×
27.07.2015
216.013.66e6

СПОСОБ ИК-СПЕКТРОСКОПИЧЕСКОГО ОПРЕДЕЛЕНИЯ СОСТАВА СОПОЛИМЕРОВ АКРИЛОВОЙ КИСЛОТЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002557895
Дата охранного документа
27.07.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к аналитической химии, а именно к исследованию и анализу высокомолекулярных материалов с помощью ИК-спектроскопии при определени состава сополимеров полиакрилата и полиакрилонитрила (ПАН) для обеспечения контроля качества углеродного волокна. Для этого измеряют ИК-спектры поглощения пленок испытуемых образцов ПАН-волокна при помощи ИК-спектроскопии с преобразованием Фурье в области 3000-800 см, с последующим определением содержания акрилонитрила и метилакрилата из нормированных спектров по их характеристическим пикам. При подготовке образцов максимально упрощено и сокращено число стадий пробоподготовки и используют не поглощающий в рабочей ИК-области диметилсульфоксид. При обработке полученных ИК-спектров используют корректировку всей базовой линии, сглаживание формы пиков исследуемых соединений и разложение сложного пика при 1733±3 см на составляющие. Изобретение обеспечивает методику воспроизводимого, прецизионного и чувствительного определения основных компонентов ПАН. 1 з.п. ф-лы, 3 табл., 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области аналитической химии, а именно к спектрометрии, спектроскопии, спектрофотометрии и ИК-спектроскопии, а также к исследованию и анализу материалов с помощью ИК-спектроскопии. Изобретение может использоваться в обеспечении контроля качества современных высокомолекулярных соединений, в частности углеродного волокна, за счет определения качественного и количественного состава сополимера. Изобретение может также быть использовано для определения состава сополимеров полиакрилата и полиакрилонитрила (ПАН) и схожих полимеров и в других практических задачах.

Уровень техники

Известен способ определения состава функциональных групп сополимеров акрилонитрила с акриловой, метакриловой и итаконовой кислотами, основанный на использовании ЯМР-спектроскопии на ядрах 1Н и 13С, что обеспечивает максимальную точность испытания (Bajaj P., Paliwal D.К., Gupta А.К. Acrylonitrile Acrylic Acids Copolymers. 1. Synthesis And Characterization // J. Appl. Polymer Sci.. - 1993. - V. 49, N 5. - P. 823-833). Однако этот метод является весьма дорогостоящим и длительным, требует высокой квалификации оператора, а также мало пригоден для экспресс-анализов большого числа образцов, что сильно ограничивает его применение для целей контроля и мониторинга технологических процессов.

Кроме этого, есть способ фотометрического-титриметрического определения итаконовой кислоты (Hartford С.G. Rapid Spectrophotometric Method for the Determination of Itaconic, Citric, Aconitic and Fumaric Acids // Anal. Chem. - 1962. - V. 34, N 3. - P. 426-428). Этот способ обеспечивает достаточно высокую прецизионность определения кислотных групп, но не обеспечивают определения всех функциональных групп (поскольку рассчитан только на определение кислотных групп) и не позволяют добиться селективности определения, поскольку основаны на реакции с метаванадатом аммония и образованием ионных пар с метиленовым голубым, что характерно для любых карбоксильных групп, а также для других анионов.

Таким образом, для обеспечения контроля качества состава сополимеров на основе ПАН необходимы способы, которые, с одной стороны, являются чувствительными и селективными, а, с другой стороны, обеспечивают достаточно простое, дешевое и экспрессной испытание не только растворов, но и самих полимеров. В качестве такого способа может выступать испытание с использованием ИК-спектроскопии с преобразованием Фурье.

Известен, принятый наиболее близкий аналог, способ определения содержания метилакрилата и акрилонитрила в сополимерах на основе полиакрилонитрила (прядильном растворе и ПАН-волокне) при помощи ИК-спектроскопии с преобразованием Фурье в режиме пропускания (Методика выполнения измерений состава сополимера в полимере и ПАН-волокне. / - Саратов: ООО "СНВ", 2011), который основан на определении поглощения характеристических полос каждого их сомономеров (нитрила для акрилонитрила как основного компонента и карбонила сложноэфирных групп для метилакрилата).

Способ заключается в следующем. Прядильный раствор полиакрилонитрила натирают на стеклянных пластинах, которые помещают в кристаллизатор с обессоленной водой. Скоагулировавшие пленки снимают с пластин, промывают обессоленной водой, помещают в термостойкий стакан, заливают обессоленной водой и 6-кратно кипятят до отрицательной реакции на ионы SCN- железоаммонийными квасцами. Затем пленки ополаскивают ацетоном и высушивают под лампами 40 мин. Высушенные пленки (0,3 г) взвешивают и растворяют в 5 см3 диметилформамида (ДМФА) на водяной бане при 60°С. Образцы ПАН-волокна массой 0,3 г без пробоподготовки растворяют в 5 см3 ДМФА в тех же условиях.

Полученный раствор разливают тонкой пленкой равномерно на матовое стекло, высушивают в сушильном шкафу при 95-105°С в течение 8-15 мин, далее охлаждают при комнатной температуре. Снимают полученную пленку со стекла, отмывают от ДМФА шестикратным кипячением с обессоленной водой. Подбирают толщину пленки таким образом, чтобы основание самого интенсивного пика лежало в пределах пропускания от 75 до 90%, а вершина этого пика - от 15 до 30%. Из полученной пленки вырезают ровный и гладкий кусок размером приблизительно по размеру кюветодержателя используемого ИК-спектрометра. Закрепляют кусок пленки в держателе и записывают на ИК-спектрометре спектр пропускания анализируемой пробы в области 1600-2300 см-1 по отношению к спектру сравнения - воздуху. Количества акрилонитрила и метилакрилата определяют по пикам с волновыми числами 2242 и 1730 см-1, соответственно. Для расчета необходимо предварительно иметь спектр пропускания двух стандартных пленок ПАН, синтезированных в тех же условиях, что и испытуемый образец, и для которых с максимальной точностью известно соотношение содержаний метилакрилата и акрилонитрила.

Наиболее близкий аналог имеет ряд существенных недостатков.

1. Пробоподготовка включает стадии, которые являются источниками систематической погрешности, в частности растворение пленки ПАН в ДМФА и ее кипячение в воде для промывки от растворителя является деструктивным по отношению к исследуемому образцу. Оно приводит к гидролизу полимера и необратимому изменению его состава вследствие образования избыточного числа карбоксильных групп и карбоксилат-анионов и разложения сложноэфирных групп соответствующих сомономеров. В результате такой пробоподготовки неизбежно завышение результатов испытания по кислотным и занижение результатов по сложноэфирным и нитрильным сомономерам ПАН.

2. Неточность указанных в прототипе условий пробоподготовки (процедур растворения и промывания) приводит к невоспроизводимому изменению состава образца во время испытания.

3. При измерениях на ИК-спектрометре не задан режим измерения спектров, кроме того, ни аппаратно, ни программно не проводят полную корректировку базовой линии в исследуемом диапазоне, а фактически осуществляют только минимальный учет фонового поглощения по одной точке, что неизбежно увеличивает общую погрешность результатов испытания.

4. Для расчетов используют подход одного внешнего стандарта (обе стандартные пленки сделаны максимально близкими по составу друг к другу) с известным содержанием метилакрилата и акрилонитрила или напрямую связанная с ним величина. Однако для ИК-спектроскопии, где погрешность определения сильно зависит от уровня концентраций, приборов и условий измерения, такой подход ограничен практически, поскольку минимальная случайная погрешность испытания будет достигаться только при соблюдении ряда условий и при приближении соотношения метилакрилата и акрилонитрила в испытуемом образце ПАН-волокна к их соотношению в стандартной пленке.

5. Обработка данных ИК-измерений основана на не вполне корректных приемах. Характеристические пики сложноэфирной группы (метилакрилат) перекрываются с характеристическими пиками карбоксильной группы кислот (акриловой, метилакриловой или итаконовой кислот), что приводит к дополнительным положительным вкладам кислотных сомономеров в сигнал (светопоглощение) метилакрилата. Отсутствие этого учета в прототипе приводит к завышению результатов испытания по метакрилату.

В целом, прототип ИК-спектроскопического испытания ПАН-сополимеров на акрилонитрил и метилакрилат основан на измерении поглощения характеристических пиков этих компонентов и обладает необходимой чувствительностью. Однако имеющиеся недостатки не позволяют использовать этот способ для прецизионного количественного определения сомономеров в ПАН-волокне и ПАН-прекурсоре для целей контроля и мониторинга технологии и самого процесса их изготовления, поскольку необходимая воспроизводимость и прецизионность определения содержаний сомономеров не достигается.

Раскрытие изобретения

Предлагаемое изобретение решает задачу создания способа воспроизводимого, прецизионного и чувствительного испытания ПАН-волокна (прекурсор углеродного волокна) на его основные компоненты - акрилонитрил и метилакрилат.

Поставленная задача решается за счет разработки способа пробоподготовки и измерения ИК-спектров поглощения пленок испытуемых образцов ПАН-волокна при помощи ИК-спектроскопии с преобразованием Фурье в области 3000-800 см-1, с последующим определением содержаний акрилонитрила и метилакрилата из нормированных спектров по их характеристическим пикам. Новизна заявленного способа заключается в том, что в качестве растворителя при подготовке образцов используются не поглощающий в рабочей ИК-области, нетоксичный и негорючий диметилсульфоксид (ДМСО), максимально упрощено и сокращено число стадий пробоподготовки за счет отказа от кипячения для промывки от растворителя, а также за счет проведения продолжительной сушки получаемых пленок от растворителя, а также в том, что при измерениях используется алгоритм обработки данных измерений, включающий полную обработку полученных ИК-спектров (корректировка всей базовой линии, сглаживание формы пиков исследуемых соединений) и разложение сложного пика при 1733±3 см-1 на составляющие (деконволюция спектра) для учета влияния итаконовой кислоты на определение метилакрилата и применение в измерениях таким образом скорректированного пика.

Высокая прецизионность и воспроизводимость испытания достигается за счет отказа от ДМФА из-за его большего поглощения в рабочей области. В отличие от него диметилсульфоксид обладает близкими физико-химическими свойствами, но не поглощает в аналитической области и, таким образом, его присутствие не сказывается на ИК-спектрах образцов ПАН-волокна, что дает возможность отказаться от стадии промывки от растворителя. Кроме того, из способа испытания ПАН-сополимеров исключена процедура промывания ПАН-волокна от тиоцианат-ионов вследствие незначимого их поглощения в области 2000-2400 см-1, используемой для испытания. Таким образом, предлагаемый способ оказывается более простым за счет исключения этих стадий.

Для обеспечения максимальной воспроизводимости состава испытуемых пленок и наиболее полного удаления растворителя нагрев исследуемых пленок проводят при температуре 100±5°С в сушильном шкафу в течение 2 ч.

Проводят коррекцию базовой линии во всей аналитической области 3000-800 см-1 и сглаживание данных по всем пикам, что снижает систематическую погрешность. Также повышение точности испытания обеспечивается выбором пиков и последующей обработки данных. Характеристическим пиком, по которому проводят определение акрилонитрила, является полоса нитрила при 2242±1 см-1, а метилакрилат определяют по -С-O-С-группе сложных эфиров при 1730±3 см-1. Для повышения точности испытания проводят математическое разложение полосы 1730±3 см-1 на составляющие (деконволюция спектра с использованием лоренц-гауссового преобразования, фиг. 1) - пики при 1732±1 см-1 (колебания карбонильной группы в непредельных сложных эфирах) и при 1690±1 см-1 (колебания карбонильной группы в непредельных карбоновых кислотах). Таким образом, при испытании образцов с использованием скорректированного пика при 1732±1 см-1 вклад итаконовой и акриловой кислоты в определение метилакрилата существенно снижается (таблица 1).

В таблице 1 приведены показатели эффективности предлагаемого изобретения, а именно сравнительное определение концентраций метилакрилата и акрилонитрила в тестовых образцах - готовых пленках ПАН-прекурсора, для которых точно известно соотношение сомономеров по загрузке реактора, в котором происходит процесс полимеризации. Упрощение пробоподготовки и учет соотношения поглощения итаконовой кислоты и метакрилата при 1730±3 см-1 приводит к хорошему согласию результатов испытания по заявляемому способу - испытанию с данными загрузки реактора для всех образцов, а также исключением систематической погрешности по сравнению с прототипом (столбцы Т1-Т5) и снижению общей случайной погрешности определения обоих испытуемых компонентов.

Таким образом, технический результат предлагаемого изобретения заключается в практическом отсутствии влияния химических источников погрешностей на результаты испытания ПАН-сополимеров и минимальной пробоподготовки ПАН-волокна и ПАН-прекурсора углеродного волокна для аналитического контроля их основных сомономеров - акрилонитрила и метилакрилата. Кроме того, предлагаемое изобретение позволяет определять содержания сомономеров с ПАН-волокна большей точностью, чем наибоее близкий аналог. Предложенный способ исключает систематическую погрешность испытания, связанную с влиянием остаточного растворителя и вследствие гидролиза волокна при пробоподготовке, а также обеспечивает низкую систематическую погрешность, связанную со спектральными интерференциями кислотных групп сомономеров на определение метакрилата. Оценка случайной погрешности испытания показывает, что в заявляемом способе относительная случайная погрешность определения метилакрилата составляет 5-7%, а акрилонитрила - 1%, что является минимально возможным для данных условий проведения пробоподготовки, измерений при помощи ИК-спектроскопии и обработки результатов.

Краткое описание чертежей (Фигур)

Фиг. 1. Разложение аналитического пика 1732 см-1 (деконволюция спектра с использованием лоренц-гауссового преобразования), использующегося в предлагаемом способе определения метилакрилата, на составляющие для повышения точности испытания за счет разделения пиков итаконовой и акриловой кислоты и метилакрилата.

Осуществление изобретения

Приведенные ниже примеры подтверждают, но не ограничивают заявляемый способ.

ПРИМЕР 1. Определение содержания сомономеров акрилонитрила и метилакрилата в пленках ПАН-прекурсора

Испытуемые образцы пленок ПАН-прекурсора размером 1×2 см закрепляли в держателе для пленок для ИК-спектроскопии и помещали в кюветное отделение инфракрасного спектрометра на основе преобразования Фурье Agilent Сагу 630 FTIR (Agilent Technologies, США), и регистрировали спектр поглощения в диапазоне 800-4000 см-1 с разрешением 4 см-1 при помощи программного обеспечения MicroLab PC. Для последующей обработки полученных данных использовали программное обеспечение Resolutions Pro (версия 5.2.0). Для статистической обработки данных использовали OriginPro 8.1 SR3. Коэффициенты корреляции, границы доверительного интервала, стандартное отклонение, относительное стандартное отклонение, предел обнаружения и минимально определяемую концентрацию вычисляли согласно правилам представления результатов химического анализа по рекомендациям IUPAC 1998.

Далее проводили удаление пика CO2 в области 2400-2300 см-1, затем однократно сглаживали спектр по 21 точке и корректировали базовую линию (автоматическая корректировка, число точек базовой линии - 64, число итераций - 10). Проводили деконволюцию пика 1730±3 см-1 с использованием лоренц-гауссового преобразования, фиг. 1) на пики при 1732±1 см-1 (колебания карбонильной группы в непредельных сложных эфирах) и при 1690±1 см-1 (колебания карбонильной группы в непредельных карбоновых кислотах). Далее нормировали спектры поглощения образцов на пик нитрила (внутреннего стандарта) при 2242±1 см-1. Затем из уравнений закона Бугера-Ламберта-Бера для метилакрилата (МА) и внутреннего стандарта, акрилонитрила (НАК) получали уравнение для нормированного сигнала:

Необходимое для расчетов экспериментальное соотношение коэффициентов поглощения kMA/kНАК в уравнении (1) находили из внешних стандартов, измеренных в тех же условиях. В качестве внешних стандартов использованы пленки стандартных образцов (стандартов предприятия) с известным содержанием итаконовой кислоты cИК и соотношением концентраций метилакрилата и акрилонитрила (сМА/cНАК): Стандарт 1: сИК, 1.11%, сМАНАК 0.0378; Стандарт 2: сМА, 1.10%, сМАНАК 0.0368.

Концентрации метилакрилата сМА и акрилонитрила сНАК находили из системы двух уравнений относительно этих переменных (1) и

где сИК - концентрация итаконовой кислоты. В оптимальных условиях пробоподготовки, измерений и обработки результатов проведено определение метилакрилата и акрилонитрила в пяти образцах ПАН, результаты сведены в таблице 2.

Для всех образцов (образцы 1-5) получено хорошее согласие, во всех случаях предлагаемый способ приводит к значениям концентраций метилакрилата и акрилонитрила, согласующимся с загрузкой реактора.

ПРИМЕР 2. Определение содержания сомономеров акрилонитрила и метилакрилата в стружках ПАН-волокна

Навеску (0.030) г испытуемого образца (стружек) ПАН-волокна помещали в коническую колбу на 50 мл, добавляли 1.0 мл ДМСО и переносили в сушильный шкаф, нагретый до 80°С. Смесь выдерживали до полного растворения волокна (около 2 ч), периодически перемешивая вручную. Полученный раствор разливали тонкой пленкой равномерно на оптическую пластину из фторида кальция для ИК-спектроскопии, высушивали в сушильном шкафу при 105°С в течение 2 ч, далее охлаждали при комнатной температуре. Осторожно снимали полученную пленку со стекла и вырезают кусок размером 1×2 см.

Полученные образцы пленок ПАН-волокна закрепляли в держателе для тонких жидкостных кювет для ИК-спектроскопии и помещали в кюветное отделение ИК-спектрометра на основе преобразования Фурье Shimadzu IR Prestige 21 (Япония) и регистрировали спектр поглощения в диапазоне 800-4000 см-1 с разрешением 4 см-1. ИК спектры регистрировали и обрабатывали при помощи специализированной программы Bruker OPUS 6.5, сборка 6.5.27, Bruker Optik GmbH. Для статистической обработки данных использовали OriginPro 8.1 SR3. Коэффициенты корреляции, границы доверительного интервала, стандартное отклонение, относительное стандартное отклонение, предел обнаружения и минимально определяемую концентрацию вычисляли согласно правилам представления результатов химического анализа по рекомендациям IUPAC 1998.

Все получаемые на используемом приборе ИК-спектры пропускания преобразовывали (с помощью программной функции конвертации спектра) в спектры поглощения, представленные в единицах оптической плотности. Далее проводили удаление пика СО2 в области 2400-2300 см-1, затем однократно сглаживали спектр по 21 точке и корректировали базовую линию (автоматическая корректировка, число точек базовой линии - 64, число итераций - 10).

Далее проводили деконволюцию пика и обработку как описано в Примере 1. В оптимальных условиях пробоподготовки, измерений и обработки результатов проведено определение метилакрилата и акрилонитрила в четырех образцах ПАН-волокон, результаты сведены в таблицу 3.

Для всех образцов (образцы 6-9) получено хорошее согласие, во всех случаях предлагаемый способ приводит к значениям массовых концентраций метилакрилата и акрилонитрила, согласующимся с загрузкой реактора.


СПОСОБ ИК-СПЕКТРОСКОПИЧЕСКОГО ОПРЕДЕЛЕНИЯ СОСТАВА СОПОЛИМЕРОВ АКРИЛОВОЙ КИСЛОТЫ
Источник поступления информации: Роспатент

Showing 1-10 of 11 items.
27.10.2013
№216.012.78bd

Анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления

Предложен анионообменный сорбент на основе сополимера стирола и дивинилбензола с четвертичной аммониевой функциональной группой, химически привитой к сополимеру посредством алкильного или ацильного радикала (R). R выбран из ряда: СН-СН, С(O)(СН), (CH), (n=1-6). Четвертичная аммониевая...
Тип: Изобретение
Номер охранного документа: 0002496571
Дата охранного документа: 27.10.2013
27.02.2015
№216.013.2db6

Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла

Изобретение относится к области материаловедения и аналитической химии. Наногибридный функциональный сепарационный материал содержит ковалентно закрепленные на носителе наночастицы золота и ковалентно закрепленные серосодержащие органические лиганды на поверхности наночастиц золота. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002543170
Дата охранного документа: 27.02.2015
10.07.2015
№216.013.5bc1

Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла

Изобретение относится к области аналитической химии. Предложен способ получения сепарационного материала, содержащего носитель на основе диоксида кремния и наночастицы золота. Носитель модифицируют кремнийорганическим соединением, содержащим группу -SH или -NH, обрабатывают коллоидным раствором...
Тип: Изобретение
Номер охранного документа: 0002555030
Дата охранного документа: 10.07.2015
10.09.2015
№216.013.7955

Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления

Изобретение относится к анионообменным сорбентам для ионохроматографического определения органических и неорганических анионов. Сорбент общей формулы (1) содержит химически привитую с помощью спейсера четвертичную аммониевую функциональную группу, содержащую по крайней мере один...
Тип: Изобретение
Номер охранного документа: 0002562650
Дата охранного документа: 10.09.2015
10.12.2015
№216.013.963f

Способ получения концентрированных водных дисперсий немодифицированных фуллеренов

Изобретение относится к области физической химии и может быть использовано в производстве биологически активных добавок, препаратов для мягкой антираковой терапии, контрастных веществ в клинической диагностики, косметических средств. Сначала смешивают объем насыщенного раствора исходного...
Тип: Изобретение
Номер охранного документа: 0002570083
Дата охранного документа: 10.12.2015
20.02.2016
№216.014.cf51

Анионообменный сорбент для ионохроматографического определения органических и неорганических анионов и способ его изготовления

Изобретение относится к анионообменным сорбентам для ионохроматографического определения органических и неорганических анионов. Общая формула заявленного сорбента соответствует формуле (1). Матрица выбрана из ряда: полимер на основе дивинилбензола, выступающего в качестве сшивающего агента для...
Тип: Изобретение
Номер охранного документа: 0002575454
Дата охранного документа: 20.02.2016
27.08.2016
№216.015.516c

Устройство для зарядки аккумуляторных батарей при длительной стоянке железнодорожного состава

Изобретение относится к подаче электроэнергии к вспомогательному оборудованию транспортных средств. Устройство для зарядки вагонных аккумуляторных батарей при длительной стоянке железнодорожного состава включает в себя подвагонный генератор с приводом от колесной пары, клиноременную передачу с...
Тип: Изобретение
Номер охранного документа: 0002596205
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.6a30

Сорбент для разделения оптических изомеров веществ и их анализа в биологических жидкостях методом вэжх и способ его получения

Изобретение относится к сорбентам для высокоэффективной жидкостной хроматографии (ВЭЖХ), в частности к получению химически модифицированных сорбентов. Предложен сорбент на основе силикагеля с привитым через спейсер гибридным хиральным селектором. Сорбент получен путем модифицирования силикагеля...
Тип: Изобретение
Номер охранного документа: 0002592893
Дата охранного документа: 27.07.2016
25.08.2017
№217.015.bb9b

Способ двухлучевых термолинзовых измерений с обратной синхронизацией сигнала

Изобретение относится к области спектроскопии и касается способа проведения лазерноиндуцированных двухлучевых термолинзовых измерений. Способ включает в себя не менее двух циклов измерений, каждый из которых состоит из полуцикла нагрева исследуемого объекта индуцирующим лазерным лучом и...
Тип: Изобретение
Номер охранного документа: 0002615912
Дата охранного документа: 11.04.2017
26.08.2017
№217.015.e85c

Анионообменный сорбент для определения органических и неорганических анионов методом ионной хроматографии

Изобретение относится к области хроматографии. Анионообменный сорбент содержит матрицу с химически привитой напрямую или через спейсер третичной аминогруппой, содержащей полярные или заряженные заместители, и соединенную с ней с помощью спейсера четвертичную аммониевую функциональную группу,...
Тип: Изобретение
Номер охранного документа: 0002627384
Дата охранного документа: 08.08.2017
Showing 1-10 of 170 items.
27.10.2013
№216.012.78bd

Анионообменный сорбент для одновременного ионохроматографического определения поляризуемых и неполяризуемых неорганических анионов и способ его изготовления

Предложен анионообменный сорбент на основе сополимера стирола и дивинилбензола с четвертичной аммониевой функциональной группой, химически привитой к сополимеру посредством алкильного или ацильного радикала (R). R выбран из ряда: СН-СН, С(O)(СН), (CH), (n=1-6). Четвертичная аммониевая...
Тип: Изобретение
Номер охранного документа: 0002496571
Дата охранного документа: 27.10.2013
27.02.2015
№216.013.2db6

Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла

Изобретение относится к области материаловедения и аналитической химии. Наногибридный функциональный сепарационный материал содержит ковалентно закрепленные на носителе наночастицы золота и ковалентно закрепленные серосодержащие органические лиганды на поверхности наночастиц золота. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002543170
Дата охранного документа: 27.02.2015
10.05.2015
№216.013.4a8b

Способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии

Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества. Способ основан на действии двух последовательных коллинеарных лазерных импульсов, направленных в одну точку поверхности...
Тип: Изобретение
Номер охранного документа: 0002550590
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4b9f

Способ синтеза сополимеров акрилонитрила с акриловой кислотой

Изобретение относится к получению сополимеров акрилонитрила, которые широко используются в производстве углеродного волокна. Способ синтеза сополимеров, содержащих мономерные звенья акрилонитрила и акриловой кислоты, включает смешение мономеров в среде растворителя с добавлением инициатора...
Тип: Изобретение
Номер охранного документа: 0002550873
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5153

Наночастицы антиоксидантного фермента супероксиддисмутазы в виде полиэлектролитного комплекса состава фермент-поликатион-полианион и способ их получения

Изобретение относится к химической энзимологии, в частности к созданию наночастиц антиоксидантного фермента супероксиддисмутазы для медицинского применения в виде полиэлектролитного комплекса типа фермент/поликатион/полианион, характеризующихся тем, что фермент покрыт внутренней оболочкой из...
Тип: Изобретение
Номер охранного документа: 0002552340
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55a7

Катализатор паровой конверсии углеводородов и способ его получения

Изобретение относится к области химии и химической технологии, а именно, к процессам переработки газообразного углеводородного сырья и получения технического водорода для химической, металлургической, автомобильной, авиационной и прочих отраслей промышленности, научных исследований, точного...
Тип: Изобретение
Номер охранного документа: 0002553457
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.55aa

Катодные материалы для твердооксидных топливных элементов на основе никельсодержащих слоистых перовскитоподобных оксидов

Изобретение относится к катодному материалу для твердооксидного топливного элемента (ТОТЭ) на основе никельсодержащих перовскитоподобных слоистых оксидов. При этом в качестве перовскитоподобного оксида взято соединение с общей формулой PrSrNiCoO, где 0.0
Тип: Изобретение
Номер охранного документа: 0002553460
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.5810

Способ нагрева электродов и создания самостоятельного дугового разряда с поджигом от тонкой металлической проволочки в свободном пространстве в магнитном поле

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Технический результат - возможность зажигания самостоятельного дугового разряда в открытом свободном пространстве. Между электродами при...
Тип: Изобретение
Номер охранного документа: 0002554085
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.59ae

Способ определения катехоламинов и их метаболитов с использованием твердофазного флуоресцентного биосенсора

Изобретение относится к области медицины и может быть применено для определения катехоламинов их метаболитов в объектах на основе матриц сложного состава, в том числе нерастворимых в воде, без их дополнительной пробоподготовки. Способ осуществляют путем изменения принципиальной схемы...
Тип: Изобретение
Номер охранного документа: 0002554499
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.59af

Способ лечения ишемического инсульта

Группа изобретений относится к медицине, а именно к неврологии, и касается лечения ишемического инсульта. Для этого осуществляют инъекционное, преимущественно внутривенное, введение убидекаренона. Такое введение препарата обеспечивает уменьшение зоны поражения ткани мозга и уменьшение...
Тип: Изобретение
Номер охранного документа: 0002554500
Дата охранного документа: 27.06.2015
+ добавить свой РИД