×
27.07.2015
216.013.65ae

Результат интеллектуальной деятельности: МНОГОСТУПЕНЧАТАЯ РАКЕТА И СПОСОБ ЕЕ ПОЛЕТА

Вид РИД

Изобретение

№ охранного документа
0002557583
Дата охранного документа
27.07.2015
Аннотация: Изобретение относится к ракетной технике и может быть использовано в многоступенчатых ракетах. Многоступенчатая ракета содержит верхние ступени с системой управления (СУ) и полезным грузом, нижние ступени в виде пары поршень-цилиндр, кольцевой шпангоут с кольцевым пиротехническим элементом, бортовую кабельную сеть в виде свободно деформируемого кабельного жгута. Цилиндр, выполненный в виде силовой оболочки, выполненной в виде вафельной конструкции, заполнен монотопливом и содержит пиротехнические элементы и поршень, выполненный в виде негерметичной оболочки, сопряженной с герметичным днищем с четырехкамерным ЖРД в виде двух пар камер, из армированного углепластика или углерод-углеродного композиционного материала, со степенями расширения, и содержит два пояса-уплотнения в виде эластичного кольца с магнитным кольцом в виде набора постоянных магнитов. Четырехкамерный ЖРД содержит рулевые приводы, сдвижные телескопические сопловые насадки, клапаны отключения подачи монотоплива. Осуществляют расход активной массы в виде монотоплива и пассивной массы ракеты в виде оболочки цилиндра, после включения ЖРД по команде от СУ задействуют кольцевой пиротехнический элемент на шпангоуте для обеспечения возможности перемещения поршня относительно цилиндра, подают команды на пиротехнические элементы, отделяют освободившиеся кольцевые элементы цилиндра, отделяют от ракеты пару камер ЖРД в момент времени, зависящий от дальности полёта ракеты, тяги ЖРД, массоцентровочной характеристики ракеты, текущего времени полёта ракеты, времени отделения пары камер сгорания в зависимости от степени расширения, подают команду и включают систему наддува цилиндра для полной выработки монотоплива. Изобретение позволяет повысить тактико-технические характеристики ракеты. 2 н. и 11 з.п. ф-лы, 7 ил.

Изобретение относится к ракетной технике, конкретно к устройству многоступенчатых ракет.

Известна многоступенчатая ракета по патенту РФ №2205776 с приоритетом от 17.12.2001 года, принятая нами за прототип. Многоступенчатая ракета по этому патенту содержит не менее двух последовательно соединенных ступеней с зарядами твердого топлива, систему управления и полезный груз. Первая ступень ракеты содержит двигательную установку в виде основного РДТТ и дополнительную двигательную установку многократного включения, которая предназначена для того, чтобы после того как закончится работа (выгорит заряд твердого топлива) основного РДТТ первой ступени, произвести перемещение корпуса первой ступени относительно корпуса последующей (вначале второй, а затем третьей) ступени. Причем перемещение начинается после того как будет произведено разрушение переднего (верхнего) днища корпуса первой ступени так, что корпус станет представлять собой цилиндрическую оболочку с одним нижним днищем.

Недостатками прототипа является следующее:

1. Сложное устройство передних днищ первой и последующих ступеней, которые в том числе предназначены для того, чтобы быть разрушенными в заданное время. Сложность заключается в том, что эти днища должны удовлетворять одновременно двум противоречивым требованиям:

- быть прочными для обеспечения работы РДТТ;

- быть «хрупкими как стекло» в момент разрушения.

Эта задача разрушения усложняется еще тем, что во время работы РДТТ эти днища обязаны иметь теплозащитное покрытие (ТЗП), которое, как правило, выполняется на основе резины необходимой толщины. При этом ввиду того что заряд твердого топлива РДТТ имеет разбросы по времени горения, а ТЗП разбросы своих характеристик, связанных с временем его работы, сложно совместить момент полного уноса ТЗП с моментом окончания работы РДТТ. Т.е. после выгорания заряда РДТТ часть ТЗП (резины определенной толщины, определяемой надежностью работы РДТТ) останется на верхнем днище и усложнит задачу разрушения днища. На наш взгляд, это довольно сложно.

2. Сложное устройство боковых сгораемых частей корпусов последующих (за первой) ступеней ракеты. В принятом нами прототипе после погружения в корпус предыдущей ступени корпуса с зарядом последующей ступени должны сгорать к моменту окончания сгорания заряда этой ступени. Сложность устройства этих боковых частей корпусов заключается в том, что они должны во время работы предыдущей ступени быть несущими конструкциями ракеты, которая осуществляет заданный программой полет, а потом сгореть.

Наиболее известным способом изготовления корпусов РДТТ является его намотка из стекловолокна с необходимым армированием. Так называемый корпус кокон. После перемещения такого корпуса в корпус предыдущей (например, в случае принятого нами прототипа, первой) ступени необходимо обеспечить сгорание, например, стекловолокна. На наш взгляд, это проблематично и практически невозможно.

3. Двигательная установка основного РДТТ первой ступени в прототипе работает как на участке работы первой ступени, так и на участке работы последующих ступеней. Эта двигательная установка имеет определенную массу, характерную для массы двигательной установки первой ступени. Очевидно, что в многоступенчатых ракетах массы двигателей последующих ступеней всегда меньше (причем в разы) масс двигателей предыдущих ступеней. В прототипе масса двигателя для первой и последующих ступеней остается постоянной и равной массе двигателя первой ступени. Это отрицательно влияет на дальность полета ракеты и, очевидно, приводит к ее снижению по сравнению с классическим вариантом, когда на каждой последующей ступени двигатель имеет соразмерно меньшую массу, потому что мы уменьшающейся по массе ракете сообщаем тягу несоразмерно тяжелым двигателем.

4. Корпус первой ступени ракеты-прототипа работает на участках полета первой и последующих ступеней. Когда после окончания работы первой ступени ее корпус надвигается на заряд второй ступени, то масса этого корпуса (т.к. он неизменный) оказывается несоразмерной этому заряду. Общеизвестно, что в многоступенчатых ракетах каждая последующая ступень имеет ориентировочно в два раза меньшие габаритные размеры и массу, чем предыдущая. В прототипе корпус первой ступени ориентировочно в два раза больше, чем заряд второй ступени, и в четыре раза больше, чем заряд третьей ступени. Поэтому на участках полета этих (второй и третьей) ступеней масса корпуса оказывает отрицательное влияние на достижение дальности доставки полезного груза по сравнению с классическим вариантом, когда массы корпусов ступеней многоступенчатой ракеты соразмерны их зарядам.

5. Сложность конструкции зарядов последующих (после первой) ступеней. Общеизвестно, что удельный импульс тяги РДТТ зависит от внутрикамерного давления на стационарном участке работы РДТТ. Корпус РДТТ первой ступени прототипа рассчитан на размеры и конструкцию заряда первой ступени и соответственно на заданное внутрикамерное давление, при котором реализуется расчетный, для первой ступени, удельный импульс тяги. После окончания работы первой ступени ее корпус надвигается на заряд второй ступени, который в два раза меньше заряда первой ступени. В этих условиях для того, чтобы в камере сгорания можно было реализовать то же давление, что и в камере сгорания первой ступени, заряд твердого топлива второй ступени должен иметь поверхность горения в два раза больше, чем требуется для работы классической второй ступени. Это, на наш взгляд, возможно, например, за счет довольно значительного усложнения конструкции заряда второй ступени и уменьшения коэффициента заполнения корпуса топливом. В случае применения заряда твердого топлива с поверхностью горения, предназначенной для использования в варианте классической второй ступени (что имеет место в прототипе), реализуется в два раза более низкое внутрикамерное давление с соответствующим снижением удельного импульса тяги и потерей дальности доставки полезного груза.

Для участка полета ракеты-прототипа условно третьей ступени (когда корпус надвигается на заряд третьей ступени) твердотопливный заряд этой ступени должен быть выполнен с поверхностью горения в четыре раза большей, чем заряд классического РДТТ третьей ступени. На наш взгляд, это довольно сложно, даже по отношению к заряду второй ступени.

Задачей настоящего изобретения является устранение недостатков прототипа. Указанная задача решается следующим образом.

Предлагаемая ракета выполняется в виде двух функциональных блоков:

- верхних ступеней с системой управления и полезным грузом;

- нижних ступеней.

Отличие предложения заключено в конструктивном исполнении нижних ступеней.

Нижние ступени выполнены в виде пары поршень(П)-цилиндр(Ц). При этом Ц представляет собой силовую оболочку с длиной, равной длине нижних ступеней, и диаметром оболочки Д. Внутрь Ц установлен П, выполненный в виде негерметичной оболочки, сопряженной с нижним герметичным днищем. На днище установлен преимущественно 4-камерный ЖРД. П снабжен двумя уплотнительными поясами, верхним и нижним, и имеет длину не менее 1,5Д для обеспечения его свободного (без заклинивания) перемещения относительно Ц в процессе работы. Ц заправлен пастообразным (гелеобразным) монотопливом и снабжен пиротехническими элементами, установленными на образующей Ц с необходимыми интервалами в диапазоне 0,8…1,5 Д.

Процесс полета ракеты на участке работы нижних ступеней включает:

а) расход активной массы (монотоплива) через камеры ЖРД (непрерывный);

а) расход пассивной массы (освободившихся частей Ц) по мере выработки монотоплива (ступенчатый);

б) отделение 2-х камер ЖРД в заданное время.

Сущность предлагаемого изобретения поясняется графическими изображениями. На фиг.1 изображена предлагаемая многоступенчатая ракета. На фиг.2 показан вид снизу на предлагаемую ракету. На фиг.3 показан разрез нижней части ракеты. На фиг.4 укрупненно показан разрез нижней части ракеты с устройством уплотнительного пояса, днищем поршня с камерами ЖРД, неподвижным соединением поршня с цилиндром и элементами соединения камер ЖРД с днищем. На фиг. 5 укрупненно показан отсечной клапан, установленный на расходной топливной магистрали отделяемых камер ЖРД. На фиг.6 показан разрез по уплотнительному поясу. На фиг.7 показана ракета в момент, когда поршень закончил движение относительно цилиндра и последняя отделяемая часть цилиндра сброшена.

Цифрами на фигурах обозначены:

1. Верхние ступени ракеты с полезным грузом и системой управления.

2. Нижние ступени ракеты, выполненные с возможностью одновременного расхода их активной и пассивной масс. При этом корпус нижних ступеней выполнен в виде цилиндра (Ц), в котором установлен поршень (П). Оболочка Ц преимущественно выполнена в виде вафельной конструкции [1], у которой ячейки выполнены с наружной стороны, причем ячейки заполнены, например, пенополиуретаном для обеспечения аэродинамического качества ракеты.

3. Поршень (П), который установлен в Ц и снабжен двумя уплотнительными поясами. Для снижения массы поршень выполнен не герметичным по наружной цилиндрической оболочке (днище П, безусловно, герметично), например перфорированным.

4. Уплотнительные пояса П.

5. Днище П с установленными на нем преимущественно 4-камерным ЖРД и соединительным шпангоутом.

6. Кронштейны крепления камер ЖРД к днищу П.

7. Пиротехнические элементы, например детонирующие удлиненные заряды (ДУЗы) для обеспечения снятия жесткой связи и последующего отделения освободившихся частей Ц. ДУЗы установлены по всей образующей Ц с интервалом 0,8…1,5 диаметра Ц. Они снабжены инициирующими элементами и соединены наружной кабельной линией с системой управления (СУ) ракеты. СУ по заданной программе передает команды на срабатывание очередного ДУЗа по мере расходования монотоплива.

8. Пара камер сгорания со степенью расширения, характерной для первой ступени многоступенчатой ракеты.

9. Пара камер сгорания со степенью расширения, характерной для второй ступени многоступенчатой ракеты. В этой паре камеры сгорания выполнены поворотными и снабжены рулевыми приводами для обеспечения управления полетом ракеты на всем участке полета при работающих нижних ступенях. Камеры сгорания установлены в карданном подвесе. Камеры сгорания снабжены сдвижными телескопическими насадками для увеличения степени расширения сопел при работе их на участке полета, характерном для 2-й ступени.

10. Соединительный шпангоут. Предназначен для соединения П с Ц во все время эксплуатации ракеты, предшествующее ее старту. Соединен с днищем П и с Ц, например, с помощью сварки и тем самым обеспечивает полную герметичность в паре П и Ц во время хранения ракеты и ее эксплуатации до старта.

11. Пиротехнический элемент (ДУЗ). Обеспечивает снятие жесткой связи между П и Ц после старта ракеты по команде от СУ. Соединен с СУ наружным кабелем.

12. Отсечной клапан. Обеспечивает перекрытие расходной магистрали по команде от СУ перед отделением соответствующих камер сгорания ЖРД.

13. Пиротехнический элемент (ДУЗ). Обеспечивает снятие жесткой связи между расходной магистралью и отделяемой камерой сгорания.

14. Пиротехнический элемент (ДУЗ). Обеспечивает снятие жесткой связи между днищем П и отделяемой камерой сгорания. По команде от СУ срабатывает после снятия жесткой связи по расходной магистрали. Элементы обеспечения безударного схода отделяемой камеры сгорания выполнены, предпочтительно, в виде пары поршень (соединен с камерой сгорания) и цилиндр (соединен с днищем П) и представляют собой толкатель. Толкатель обеспечивает безударное отделение отделяемой камеры сгорания и при необходимости может быть дополнительно снабжен аккумулятором давления пороховым или другим (на графических изображениях не показан), который устанавливают внутри толкателя для обеспечения необходимой по условию безударности (пути, скорости, ускорения) отделения камеры сгорания.

15. Поршень отделяемой камеры сгорания.

16. Цилиндр отделяемой камеры сгорания.

17. Карданный подвес поворотной камеры сгорания.

18. Рулевые машины для каналов тангажа и рысканья. Совместная работа двух поворотных камер ЖРД обеспечивает также управление по каналу крена.

19. Эластомерное кольцо уплотнительного пояса. Скреплено герметично со шпангоутом оболочки П. Преимущественно выполнено из резины.

20. Набор постоянных магнитов. Установлены возможно плотно относительно друг друга в кольцевом направлении, герметично относительно эластомерного кольца (завулканизированы), имеют, преимущественно, форму параллелепипеда.

21. Магнитная жидкость [2]. Изготовлена на основе монотоплива, которым заправлен Ц. Представляет собой устойчивый, не распадающийся (нет выпадения в осадок в течение 20 лет) на составные части коллоидный раствор из смеси:

- монотопливо;

- микропорошок (размер частиц около 10-9 метра, в силу размера являются однодоменными микромагнитами) ферромагнетика;

- поверхностно-активные вещества;

- стабилизаторы.

Величина удерживаемого перепада давления магнитной жидкостью (магнитожидкостной пробкой) определяется по формуле:

где µ0 - магнитная постоянная;

M - намагниченность магнитной жидкости;

H - напряженность магнитного поля в зазоре;

Hmax, Hmin - максимальная и минимальная напряженности магнитного поля на границах магнитожидкостной пробки в момент удержания ею максимального перепада давлений.

Необходимый для предлагаемой ракеты перепад давлений (до 6 кгс/см2) обеспечивается выбором материала и размеров постоянных магнитов уплотнительного пояса для достижения необходимой коэрцетивной силы, позволяющей удерживать магнитную жидкость в зазоре между магнитами уплотнительного пояса и Ц. Заправка магнитной жидкости в упомянутый зазор производится при сборке П с Ц шприцеванием.

22. Бортовая кабельная сеть (БКС). Соединяет установленный на днище П ЖРД с СУ. Выполнена в виде витого жгута, который обеспечивает деформирование его при перемещении П в верхнее относительно Ц положение.

23. Агрегат бортовой системы наддува Ц. Установлен на верхнем днище Ц. Соединен с СУ. По команде от СУ включается в работу после остановки П относительно Ц. Работает до полной выработки монотоплива. Обеспечивает программируемый наддув Ц до давления, необходимого для бескавитационной работы ТНА ЖРД.

Работает предлагаемая ракета следующим образом. После старта ракеты по команде от СУ производится запуск 4-камерного ЖРД с камерами сгорания 8 и 9. С заданной задержкой по команде от СУ производится задействование пиротехнического элемента 11 и производится снятие жесткой связи между П 3 и Ц 2. Под действием тяги ЖРД (при силе его тяги, определяемой необходимой тяговооруженностью ракеты на начальном участке полета, как правило, в разы превышающей массу ракеты) происходит перемещение П относительно Ц, причем величина тяги ЖРД определяет давление внутри Ц. Величина этого давления для ракет с диаметром от 0,5 до 3 метров достаточна для того, чтобы обеспечить бескавитационную работу ТНА ЖРД. По известным геометрическим параметрам Ц и контролируемому СУ расходу монотоплива СУ определяет текущий объем содержащегося в Ц монотоплива и время подачи команды на нижний пиротехнический элемент 7. После срабатывания нижнего пиротехнического элемента 7 происходит отделение освободившейся части Ц. Во время осуществления дальнейшего полета ракеты, по мере расходования монотоплива, по командам от СУ с помощью пиротехнических элементов 7 производится поочередное отделение освобождающихся частей Ц.

Камеры сгорания ЖРД 9 выполнены поворотными, установлены в карданном подвесе 17 и снабжены рулевыми приводами 18. По командам от СУ поворотом этих камер по заданной программе производится управление полетом ракеты по всем трем каналам управления: по тангажу, рысканью и крену, чем обеспечивается программно-заданный полет ракеты на участке работы нижних ступеней.

По замеряемым значениям реализуемых на конкретном изделии параметров: расходу ракетного монотоплива и величине удельного импульса тяги камер сгорания 8 и 9, а также при известной массе камер сгорания 8 в процессе осуществления полета ракеты на начальном участке СУ производит расчет времени отделения пары камер сгорания ЖРД 8.

Время Т отделения и сброса этих камер сгорания определяется численными расчетами в соответствии с неравенством:

Ti<T<T2,

где Δt=(T1+T2)/2,

Δt - шаг расчета, определяемый, например, методом итераций,

L1=f(R(t), m(t), t, T1), L=f(R(t), m(t), t, T), L2=f(R(t), m(t), t, T2),

Li - дальности полета ракеты, рассчитанные в функции от текущего времени t при заданном угле наклона траектории полета ракеты к горизонту, при неизменном ускорении свободного падения и при реализованном в расчете времени отделения Ti, а также при всех необходимых параметрах ракеты,

R - тяга ЖРД в функции от времени t,

m - массоцентровочные характеристики ракеты в функции от времени t,

T - время отделения пары камер сгорания со степенью расширения, характерной для первой ступени, при котором dL/dt=0,

T1 - время отделения пары камер сгорания со степенью расширения, характерной для первой ступени, при котором L1<L и dL/dt>0, определяемое в результате расчетов,

T2 - время отделения пары камер сгорания со степенью расширения, характерной для первой ступени, при котором L2<L и dL/dt<0, определяемое в результате расчетов,

t - текущее время полета ракеты.

При достижении заданного времени Т по командам от СУ производится закрытие клапана 12 и задействование пиротехнических элементов 13 и 14. ДУЗом 14 снимается жесткая связь между камерами сгорания 8 и днищем П 5, а ДУЗом 13 производится разделение частей расходных магистралей этих камер сгорания для последующего отделения их от ракеты. Безударное движение отделяемых камер сгорания 8 обеспечивается конструктивно размерами элементов толкателя (не обозначен), длины которых в направлении сброса камер определены из условия безударного отделения. При недостаточной скорости отделения камер сгорания 8 в надпоршневое пространство толкателя может быть дополнительно подан газ от порохового или другого аккумулятора давления, который позволит получить необходимую скорость (ускорение) отделения камер 8.

На этом этапе условно можно считать законченным участок полета предлагаемой ракеты, характерный для 1-й ступени классической многоступенчатой ракеты.

Далее по командам от СУ производится расфиксация и выдвижение телескопических насадков камер сгорания 9, которые таким образом удлиняют сопла и они приобретают степень расширения сопел, характерную для камер сгорания 2-й ступени классической многоступенчатой ракеты. Конфигурация раскрывшихся камер сгорания 9 показана на фиг.7.

Далее полет предлагаемой ракеты осуществляется под действием тяги пары камер сгорания 9, с помощью которых осуществляется также и управление полетом ракеты по заданной траектории.

П продолжает свое движение относительно Ц по мере расходования монотоплива. По мере выработки заданного количества монотоплива производится дальнейшее отделение освободившихся частей Ц с помощью пиротехнических элементов 7.

Когда П в своем движении достигает крайнего верхнего положения и останавливается относительно Ц, по команде от СУ задействуется агрегат наддува 23. Полет ракеты продолжается до полной выработки монотоплива при программируемом наддуве оставшейся части Ц для бескавитационной работы ТНА ЖРД (камер сгорания 9).

После полной выработки монотоплива нижние ступени предлагаемой ракеты отделяют, и полет ракеты продолжается по программе классической многоступенчатой ракеты при осуществлении движения с помощью тяги двигателей верхних ступеней.

Для определения эффективности схемного решения по предлагаемой ракете нами проведены расчетные оценки.

За базовый вариант для оценок была принята ракета классической многоступенчатой схемы с последовательным расположением ступеней [3].

Были определены характеристики ракеты базового варианта, а затем для предлагаемой ракеты были проведены оценки характеристик для 2-х ее вариантов.

1. При одинаковых габаритных размерах ракет базового и предлагаемого вариантов;

2. При одинаковых стартовых массах ракет базового и предлагаемого вариантов.

Для обеспечения корректности расчетные оценки были проведены при одинаковом стандартном импульсе тяги для базового варианта и для вариантов предлагаемой ракеты. Стандартный расчетный удельный импульс тяги был принят на уровне J40/1=275…290 секунд.

Определение массоцентровочных характеристик оболочек ракеты во всех вариантах расчета (и для ракеты базового варианта, и для вариантов предлагаемой ракеты) проводилось при некоторых условиях и допущениях:

- оболочки во всех вариантах расчета имеют вафельную конструкцию одинакового типа;

- материал всех оболочек одинаковый и является сплавом на основе алюминия;

- единичные длины цилиндрических частей всех оболочек (и для ракеты базового варианта, и для предлагаемой ракеты) имеют одинаковые массы.

Расчет по первому варианту показал возможность увеличения массы полезного груза для предлагаемой ракеты по сравнению с ракетой базового варианта на 19%.

Расчет по второму варианту показал возможность увеличения массы полезного груза для предлагаемой ракеты по сравнению с ракетой базового варианта на 13%.

Таким образом, техническим результатом предлагаемой ракеты и способа ее полета, в том числе и по результатам проведенных оценочных расчетов, является повышение её тактико-технических характеристик (ТТХ).

Повышение ТТХ выражается в зависимости от тактико-технического задания либо в максимизации доставляемого полезного груза (которое может быть выражено в виде увеличения дальности полета ракеты при сохранении массы полезного груза), либо в минимизации габаритных размеров ракеты при обеспечении ее стартовой массы, одинаковой со стартовой массой ракеты базового варианта.

Источники информации

1. Лизин В.Т., Пяткин В.А., Проектирование тонкостенных конструкций. М., Машиностроение, 2003 г.

2. Интернет сайт WWW.MMSV.RU.

3. Феодосьев В.И., Синярев Г.Б. Введение в ракетную технику. М., Оборонгиз, 1960 г.


МНОГОСТУПЕНЧАТАЯ РАКЕТА И СПОСОБ ЕЕ ПОЛЕТА
МНОГОСТУПЕНЧАТАЯ РАКЕТА И СПОСОБ ЕЕ ПОЛЕТА
МНОГОСТУПЕНЧАТАЯ РАКЕТА И СПОСОБ ЕЕ ПОЛЕТА
МНОГОСТУПЕНЧАТАЯ РАКЕТА И СПОСОБ ЕЕ ПОЛЕТА
МНОГОСТУПЕНЧАТАЯ РАКЕТА И СПОСОБ ЕЕ ПОЛЕТА
МНОГОСТУПЕНЧАТАЯ РАКЕТА И СПОСОБ ЕЕ ПОЛЕТА
МНОГОСТУПЕНЧАТАЯ РАКЕТА И СПОСОБ ЕЕ ПОЛЕТА
Источник поступления информации: Роспатент

Showing 31-40 of 40 items.
09.05.2019
№219.017.4f67

Выдвижная опора с автоматическим стопорением штока привода

Изобретение относится к области машиностроения и может быть использовано во всех отраслях техники в качестве силовых опор, например в подъемно-транспортных машинах или самолетостроении. Выдвижная опора состоит из привода, шток которого сопряжен со стопорной гайкой по многозаходной...
Тип: Изобретение
Номер охранного документа: 0002404112
Дата охранного документа: 20.11.2010
18.05.2019
№219.017.5a74

Концевой затвор

Изобретение относится к нефтегазовому машиностроению и предназначено для использования в конструкциях концевых затворов камер запуска и приема поточных снарядов при эксплуатации трубопроводов особенно больших диаметров (более 500 мм). Концевой затвор камеры для запуска и приема поточных...
Тип: Изобретение
Номер охранного документа: 0002400665
Дата охранного документа: 27.09.2010
24.05.2019
№219.017.6025

Электрогенератор для ветроэнергетической установки

Изобретение относится к электротехнике, используется для выработки электроэнергии в установках, имеющих малые обороты, в частности в ветроэнергетических установках с вертикальной осью вращения. Предложен электрогенератор для ветроэнергетической установки, содержащий статор, ротор с основанием и...
Тип: Изобретение
Номер охранного документа: 0002423773
Дата охранного документа: 10.07.2011
24.05.2019
№219.017.6093

Ротор ветроэнергетической установки

Изобретение относится к области ветроэнергетики и может быть использовано в ветроэнергетических установках с вертикальной осью вращения. Ротор ветроэнергетической установки с вертикальной осью вращения содержит ступицу, расположенную в центре вращения ротора, несущее кольцо, на котором...
Тип: Изобретение
Номер охранного документа: 0002446311
Дата охранного документа: 27.03.2012
19.06.2019
№219.017.88be

Рентгенозащитная композиция

Изобретение относится к области композиционных пленкообразующих материалов и предназначено для создания тонкослойных полимерных рентгенозащитных покрытий. Рентгенозащитная композиция содержит эпоксидное связующее, отвердитель, в качестве которого используется полиаминоамидная смола с аминным...
Тип: Изобретение
Номер охранного документа: 0002415485
Дата охранного документа: 27.03.2011
19.06.2019
№219.017.8a1d

Самолетная пусковая установка для запуска баллистических ракет космического назначения

Изобретение относится к авиакосмической технике и может быть использовано для десантирования баллистических ракет из самолета. Самолетная пусковая установка для запуска баллистических ракет содержит установленный на грузовом полу самолета-носителя транспортно-пусковой контейнер (ТПК) с днищем и...
Тип: Изобретение
Номер охранного документа: 0002401408
Дата охранного документа: 10.10.2010
19.06.2019
№219.017.8b5f

Способ ручного ультразвукового контроля (варианты)

Использование: для ручного ультразвукового контроля качества заготовок в виде тел вращения со стороны их торцов. Сущность: заключается в том, что при ручном ультразвуковом контроле качества цилиндрических заготовок, высота которых не более их диаметра, выполняют со стороны торцов принудительное...
Тип: Изобретение
Номер охранного документа: 0002442156
Дата охранного документа: 10.02.2012
06.07.2019
№219.017.a8d4

Способ получения углерод-углеродного композиционного материала

Изобретение относится к области получения теплозащитных материалов. Собирают стержневой каркас из углеродного волокна, скрепленного водным раствором поливинилового спирта. После сборки производят его фиксацию на глубину технологического припуска связующим, например эпоксидным или бакелитовым...
Тип: Изобретение
Номер охранного документа: 0002422358
Дата охранного документа: 27.06.2011
10.07.2019
№219.017.aefb

Устройство для дистанционной управляемой стыковки разъемных соединителей коммуникаций

Изобретение может быть использовано для стыковки и расстыковки разъемных соединителей электрических кабелей, гидравлических и пневматических магистралей, расположенных в местах, опасных или недоступных для человека в ограниченных конструктивных объемах. Устройство содержит привод, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002417492
Дата охранного документа: 27.04.2011
14.07.2019
№219.017.b48d

Способ приготовления композиции для пропитки углеродного волокна

Изобретение относится к технологии получения объемно-армированных углерод-углеродных композиционных материалов, в частности к приготовлению композиций для пропитки углеродных волокон, и может быть использовано при производстве эррозионно-стойких теплозащитных деталей в авиационной,...
Тип: Изобретение
Номер охранного документа: 0002451037
Дата охранного документа: 20.05.2012
Showing 21-26 of 26 items.
10.04.2015
№216.013.3a14

Способ и устройство для демонтажа тали электрической канатной

Изобретение относится к крановому машиностроению и может быть использовано при выполнении работ, связанных с демонтажем талей электрических канатных и электротельферов в процессе эксплуатации. Таль устанавливают рядом с ремонтной площадкой, сверху поперек монорельса закрепляют жесткую балку,...
Тип: Изобретение
Номер охранного документа: 0002546356
Дата охранного документа: 10.04.2015
27.06.2015
№216.013.58e4

Способ автоматизированного ультразвукового контроля крупногабаритных изделий, имеющих форму тел вращения

Использование: для автоматизированного ультразвукового контроля крупногабаритных изделий, имеющих форму тел вращения. Сущность изобретения заключается в том, что выполняют настройку чувствительности дефектоскопической аппаратуры в ручном режиме, ее проверку в автоматическом режиме, размещение...
Тип: Изобретение
Номер охранного документа: 0002554297
Дата охранного документа: 27.06.2015
20.04.2016
№216.015.3763

Безимпульсный делитель

Изобретение относится к ракетной технике и может быть использовано в устройствах разделения элементов ракет. Безимпульсный делитель, установленный на разделяемой оболочке пространственной формы, содержит детонирующий удлиненный заряд (ДУЗ), инициатор ДУЗа, вставку в виде выступа П-образной...
Тип: Изобретение
Номер охранного документа: 0002581420
Дата охранного документа: 20.04.2016
12.01.2017
№217.015.5d12

Привод рулевой

Изобретение относится к рулевым приводам многоступенчатых ракет. Привод рулевой содержит рулевые машины, систему питания рулевых машин, узлы развязки, кронштейны для закрепления рулевых машин к днищу ракеты. Узлы развязки закреплены к соплу двигателя. Сопло с помощью опор зафиксировано...
Тип: Изобретение
Номер охранного документа: 0002591005
Дата охранного документа: 10.07.2016
29.03.2019
№219.016.f36e

Способ возвращения на космодром многоразовой первой ступени ракеты

Изобретение относится к ракетно-космической технике и может использоваться при создании многоразовых ракетных комплексов, не требующих отчуждения земель под зоны падения отработавших первых ступеней. Предлагаемый способ заключается в том, что непосредственно после разделения первой и второй...
Тип: Изобретение
Номер охранного документа: 0002309089
Дата охранного документа: 27.10.2007
18.05.2019
№219.017.56e5

Ракета космического назначения тандемной схемы с многоразовой первой ступенью

Изобретение относится к ракетно-космической технике и может использоваться при создании ракетных комплексов, не требующих отчуждения земель под зоны падения отработавших первых ступеней. Предлагаемая ракета включает в себя маршевые и рулевые двигатели, топливные баки, межступенчатый отсек с...
Тип: Изобретение
Номер охранного документа: 0002318704
Дата охранного документа: 10.03.2008
+ добавить свой РИД