×
27.07.2015
216.013.670d

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НА ИЗДЕЛИЯХ ИЗ ТВЕРДЫХ СПЛАВОВ ДВУХФАЗНОГО НАНОКОМПОЗИТНОГО ПОКРЫТИЯ, СОСТОЯЩЕГО ИЗ НАНОКЛАСТЕРОВ КАРБИДА ТИТАНА, РАСПРЕДЕЛЕННЫХ В АМОРФНОЙ МАТРИЦЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения нанокомпозитных покрытий и может быть использовано при создании оптических и микроэлектронных устройств и материалов с повышенной коррозионной стойкостью и износостойкостью. Способ получения на изделиях из твердых сплавов двухфазного нанокомпозитного покрытия, состоящего из нанокластеров карбида титана, распределенных в аморфной углеводородной матрице, включает нанесение адгезионного подслоя из титана или хрома, магнетронное распыление титановой мишени в газовой смеси ацетилена и аргона при давлении 0,01-1 Па и осаждение распыленных частиц мишени и углеродсодержащих радикалов на поверхность изделия в сочетании с бомбардировкой поверхности ионами, ускоренными напряжением смещения, при этом перед нанесением адгезионного подслоя поверхность изделия подвергают очистке ионами аргона из плазмы, генерируемой электронным пучком, а в процессе нанесения покрытия газовую смесь активируют воздействием пучка электронов с энергией 100 эВ. Изобретение направлено на повышение адгезии покрытия и микротвердости получаемых изделий, а также на обеспечение высокой эффективности использования ацетилена в процессе нанесения покрытия. 1 пр., 2 ил.
Основные результаты: Способ получения на изделиях из твердых сплавов двухфазного нанокомпозитного покрытия, состоящего из нанокластеров карбида титана, распределенных в аморфной углеводородной матрице, включающий нанесение адгезионного подслоя из титана или хрома, магнетронное распыление титановой мишени в газовой смеси ацетилена и аргона при давлении 0,01-1 Па и осаждение распыленных частиц мишени и углеродсодержащих радикалов на поверхность изделий в сочетании с бомбардировкой поверхности ионами, ускоренными напряжением смещения, отличающийся тем, что перед нанесением адгезионного подслоя поверхность изделия подвергают очистке ионами аргона из плазмы, генерируемой электронным пучком, а в процессе нанесения покрытия газовую смесь активируют воздействием пучка электронов с энергией 100 эВ.

Изобретение относится к способам получения двухфазных нанокомпозитных покрытий, состоящих из нанокристаллов карбида титана, распределенных в аморфной углеводородной матрице. Такие покрытия обладают высокой твердостью, теплопроводностью, химически инертны, имеют низкий коэффициент трения и хорошо противостоят механическому износу, поэтому они находят применение в таких областях, как микроэлектроника и оптические устройства, биомедицинские продукты, коррозионно-стойкие материалы, а также в микромеханических системах.

Известен метод нанесения TiC/a-C:H покрытий, основанный на магнетронном распылении титановой мишени в C2H2+Ar газовой смеси при давлениях 0,01-1 Па и осаждении распыленных частиц мишени и углеродсодержащих радикалов на поверхность изделий в сочетании с бомбардировкой поверхности ионами, ускоренными напряжением смещения. Микротвердость таких покрытий немонотонно зависит от относительного содержания титана в покрытии. Максимальная микротвердость (30-40 ГПа) достигается при содержании Ti~40 ат.%. При этом размер кластеров TiC обычно составляет несколько нм, а толщина разделяющей кристаллиты TiC аморфной фазы - доли нм.

Поскольку при магнетронном распылении частицы мишени распыляются преимущественно в нейтральном состоянии, основным механизмом разложения ацетилена служат, главным образом, реакция перезарядки ионов аргона на атомах ацетилена с последующей диссоциативной рекомбинацией иона C2H2+ с участием медленного электрона и образованием активных радикалов, обладающих высоким коэффициентом прилипания к поверхностям. Наиболее вероятно образование радикала C2H2 [1].

Наиболее близким к предложенному является способ получения нанокомпозитного TiC/a-C:H-покрытия магнетронным распылением при давлении газовой смеси 0,3-0,4 Па, потоке аргона 45 мл/мин, потоке ацетилена до 24 мл/мин, мощности магнетронного разряда 1,5 кВт при диаметре распыляемой мишени 100 мм. Для уменьшения вероятности возникновения дуги магнетрон функционирует в импульсном режиме с частотой 1 кГц, импульсы модулированы частотой 100 кГц. Скорость нанесения покрытий составляла до 7 мкм/ч, максимальная микротвердость покрытий составляла 42 ГПа при потоке ацетилена 8 мл/мин. Для улучшения адгезии покрытия к основе перед нанесением покрытия на поверхность основы наносился тонкий подслой хрома (0,3 мкм) [2].

Технической задачей изобретения является создание способа получения двухфазного нанокомпозитного покрытия, состоящего из нанокластеров карбида титана, распределенных в аморфной углеводородной матрице, обеспечивающего высокую эффективность использования ацетилена в процессе нанесения покрытия, повышенную адгезию покрытия и высокую микротвердость получаемых покрытий.

Для решения поставленной задачи предлагается в процессе нанесения покрытия магнетронным распылением титановой мишени в C2H2+Ar газовой смеси воздействовать на газовую смесь широким электронным пучком с плотностью тока ~10-100 мА/см2 и энергией электронов, соответствующей максимуму сечения ионизации электронным ударом (~100 эВ), а также проводить ионную очистку поверхности от загрязнений в плазме, генерируемой под действием электронного пучка, перед нанесением металлического подслоя для улучшения адгезии.

Техническим результатом предложенного способа является многократное снижение величины потока ацетилена, необходимого для формирования покрытия с максимальной микротвердостью, и повышенная адгезия покрытия, обусловленная ионной очисткой поверхности изделий в плазме, генерируемой под действием электронного пучка.

Причиной снижения расхода ацетилена является его ускоренное разложение на активные радикалы под действием электронного пучка в результате интенсивной ионизации и диссоциации молекул ацетилена. Возникающие радикалы обладают высоким коэффициентом прилипания к поверхности, что приводит к увеличению скорости осаждения углерода на поверхность и позволяет многократно снизить поток ацетилена, необходимый для достижения максимальной микротвердости покрытия.

Для генерации электронного пучка предлагается использовать стабильно функционирующий в диапазоне давлений 0,01-1 Па плазменный источник электронов на основе тлеющего низковольтного разряда с холодным катодом [3] или дугового разряда с самонакаливаемым катодом [4], в котором часть анода разряда изготовлена в виде мелкоструктурной сетки, а для ускорения электронов и формирования электронного пучка с большим поперечным сечением используется слой пространственного заряда между плазмой газового разряда, положение эмитирующей поверхности которой стабилизировано мелкоструктурной сеткой, и подвижным анодом, которым является плазма, создаваемая при ионизации газовой смеси низкоэнергетичным электронным пучком.

Задача решается следующим образом: в разрядный промежуток источника электронов (фиг.1) напускают аргон, прикладывают напряжение между катодом 1 и полым анодом 2 дугового или тлеющего разряда, зажигают разряд, который создает плазменную эмитирующую поверхность в области мелкоструктурной сетки 3, являющейся частью полого анода разряда, подают между мелкоструктурной сеткой и анодом 4, расположенным внутри камеры нанесения покрытий 5, или заземленными стенками камеры нанесения покрытий напряжение 100 В, обеспечивая развитие в камере нанесения покрытий процессов ионизации газа быстрыми электронами и создание пучковой плазмы. Подают на помещенные в плазму изделия 6 напряжение смещения (300-500 В) и проводят очистку поверхности изделий ионным распылением в течение 20 мин, затем прикладывают напряжение между катодом магнетрона 7 и стенками камеры нанесения покрытий и производят нанесение на изделия хромового или титанового подслоя для улучшения адгезии покрытия. Затем в камеру нанесения покрытий подают ацетилен и проводят осаждение TiC/a-C:H покрытия при постоянной мощности магнетрона, потоке аргона, напряжении смещения и таком сочетании тока пучка и потока ацетилена, которое обеспечивает достижение максимальной микротвердости.

Пример реализации предложенного метода. В экспериментах использовалась камера нанесения покрытий диаметром 260 мм и длиной 300 мм, на боковой поверхности которой размещался плоский магнетрон с диаметром титановой мишени 70 мм, работающий в импульсном режиме (50 кГц, 10 мА, 2 А) со средней мощностью 1 кВт. На крышке камеры нанесения покрытий располагался плазменный источник электронов на основе тлеющего разряда низкого давления с площадью сетки 80 см2, аналогичный описанному в [5]. В разрядный промежуток источника электронов напускался поток аргона 40 мл/мин, который перетекал через мелкоструктурную сетку в камеру нанесения покрытий, в которой устанавливалось давление 0,15-0,2 Па. В источнике электронов зажигался разряд постоянного тока (1 А). Затем прикладывалось напряжение (100-500 В) между мелкоструктурной сеткой и анодом диаметром 6 мм и длиной 250 мм, установленным в камере нанесения покрытий, и в течение 20 мин проводилась ионная очистка поверхности изделий при напряжении смещения -500В относительно стенок камеры нанесения покрытий при плотности тока ионов 1-2 мА/см2. После завершения ионной очистки напряжение смещения снижалось до 100 В, зажигался магнетронный разряд и производилось нанесение адгезионного подслоя титана толщиной 0,1 мкм. Затем в камеру нанесения покрытий напускался ацетилен, поток которого устанавливался в пределах 1-16 мл/мин, энергия электронного пучка снижалась до 100 эВ, устанавливался ток пучка в пределах 0-1 А и производилось нанесение TiC/a-C:H покрытия толщиной 1-2 мкм в течение 1-2 ч при температуре изделий не более 200°C.

Пример реализации обработки изделий предложенным методом показан на фиг.2 в виде зависимостей микротвердости поверхности изделия из твердого сплава Т16К5 с покрытиями TiC/a-C:H толщиной 1,5-2 мкм, нанесенными при разных токах электронного пучка (1-0; 2-0,5; 3-1 А), полученные с использованием микротвердомера ПМТ-3. С увеличением тока пучка от 0 до 1 А величина потока ацетилена, при которой достигается максимальная микротвердость покрытия, снижается от 10 до 2 мл/мин. Увеличение тока пучка приводит к увеличению содержания титана в максимуме кривых от 26 до 38 ат.%, что способствует росту микротвердости от 21,5 ГПа до 26 ГПа.

Эксперимент и проведенные на его основе оценки показывают, что реализация предлагаемого способа с использованием источника электронов с самонакаливаемым катодом позволяет увеличить ток пучка более чем на порядок (до 20 А), и обрабатывать изделия с большой поверхностью. Во избежание нагрева покрытия свыше 300°C и графитизации аморфной фазы, приводящей к снижению микротвердости, такой источник должен использоваться для нанесения покрытия на большие поверхности в сочетании с более мощным магнетроном (~10 кВт). Такая установка позволит одновременно обрабатывать изделия с общей площадью в несколько тысяч кв. см.

Источники информации, принятые во внимание

1. A. Baby, C.M.O. Mahony, P.D. Maguire. Acetylene-argon plasmas measured at a biased substrate electrode for diamond-like carbon deposition: I. Mass spectrometry. Plasma Sources Sci. Technol. 20 (2011) 015003.

2. A. Czy zniewski, W. Precht. Deposition and some properties of nanocrystalline, nanocomposite and amorphous carbon-based coatings for tribological applications. Journal of Materials Processing Technology 157-158 (2004) 274-283.

3. Н.В. Гаврилов, Д.Р. Емлин, А.С. Каменецких. Высокоэффективная эмиссия плазменного катода с сеточной стабилизацией. ЖТФ, 2008, т.78, вып.10, с.59-64.

4. Н.В. Гаврилов, А.И. Меньшаков. Источник широких электронных пучков с самонакаливаемым полым катодом для плазменного азотирования нержавеющей стали. ПТЭ, 2011, №5, с.140-148.

5. Н.В. Гаврилов, А.С. Кайгородов, А.С. Мамаев. Осаждение алмазоподобных а-C:H покрытий в несамостоятельном разряде с плазменным катодом. Письма в ЖТФ. 2009. Т.35. В. 1. С. 69-75.

Способ получения на изделиях из твердых сплавов двухфазного нанокомпозитного покрытия, состоящего из нанокластеров карбида титана, распределенных в аморфной углеводородной матрице, включающий нанесение адгезионного подслоя из титана или хрома, магнетронное распыление титановой мишени в газовой смеси ацетилена и аргона при давлении 0,01-1 Па и осаждение распыленных частиц мишени и углеродсодержащих радикалов на поверхность изделий в сочетании с бомбардировкой поверхности ионами, ускоренными напряжением смещения, отличающийся тем, что перед нанесением адгезионного подслоя поверхность изделия подвергают очистке ионами аргона из плазмы, генерируемой электронным пучком, а в процессе нанесения покрытия газовую смесь активируют воздействием пучка электронов с энергией 100 эВ.
СПОСОБ ПОЛУЧЕНИЯ НА ИЗДЕЛИЯХ ИЗ ТВЕРДЫХ СПЛАВОВ ДВУХФАЗНОГО НАНОКОМПОЗИТНОГО ПОКРЫТИЯ, СОСТОЯЩЕГО ИЗ НАНОКЛАСТЕРОВ КАРБИДА ТИТАНА, РАСПРЕДЕЛЕННЫХ В АМОРФНОЙ МАТРИЦЕ
СПОСОБ ПОЛУЧЕНИЯ НА ИЗДЕЛИЯХ ИЗ ТВЕРДЫХ СПЛАВОВ ДВУХФАЗНОГО НАНОКОМПОЗИТНОГО ПОКРЫТИЯ, СОСТОЯЩЕГО ИЗ НАНОКЛАСТЕРОВ КАРБИДА ТИТАНА, РАСПРЕДЕЛЕННЫХ В АМОРФНОЙ МАТРИЦЕ
Источник поступления информации: Роспатент

Showing 21-30 of 31 items.
17.02.2018
№218.016.2bd0

Способ получения нанопорошка соединений и смесевых составов и устройство для его реализации

Изобретение относится к области получения порошковых материалов, в том числе к способам и устройствам для получения нанопорошков, их точных смесевых составов и соединений. Способ получения нанопорошка соединений и смесевых составов импульсно-периодическим лазерным излучением включает испарение...
Тип: Изобретение
Номер охранного документа: 0002643287
Дата охранного документа: 31.01.2018
18.05.2018
№218.016.50e1

Способ нанесения покрытия из аморфного оксида алюминия реактивным испарением алюминия в разряде низкого давления

Изобретение относится к области нанесения покрытий из аморфного оксида алюминия на изделия из металла и диэлектриков и может быть использовано в различных областях науки и техники. Способ нанесения покрытия из аморфного оксида алюминия реактивным испарением алюминия осуществляют следующим...
Тип: Изобретение
Номер охранного документа: 0002653399
Дата охранного документа: 08.05.2018
29.05.2018
№218.016.56b9

Способ поверхностной дезинфекции яйца

Изобретение относится к области пищевой промышленности, а именно к способам дезинфекции пищевых продуктов. Способ поверхностной дезинфекции яйца путем облучения пучком ускоренных электронов предусматривает облучение яйца в герметичной пластиковой упаковке за счет подбора энергии электронов. При...
Тип: Изобретение
Номер охранного документа: 0002654622
Дата охранного документа: 21.05.2018
09.06.2018
№218.016.5bf6

Батарея трубчатых твердооксидных элементов с тонкослойным электролитом электрохимического устройства и узел соединения трубчатых твердооксидных элементов в батарею (варианты)

Изобретение относится к высокотемпературным электрохимическим устройствам на основе твердооксидных элементов (ТОЭ) - элементов с твердым электролитом, точнее к конструкции батареи трубчатых ТОЭ и узлов соединения (УС) ТОЭ в батарею. Техническим результатом является создание батареи, в которой...
Тип: Изобретение
Номер охранного документа: 0002655671
Дата охранного документа: 29.05.2018
19.07.2018
№218.016.7251

Плоский спиральный индуктор сильного магнитного поля (варианты)

Изобретение относится к электротехнике и может быть использовано в индукторах устройств для магнитно-импульсной обработки материалов (МИОМ), такой как прессование порошков, штамповка листовых заготовок и т.д., использующих ток высокой частоты и большой амплитуды для генерации сильного...
Тип: Изобретение
Номер охранного документа: 0002661496
Дата охранного документа: 17.07.2018
26.07.2018
№218.016.7576

Высокоактивная многослойная тонкопленочная керамическая структура активной части элементов твердооксидных устройств

Высокоактивная многослойная тонкопленочная керамическая структура активной части элементов твердооксидных устройств для высокоэффективной генерации тока, генерации водорода электролизом воды, генерации кислорода и азота твердооксидными кислородными насосами, конверсии топливных газов с...
Тип: Изобретение
Номер охранного документа: 0002662227
Дата охранного документа: 25.07.2018
03.11.2018
№218.016.9a2b

Способ получения оптически прозрачной керамики на основе оксида лютеция

Использование: для создания оптически прозрачной керамики. Сущность изобретения заключается в том, что способ получения оптически прозрачной керамики на основе оксида лютеция заключается в спекании прокаленного пресс-порошка в искровой плазме, при этом максимально допустимая для используемой...
Тип: Изобретение
Номер охранного документа: 0002671550
Дата охранного документа: 01.11.2018
12.04.2019
№219.017.0be5

Способ допирования mgo-nalo керамик ионами железа

Изобретение относится к области квантовой электроники и может использоваться для синтеза активной среды при создании мощных лазеров, генерирующих в среднем ИК-диапазоне длин волн. Техническим результатом изобретения является повышение однородности распределения, концентрации и толщины активного...
Тип: Изобретение
Номер охранного документа: 0002684540
Дата охранного документа: 09.04.2019
13.06.2019
№219.017.8132

Способ изготовления высокоплотных объемных керамических элементов с использованием электрофоретического осаждения наночастиц (варианты)

Изобретение относится к области получения керамических материалов и может быть использовано для изготовления высокоплотной, в том числе оптической, керамики. В способе изготовления высокоплотных объемных керамических элементов с использованием электрофоретического осаждения (ЭФО) наночастиц...
Тип: Изобретение
Номер охранного документа: 0002691181
Дата охранного документа: 11.06.2019
28.06.2019
№219.017.9975

Микро-планарный твердооксидный элемент (мп тоэ), батарея на основе мп тоэ (варианты)

Изобретение относится к области электротехники, а именно к конструкциям микропланарных твердооксидных топливных элементов (МП ТОЭ) и батарей на их основе. МПТОЭ имеет мембрану из тонкослойного твердого электролита с анодом и катодом на противоположных поверхностях (активная часть) и...
Тип: Изобретение
Номер охранного документа: 0002692688
Дата охранного документа: 26.06.2019
Showing 21-26 of 26 items.
11.01.2019
№219.016.ae64

Способ вакуумного ионно-плазменного низкотемпературного осаждения нанокристаллического покрытия из оксида алюминия

Изобретение относится к ионно-плазменному низкотемпературному осаждению нанокристаллического покрытия из оксида алюминия на изделия. Осуществляет плавление и испарение алюминия в плазме разряда низкого давления и формирование покрытия осаждением потока частиц плазмы на поверхность изделия в...
Тип: Изобретение
Номер охранного документа: 0002676720
Дата охранного документа: 10.01.2019
11.01.2019
№219.016.ae7f

Способ низкотемпературного нанесения нанокристаллического покрытия из альфа-оксида алюминия

Изобретение относится к способу получения нанокристаллического покрытия из альфа-оксида алюминия с высокой скоростью при пониженной температуре. Способ включает нанесение на поверхность изделия изоструктурного подслоя из оксида хрома, нагрев изделия, плавление и испарение алюминия и осаждение...
Тип: Изобретение
Номер охранного документа: 0002676719
Дата охранного документа: 10.01.2019
18.05.2019
№219.017.5913

Способ плазменного азотирования изделия из стали или из цветного сплава

Изобретение относится к способу упрочняющей обработки деталей механизмов и машин, штампового и режущего инструмента. Способ включает помещение изделия в плазменную камеру, подачу в разрядный; промежуток между катодом и анодом под низким давлением 0,01-1 Па азота или газовой смеси, состоящей из...
Тип: Изобретение
Номер охранного документа: 0002413033
Дата охранного документа: 27.02.2011
13.06.2019
№219.017.81e2

Способ демеркаптанизации керосиновых фракций

Изобретение относится к области нефтепереработки и может быть использовано для очистки керосиновых фракций от меркаптанов. Изобретение касается способа демеркаптанизации керосиновых фракций путем контактирования сырья и водорода в зоне предварительно обработанного катализатора. Контактирование...
Тип: Изобретение
Номер охранного документа: 0002381257
Дата охранного документа: 10.02.2010
29.06.2019
№219.017.9fba

Способ получения дизельного топлива

Изобретение относится к области нефтепереработки и может быть использовано при получении малосернистого дизельного топлива, которое находит все большее использование в России и в Европе. Изобретение касается способа получения дизельного топлива, включающего обессоливание нефти, ее дистилляцию,...
Тип: Изобретение
Номер охранного документа: 0002458104
Дата охранного документа: 10.08.2012
20.04.2023
№223.018.4ec2

Способ вакуумно-плазменного осаждения тонкой пленки из оксинитрида фосфора лития

Изобретение относится к способу вакуумного ионно-плазменного получения тонкой аморфной пленки из фосфор-оксинитрида лития (LiPON) на поверхности стальных подложек с плавающим потенциалом. Зажигают разряд между самонакаливаемым полым катодом и кольцевым анодом, проводят очистку поверхности...
Тип: Изобретение
Номер охранного документа: 0002793941
Дата охранного документа: 10.04.2023
+ добавить свой РИД