. Наличие таких пазов на внутренней поверхности обсадной трубы, в случае деформации последней, приводит к созданию деформационных напряжений, искривлению геометрии пазов под нагрузкой, затруднению перемещения зонда, что приводит к дополнительным ошибкам измерения и, как следствие этого, недостаточной точности при измерении углов наклона контролируемой субгоризонтальной скважины и последующем определении вертикальных сдвижений горных пород и закладочного массива. Из-за недостаточной точности измерения углов наклона контролируемой субгоризонтальной скважины снижается достоверность измерений при определении вертикальных сдвижений горных пород и закладочного массива.

Известны инклинометрические системы RGS-CT и RGS-WB для непрерывной съемки (http://www.gyrodata.com/). Сущность данных систем состоит в том, что в них в качестве измерительных датчиков используют акселерометры и феррозонды, которые позволяют получать значения азимута и угла наклона скважины в любой точке ствола и их пространственную траекторию, которая строится в магнитных координатах. Недостатком этих систем является сильное влияние на их точность наличия вблизи магнитных масс: бурильных труб, обсадных колонн и др. Кроме того, в шахтных условиях для контроля сдвижений закладочного и рудного массива необходимо использовать большое количество коротких (до 100 м) субвертикальных и субгоризонтальных скважин малого (до 42 мм) и среднего (до 76 мм) диаметра. Поэтому данные инклинометрические системы, которые обладают высокой стоимостью, большими габаритами, практически невозможно использовать в шахтных условиях.

Также известна скважинная инклинометрическая система (Inclinometr sistem http://www..sisgeo.com/) для определения вертикальных сдвижений горных пород и закладочного массива, взятая в качестве прототипа, которая включает скважинный инклинометрический зонд, содержащий средства измерения угла наклона субгоризонтальной скважины, помещенный в обсадной трубе для установки в указанной скважине с возможностью перемещения вдоль продольной ее оси, и электронный блок, выполненный на основе аналого-цифрового преобразователя с блоком питания, интерфейсную подсистему с прикладным программным обеспечением сбора и хранения информации, которые последовательно соединены между собой. Сущность такой системы заключается в том, что в качестве измерительного датчика угла наклона обсадной трубы относительно горизонтальной плоскости применен зонд спиральности, данные которого используют для коррекции данных измерений углов наклона соединенных между собой составных частей обсадных труб. Зонд спиральности перемещается по направляющим пазам на внутренней поверхности обсадной трубы. Наличие таких пазов на внутренней поверхности обсадной трубы, в случае деформации последней, приводит к созданию деформационных напряжений, искривлению геометрии пазов под нагрузкой, затруднению перемещения зонда, что приводит к дополнительным ошибкам измерения и, как следствие этого, недостаточной точности при измерении углов наклона контролируемой субгоризонтальной скважины и последующем определении вертикальных сдвижений горных пород и закладочного массива.

Кроме того, для такой системы необходимо время для выхода в рабочий режим после установки в точку измерения и невозможность получения информации о характере деформационных процессов на месте контроля в режиме реального времени, так как показания с измерительного датчика и зонда спиральности в точке контроля записываются на флэш-носитель и только в камеральных условиях, после обработки информации, появляется возможность интерпретации полученных данных. Как следствие сказанного, снижается эффективность и достоверность определения вертикальных сдвижений горных пород и закладочного массива.

Решаемая техническая задача заключается в повышении эффективности работы скважинного инклинометрического зонда за счет повышения точности измерения угла наклона контролируемой субгоризонтальной скважины относительно горизонтальной плоскости и в повышении эффективности контроля процесса вертикальных сдвижений горных пород и закладочного массива за счет того, что получение информации в режиме реального времени позволяет оперативно и достоверно обеспечивать оценку проводимого эксперимента непосредственно на месте измерения и в случае обнаружения зон локализации деформаций (критических зон), обеспечить точность определения их местоположения.

Поставленная задача решается тем, что в скважинном инклинометрическом зонде, содержащем цилиндрический корпус со средствами измерения угла наклона субгоризонтальной скважины, помещенный в обсадной трубе для установки в указанной скважине с возможностью перемещения вдоль продольной ее оси, согласно техническому решению средства измерения угла наклона субгоризонтальной скважины реализованы размещенными перпендикулярно друг другу измерительным датчиком угла наклона указанной скважины относительно горизонтальной плоскости, установленным в плоскости продольной оси корпуса, и датчиком контроля положения упомянутого измерительного датчика в вертикальной плоскости путем поворота зонда досылочными элементами корпуса. Указанные датчики связаны со входами блока согласования, соединенного с выходом указанного зонда. С внешней стороны корпус имеет по меньшей мере две опоры, закрепленные в нижней части корпуса на его концах, а в верхней части - по меньшей мере два подпружинивающих элемента для постоянного контакта опор в нижней части корпуса с внутренней поверхностью обсадной трубы.

Указанная совокупность признаков позволяет повысить эффективность работы скважинного инклинометрического зонда за счет повышения точности измерения угла наклона субгоризонтальной скважины относительно горизонтальной плоскости, так как установка измерительного датчика в вертикальное положение и снятие отсчета показаний этого датчика осуществляется одновременно, что исключает возникновение дополнительных инструментальных погрешностей и тем самым повышает точность измерений вертикальных сдвижений горных пород и закладочного массива. При этом по меньшей мере две опоры, закрепленные в нижней части корпуса зонда на его концах, а в верхней части - по меньшей мере два подпружинивающих элемента в момент измерения обеспечивают постоянный контакт зонда с внутренней поверхностью обсадной трубы при подвижке корпуса зонда. Такое техническое решение обеспечивает устойчивое положение скважинного инклинометрического зонда, а значит - обеспечивает повышенную точность в течение всего процесса измерения.

Целесообразно, чтобы обсадная труба имела цилиндрическую форму. Это позволяет обеспечивать равномерную деформацию по всему контуру обсадной трубы и тем самым повышает точность измерений и, в результате, повышает эффективность работы устройства.

Целесообразно, чтобы обсадная труба имела гладкую внутреннюю поверхность по всей ее длине. Такая обсадная труба повышает проходимость зонда и тем самым повышает точность измерений и, следовательно, повышает эффективность работы устройства.

Задача достигается также тем, что в представленной скважинной инклинометрической системе для определения вертикальных сдвижений горных пород и закладочного массива, включающей последовательно соединенные скважинный инклинометрический зонд, электронный блок, выполненный на основе аналого-цифрового преобразователя с блоком питания, интерфейсную подсистему с прикладным программным обеспечением сбора и хранения информации, согласно техническому решению скважинный инклинометрический зонд в ней выполнен в соответствии с упомянутым скважинным инклинометрическим зондом по пп. 1-3 формулы, электронный блок снабжен соединенным с аналого-цифровым преобразователем и блоком питания модулем передачи данных в цифровой форме в режиме реального времени в указанную интерфейсную подсистему, которая реализована в виде персонального компьютера (ПК) с общим и прикладным программным обеспечением обработки и преобразования информации, дополнительно включающим блок предварительной обработки сигналов указанных датчиков и блок выбора режимов проведения эксперимента, соединенные со входами блока отображения текущей информации в графической форме и управления экспериментом, выход которого соединен со входом блока представления данных и хранения файлов.

Указанная совокупность признаков позволяет повысить эффективность контроля процесса вертикальных сдвижений горных пород и закладочного массива за счет повышения оперативности и достоверности оценки полученной информации непосредственно на месте измерения в режиме реального времени, на основе которой принимается решение по управлению экспериментом. Кроме того, указанная совокупность признаков позволяет повысить эффективность работы скважинной инклинометрической системы определения вертикальных сдвижений горных пород и закладочного массива за счет повышения точности измерения угла наклона субгоризонтальной скважины относительно горизонтальной плоскости скважинным инклинометрическим зондом выбранной конструкции и тем самым повышает точность измерений вертикальных сдвижений горных пород и закладочного массива, что обеспечивает достоверность их оценки.

Сущность технических решений поясняется примерами конструктивного исполнения скважинного инклинометрического зонда и скважинной инклинометрической системы для определения вертикальных сдвижений горных пород и закладочного массива и чертежами, где на фиг. 1 представлена структурная схема скважинного инклинометрического зонда и скважинной инклинометрической системы определения вертикальных сдвижений горных пород и закладочного массива; на фиг. 2 - экранная форма ведомости оперативного наблюдения и управления ходом эксперимента.

Структурная схема скважинной инклинометрической системы для определения вертикальных сдвижений горных пород и закладочного массива (далее - система) состоит (см. фиг. 1) из трех блоков: скважинного инклинометрического зонда 1 (далее - зонд 1), электронного блока 2, интерфейсной подсистемы 3, последовательно связанных между собой. Зонд 1 выполнен в виде герметичного цилиндрического корпуса (поз. не обозначен), внутри которого установлены средства измерения угла наклона субгоризонтальной скважины, которые реализованы размещенными перпендикулярно друг другу измерительным датчиком 4 угла наклона указанной скважины относительно горизонтальной плоскости, установленным в плоскости продольной оси корпуса (далее - датчик 4), и датчиком 5 контроля положения датчика 4 в вертикальной плоскости путем поворота зонда 1 досылочными элементами корпуса для установки последнего в вертикальное положение (далее - датчик 5). С внешней стороны корпус зонда 1 имеет по меньшей мере две опоры 6, закрепленные в нижней части на его концах, а в верхней части - по меньшей мере два подпружинивающих элемента 7 для постоянного контакта опор 6 в нижней части корпуса зонда 1 с внутренней поверхностью обсадной трубы 8, в которую помещен зонд 1. Датчики 4 и 5 связаны со входами блока 9 согласования, соединенного с выходом зонда 1. Выход зонда 1 связан с электронным блоком 2 сигнальным кабелем 10. Электронный блок 2 выполнен на основе аналого-цифрового преобразователя 11 (далее - АЦП 11) с блоком 12 питания и снабжен соединенным с АЦП 11 и блоком 12 питания модулем 13 передачи данных в цифровой форме в режиме реального времени (далее - модуль 13 передачи данных) и соединен с интерфейсной подсистемой 3 посредством соединительного кабеля 14. Интерфейсная подсистема 3 представляет собой автоматизированное рабочее место исследователя и реализована в виде ПК с общим и прикладным программным обеспечением обработки и преобразования информации, дополнительно включающим блок 15 предварительной обработки сигналов датчиков 4 и 5 зонда 1, блок 16 выбора режимов проведения эксперимента, блок 17 отображения текущей информации в графической форме и управления экспериментом и блок 18 представления данных и хранения файлов. При этом блок 15 предварительной обработки сигналов датчиков 4 и 5 зонда 1 и блок 16 выбора режимов проведения эксперимента соединены со входами указанного блока 17, выход которого соединен со входом блока 18 представления данных и хранения файлов.

Зонд 1 и система с его использованием работают следующим образом. Производится включение оборудования и выполняется его прогрев до стабилизации показаний датчиков 4 и 5 зонда 1, который происходит через 30 минут после подачи напряжения. Производится загрузка программного обеспечения интерфейсной подсистемы 3, задаются параметры опыта: скорость передачи данных, порт подключения, период опроса датчиков 4 и 5 зонда 1, вводится информация о наблюдаемой скважине в окне «Код скважины», устанавливается значение длины измерительного интервала, вводится поправочный коэффициент (см. фиг. 2). Непосредственно перед процессом измерения зонд 1 помещают в обсадную трубу 8 и продвигают его вдоль скважины путем наращивания досылочными элементами, прикрепленными к корпусу (на фиг. 1 не показаны), на шаг подвижки. Взаимодействие опор 6 и подпружинивающих элементов 7 с гладкой внутренней поверхностью обсадной трубы 8 обеспечивает устойчивое положение датчика 4 зонда 1 при снятии каждого очередного отсчета, что обеспечивает повышенную точность измерения. Сигналы от датчиков 4 и 5 зонда 1 через блок 9 согласования поступают в электронный блок 2. Блок 9 согласования предназначен для усиления по мощности сигналов от датчиков 4 и 5 зонда 1, так как сигнальный кабель 10 имеет длину до 100 м. Согласованные по мощности сигналы от датчиков 4 и 5 зонда 1 поступают на АЦП 11, после преобразования аналоговых сигналов по запросу от интерфейсной подсистемы 3 в соответствии с протоколом обмена через модуль 13 передачи данных, например RS-485, в цифровом виде по соединительному кабелю 14 поступают в интерфейсную подсистему 3. Далее смещают зонд 1 на шаг подвижки с помощью досылочных элементов корпуса. Перед снятием очередного отсчета, путем поворота досылочными элементами корпуса для увеличения точности измерения угла наклона субгоризонтальной скважины в горизонтальной плоскости, зонд 1 устанавливают таким образом, чтобы датчик 4 занял вертикальное положение, используя показания датчика 5. Через одинаковые измерительные интервалы автоматически снимаются и записываются в файл значения угла наклона субгоризонтальной скважины в горизонтальной плоскости в прямом (от устья к забою скважины), а затем в обратном направлениях. Наблюдения за углами наклона субгоризонтальной скважины осуществляются на экране ПК с помощью интерфейсной подсистемы 3 (см. фиг. 2). Сигналы с датчиков 4 и 5 зонда 1, преобразованные в электронном блоке 2 в цифровую форму с помощью АЦП 11 с блоком питания 12 и модуля 13 передачи данных, поступают в интерфейсную подсистему 3 посредством соединительного кабеля 14. В интерфейсной подсистеме 3 производится предварительная обработка сигналов в блоке 15, фильтрация помех, усреднение результатов для получения устойчивых и достоверных значений углов наклона с датчиков 4 и 5 зонда 1. Блок 16 выбора режимов проведения эксперимента позволяет экспериментатору в интерактивном режиме изменять параметры шага подвижки зонда 1, корректировать опорные (нулевые) положения датчиков 4 и 5 зонда 1. Блок 17 отображения текущей информации в графической форме и управления экспериментом дает возможность в интерактивном режиме ориентировать датчик 4 в вертикальной плоскости перед снятием отсчета, обеспечивать съем показаний датчика 4 в точках измерений, контролировать изменение угла наклона субгоризонтальной скважины в горизонтальной плоскости при перемещении зонда 1 вдоль ее продольной оси и наблюдать профиль скважины в абсолютных и относительных координатах. Блок 18 представления данных и хранения файлов модифицирует поток измерительной информации в файл для хранения и дальнейшей обработки в камеральных условиях.

Результатом натурного эксперимента являются файлы данных эксперимента, в которых содержится информация о скважине, дате и времени проведения эксперимента, направлении движения зонда 1, величине шага подвижки, массиве углов наклона субгоризонтальной скважины относительно горизонтальной плоскости, привязанных к номерам измерительных интервалов. Результаты измерений представляются в табличной и графической форме и выполняются, например, в программе MS Excel.

Предлагаемая система с использованием вышеупомянутого зонда позволяет в режиме реального времени:

1. С достаточной точностью для получения достоверного профиля субгоризонтальной скважины фиксировать измеряемый угол ее наклона относительно горизонтальной плоскости.

2. Вводить характеристики эксперимента.

3. Оперативно наблюдать за изменениями углов наклона и профиля субгоризонтальной скважины численно и на графике.

4. Оперативно управлять процессом эксперимента.

5. Проводить экспресс-анализ и сравнение с ранее полученными результатами инклинометрии контролируемой субгоризонтальной скважины, оперативно обнаруживать резкие изменения ее профиля и тем самым выявлять местоположение зон локализации деформаций (критических зон) горных пород и закладочного массива.


СКВАЖИННЫЙ ИНКЛИНОМЕТРИЧЕСКИЙ ЗОНД И СКВАЖИННАЯ ИНКЛИНОМЕТРИЧЕСКАЯ СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ ВЕРТИКАЛЬНЫХ СДВИЖЕНИЙ ГОРНЫХ ПОРОД И ЗАКЛАДОЧНОГО МАССИВА С ЕГО ИСПОЛЬЗОВАНИЕМ
СКВАЖИННЫЙ ИНКЛИНОМЕТРИЧЕСКИЙ ЗОНД И СКВАЖИННАЯ ИНКЛИНОМЕТРИЧЕСКАЯ СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ ВЕРТИКАЛЬНЫХ СДВИЖЕНИЙ ГОРНЫХ ПОРОД И ЗАКЛАДОЧНОГО МАССИВА С ЕГО ИСПОЛЬЗОВАНИЕМ
Источник поступления информации: Роспатент

Showing 51-60 of 80 items.
10.05.2018
№218.016.39d6

Способ исследования прочностных свойств горных пород на сжатие и устройство для его осуществления

Изобретения относятся к исследованию материалов путем определения их физических свойств и могут быть использованы для статического и динамического сжатия образцов горных пород и определения совокупности физических величин, характеризующих начальную стадию процесса их разрушения, например...
Тип: Изобретение
Номер охранного документа: 0002647189
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3bdc

Погружной пневмоударник

Изобретение относится к горному делу и строительству - к буровой технике, применяется при бурении скважин ударно-вращательным способом. Погружной пневмоударник включает корпус, ударник, имеющий головку и хвостовик, соединенные шейкой, переднюю гильзу, охватывающую головку ударника и имеющую...
Тип: Изобретение
Номер охранного документа: 0002647716
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3ee8

Способ оценки напряженного состояния горных пород

Изобретение относится к горному делу и может быть использовано для оценки напряженного состояния горных пород в породном массиве. Технический результат заключается в повышении эффективности способа оценки напряженного состояния горных пород за счет увеличения локального напряжения в горной...
Тип: Изобретение
Номер охранного документа: 0002648401
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.4143

Буровая коронка

Изобретение относится к горному делу и строительству – к буровым инструментам, предназначенным для бурения скважин ударно-вращательным способом. Технический результат заключается в повышении эксплуатационной надежности путем улучшения очистки и охлаждения забоя. Буровая коронка для...
Тип: Изобретение
Номер охранного документа: 0002649210
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4d15

Погружной пневмоударник

Изобретение относится к горному делу и строительству, а именно к буровой технике, применяется при бурении скважин ударно-вращательным способом. Погружной пневмоударник содержит инструмент, установленный в корпусе с блокировочными каналами и радиальными выхлопными окнами, в котором расположены...
Тип: Изобретение
Номер охранного документа: 0002652516
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4d29

Устройство для гидроразрыва пород в скважине

Изобретение относится к горному делу - к приборам горной геофизики, используется для определения напряжений в породном массиве путем нагнетания жидкости под давлением в герметизированный участок скважины до разрушения ее стенок. Устройство включает цилиндрический корпус (далее - корпус) с...
Тип: Изобретение
Номер охранного документа: 0002652407
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4dbd

Гидравлическая ударная машина двухстороннего действия с управляемой камерой прямого хода

Изобретение относится к гидравлическим устройствам ударного действия, применяемым в горном деле и строительстве при бурении и ударном погружении в грунт стержневых элементов, при дроблении негабаритов и т.п. Машина содержит корпус с каналами для подвода и отвода рабочей жидкости,...
Тип: Изобретение
Номер охранного документа: 0002652405
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4df9

Пневматический ударный механизм

Изобретение относится к горному делу и строительству - к буровой технике, применяется при бурении скважин ударно-вращательным способом. Пневматический ударный механизм содержит корпус, в котором расположены поршень, образующий камеры рабочего и холостого хода, переходник с центральным и...
Тип: Изобретение
Номер охранного документа: 0002652518
Дата охранного документа: 26.04.2018
09.06.2018
№218.016.5a73

Скважинный многоканальный деформометр и автоматизированная система регистрации и обработки данных для определения напряженно-деформированного состояния массива горных пород с его использованием

Изобретения относятся к измерительной технике - к технике создания автоматизированных систем контроля напряженно-деформированного состояния массива горных пород, и могут быть использованы в горном деле для контроля деформационных процессов горных пород и закладочного массива. Технический...
Тип: Изобретение
Номер охранного документа: 0002655512
Дата охранного документа: 28.05.2018
04.07.2018
№218.016.6aa1

Скважинный сейсмоисточник

Изобретение относится к вибросейсмической технике - к погружным вибраторам для виброволнового воздействия на нефтесодержащие пласты породы для повышения притока нефти к скважинам. Скважинный сейсмоисточник содержит внешний корпус с размещенным внутри дебалансным силовым устройством, на буртиках...
Тип: Изобретение
Номер охранного документа: 0002659576
Дата охранного документа: 03.07.2018
Showing 51-60 of 69 items.
13.01.2017
№217.015.65a4

Устройство для образования сферических расширений в скважинах

Изобретение относится к горному делу и может быть использовано для создания в породных массивах полостей, имеющих форму шара. Устройство для образования сферических расширений в скважинах включает корпус с узлом связи с приводом вращения корпуса вокруг его продольной оси, рабочие органы с...
Тип: Изобретение
Номер охранного документа: 0002592305
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.689a

Способ оценки напряженного состояния горных пород и устройство для его осуществления

Группа изобретений относится к горному делу и может быть использована для оценки напряженного состояния горных пород в породном массиве и различных сооружений, например плотин. Технический результат - контроль с одного места пространственного распределения напряжений, снижение трудоемкости...
Тип: Изобретение
Номер охранного документа: 0002591708
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.787e

Устройство для калибровки сейсмических датчиков

Изобретение относится к контрольно-измерительной технике и используется для калибровки сейсмических датчиков. Устройство включает неподвижное основание, на котором закреплен жесткий упор, и установленную на нем подвижную платформу, на ближней к упору стороне которой закреплен калибруемый...
Тип: Изобретение
Номер охранного документа: 0002599183
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79ca

Пневматический вращатель

Изобретение относится к машиностроению - к механизированным устройствам вращательно-ударного действия и используется в горной промышленности в качестве импульсного вращателя бурильных машин. Пневматический вращатель содержит корпус с верхней и нижней торцовыми крышками, расположенные в нем...
Тип: Изобретение
Номер охранного документа: 0002599153
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.884d

Способ взрывной отбойки руд и пород

Изобретение относится к горному делу, применяется при взрывной отбойке руд и пород скважинными зарядами взрывчатых веществ (ВВ). Способ включает бурение взрывных скважин, их заряжание зарядами ВВ и взрывание этих зарядов ВВ. До бурения взрывных скважин бурят пилотные взрывные скважины,...
Тип: Изобретение
Номер охранного документа: 0002602567
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8931

Способ щелеобразования в скважинах и шпурах и щелеобразователь для его осуществления

Изобретения относятся к горному делу, а именно к бурению горных пород, и могут быть использованы для бурения скважин или шпуров (далее - скважин) путем нарезания инициирующей щели в горном массиве для последующего проведения гидроразрыва с целью его разупрочнения или дегазации. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002602634
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9973

Компрессионно-вакуумная ударная машина (варианты)

Изобретение относится к компрессионно-вакуумной ударной машине. Ударная машина содержит корпус, ударник, образующий с корпусом камеры прямого и обратного хода, и источник рабочей среды, электрически соединенный с первым входом блока управления. С камерой обратного хода связан электроклапан,...
Тип: Изобретение
Номер охранного документа: 0002609765
Дата охранного документа: 02.02.2017
25.08.2017
№217.015.b0dc

Способ гидроразрыва прочных горных пород и комбинированное устройство для бурения и гидроразрыва прочных горных пород

Изобретения относятся к горному делу - к разупрочнению прочных горных пород методом направленного гидроразрыва, используется для управления горным давлением или дегазации. Способ включает бурение скважины, последующее нарезание инициирующей щели на ее боковой поверхности, герметизацию области...
Тип: Изобретение
Номер охранного документа: 0002613394
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b134

Способ контроля напряжённо-деформированного состояния массива горных пород

Изобретение относится к горному делу, предназначено для осуществления контроля напряженно-деформированного состояния (НДС) массива горных пород, в том числе имеющего блочную структуру, и может быть использовано для оценки и прогноза устойчивости горных выработок при производстве добычных работ....
Тип: Изобретение
Номер охранного документа: 0002613229
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.c796

Устройство для отработки откосов уступов

Изобретение относится к горной промышленности - к горным машинам с исполнительным органом ударного действия, используется для непрерывного послойного разрушения горных пород различной крепости на откосах высоких уступов при открытой разработке месторождений полезных ископаемых. Устройство...
Тип: Изобретение
Номер охранного документа: 0002618806
Дата охранного документа: 11.05.2017
+ добавить свой РИД