×
20.07.2015
216.013.64ef

Результат интеллектуальной деятельности: СПОСОБ ВОССТАНОВЛЕНИЯ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ВНУТРИКОРПУСНЫХ УСТРОЙСТВ ВОДО-ВОДЯНОГО ЭНЕРГЕТИЧЕСКОГО РЕАКТОРА ВВЭР-1000

Вид РИД

Изобретение

Аннотация: Изобретение относится к восстановительной термической обработке узлов водо-водяных энергетических реакторов (ВВЭР) и направлено на повышение ресурса и обеспечение безопасной эксплуатации реакторов ВВЭР-1000. Указанный результат достигается тем, что способ восстановления физико-механических свойств материала внутрикорпусных устройств водо-водяного энергетического реактора после воздействия эксплуатационных факторов включает извлечение внутрикорпусных устройств из корпуса реактора и их последующую термообработку, предусматривающую нагрев, выдержку и охлаждение, при этом нагрев ведут до температуры 975-1025°C, выдержку осуществляют при этой температуре в течение 120-130 ч, а охлаждение ведут на воздухе. 1 табл., 1 ил.
Основные результаты: Способ восстановления физико-механических свойств материала внутрикорпусных устройств водо-водяного энергетического реактора ВВЭР-1000 после воздействия эксплуатационных факторов, включающий извлечение внутрикорпусных устройств из корпуса реактора и их последующую термообработку путем нагрева, выдержки и охлаждения, при этом нагрев ведут до температуры 975-1025°C, выдержку осуществляют при этой температуре в течение 120-130 ч, а охлаждение ведут на воздухе.

Изобретение относится к восстановительной термической обработке узлов водо-водяных энергетических реакторов ВВЭР-1000 и направлено на повышение ресурса и обеспечение безопасной эксплуатации реакторов ВВЭР-1000.

К особенностям эксплуатации материалов внутрикорпусных устройств (ВКУ) реакторов ВВЭР-1000, в первую очередь, выгородки реактора относятся высокие повреждающие дозы до ~120 сна (смещений на атом) и обусловленный поглощением γ-квантов и нейтронов высокий уровень температур в массиве выгородки до ~400°C. Поскольку температуры и повреждающие дозы в сечениях выгородки реактора имеют большие градиенты, возможно возникновение больших внутренних напряжений, обусловленных радиационным распуханием (за счет образования пористости) внутренних объемов материала ВКУ в местах, где реализуются наиболее благоприятные для распухания условия. Деформации материала ВКУ на участках, прилегающих к указанным объемам распухающего материала, будут растягивающими и могут достигать нескольких процентов. Поскольку внешняя поверхность ВКУ контактирует с водным теплоносителем высоких параметров, указанные деформации могут приводить к растрескиванию и значительным разрушениям ВКУ вследствие межкристаллитного коррозионного растрескивания под напряжением. Такие эффекты могут вызывать необходимость преждевременного вывода из эксплуатации соответствующих ядерных реакторов. В этой связи для продления срока службы ядерных энергетических реакторов, например реакторов типа ВВЭР-1000 необходимо проведение восстановительного отжига, приводящего к возможно более полному возврату распухания и других характеристик структурного состояния, а также к возврату физико-механических свойств материала ВКУ и к частичному или полному исчезновению напряжений и деформаций, обусловленных особенностями радиационно-индуцированных изменений локальных объемов материала.

При облучении в указанных условиях в сталях аустенитного класса и, в частности, в стали внутрикорпусных устройств - Х18Н10Т происходит образование дислокационных петель, пор, размеры и плотность которых зависят от дозы и температуры облучения, и выделение вторичных фаз (G-фазы, α-феррита). Кроме того, воздействие облучения обуславливает перераспределение содержания химических элементов по границам зерен, что проявляется в уменьшении концентрации хрома и увеличении концентрации никеля на границах зерен и в прилегающей к границе области матрицы. Подобные изменения структуры приводят не только к изменениям механических свойств (предела текучести, трещиностойкости и т.д.), но и к повышению склонности стали к межкристаллитному коррозионному растрескиванию под напряжением (МК КР) при контакте с водным теплоносителем.

Известен способ восстановления физико-механических свойств металла корпусов энергетических реакторов ВВЭР-1000 после воздействия эксплуатационных факторов (RU 2396361 [2]). Способ включает теплоизоляцию наружной стенки корпуса, размещение нагревателей внутри корпуса, нагрев стенки корпуса со стороны внутренней поверхности, выдержку и охлаждение, при этом нагрев ведут до температуры 400-580°C со скоростью не более 20 град/ч, выдержку осуществляют в течение 100-150 часов при градиенте температур между наружной и внутренней поверхностями корпуса не более 15-20°C, охлаждение ведут со скоростью не более 20 град/ч до температуры 300°C и со скоростью не более 30 град/ч до температуры 100°C и далее с выключенными нагревателями. Однако, как показали эксперименты по применению этого способа для восстановления физико-механических свойств металла внутрикорпусных устройств (ВКУ), он не позволил обеспечить возврат структуры и механических свойств до уровня, близкого к исходному состоянию.

Известен способ восстановления технологических трубопроводов из аустенитных сталей, направленный на повышение ресурса технологических трубопроводов из аустенитных сталей (RU 2364485 [3]). Известный способ включает термическую обработку путем нагрева до заданной температуры, выдержку при этой температуре и охлаждение. При этом сначала осуществляют резку трубопровода на секции, затем проводят термическую обработку каждой секции в печи, причем нагрев каждой секции осуществляют до температуры аустенизации. Недостатком известного способа является то, что он не применим к термообработке ВКУ, поскольку нарушает целостность изделий, а также вследствие различий в условиях эксплуатации. Соответственно, известный способ не позволил обеспечить возврат структуры и механических свойств ВКУ до уровня, близкого к исходному состоянию.

Наиболее близким к заявляемому по своей технической сущности является известный способ восстановления физико-механических свойств металлов, которые используются в ядерных реакторах, учитывающий особенности условий эксплуатации ВКУ - высокие температуры и повреждающие дозы, приводящие к возникновению больших внутренних напряжений, обусловленных радиационным распуханием внутренних объемов материала ВКУ - оболочки твэлов, воздуховодов, а также других частей, таких как тяги управления и оболочки поглотителей ядерных реакторов (US 4421572 [4]). Способ предусматривает термическую обработку, включающую отжиг. В частности, температура отжига находится в интервале между 1010°C и 1038°C, а время отжига находится в интервале между 90 и 60 секундами. Однако данный способ применяется для обработки ВКУ перед началом ввода их в эксплуатацию и обеспечивает повышение устойчивости ВКУ к распуханию, вызванному воздействием эксплуатационных факторов, и не применим для восстановления физико-механических свойств металлов, уже подвергшихся такому воздействию.

Заявляемый способ восстановления физико-механических свойств внутрикорпусных устройств водо-водяного энергетического реактора ВВЭР-1000 направлен на продление ресурса работы узлов водо-водяных энергетических реакторов.

Указанный результат достигается тем, что способ восстановления структуры и физико-механических свойств внутрикорпусных устройств энергетического реактора ВВЭР-1000 после воздействия эксплуатационных факторов включает извлечение внутрикорпусных устройств из корпуса реактора и их последующую термообработку, предусматривающую нагрев, выдержку и охлаждение, при этом нагрев ведут до температуры 975-1025°C, выдержку осуществляют при этой температуре в течение 120-130 ч, а охлаждение ведут на воздухе.

В основе указанного способа лежат следующие обстоятельства. Показано, что облучение стали ВКУ - Х18Н10Т в условиях, близких к условиям облучения материала ВКУ реакторов ВВЭР-1000 (в тех локальных объемов материала выгородки ВКУ, где реализуются наиболее благоприятные условия для радиационного распухания) может сопровождаться значительным распуханием ~8-10%, появлением новых фаз, например, G-фазы, γ→α-превращением. Это, в свою очередь, сопровождается повышением в несколько раз предела текучести и сильным снижением пластичности и трещиностойкости. Кроме того, происходит заметное повышение склонности материала к межкристаллитному коррозионному растрескиванию (МК КР) при контакте с водным теплоносителем. По мере облучения материала выгородки ВКУ, зоны распухания материала растут и распространяются как в направлении центра активной зоны, так и в тангенциальном и аксиальном направлениях. Этот процесс сопровождается ростом деформаций и напряжений у соответствующих участков вблизи внутренней поверхности выгородки, что может при неблагоприятном стечении обстоятельств приводить к ее значительным разрушениям. Главный фактор, являющийся движущей силой возможных разрушений, - это распухание локальных объемов материала в местах, где реализуются наиболее благоприятные условия для распухания, что в конечном итоге приводит к появлению деформаций и растягивающих напряжений. Поэтому в качестве компенсирующего мероприятия предлагается восстановительный отжиг. Эксперименты показали, что при температурах отжига ~700-800°C наблюдается восстановление физико-механических свойств - предела текучести, пластичности, трещиностойкости. Однако значимый возврат распухания наблюдается при более высоких температурах отжига ~1000°C. При этом полный возврат распухания не происходит даже при температурах отжига 1100°C (см. табл. 1).

Дозовые зависимости распухания аустенитных нержавеющих сталей, в том числе и стали Х18Н10Т, имеют характерный вид, показанный на фиг. 1. Для них характерны 3 стадии: инкубационный период - когда распухание отсутствует; стадия начального - неустановившегося распухания; стадия установившегося распухания, при которой величина распухания линейно зависит от дозы и распухание происходит с наибольшей скоростью. При этом для аустенитной стали Х18Н10Т, как и для многих других, установившаяся стадия распухания начинается при достижении значений распухания более ~1,5-2%. Поэтому с практической точки зрения представляет интерес такой режим восстановительного отжига, который обеспечивает снижение распухания примерно до ~0,01-0,005% и при размере пор, сопоставимом с размерами пор, наблюдавшимися после первичного до отжига облучения. В этом случае при повторном после отжига облучении распухание, равное 8-10%, будет наблюдаться при достижении дозы ~30-60 сна, что соответствует ~15-30 годам эксплуатации после отжига и сопоставимо с ожидаемым ресурсом реакторов ВВЭР-1000 - 60 лет. В случае если после используемых режимов восстановительного отжига остаточное распухание составляет величины ~1,%-2%, то достижение критических значений распухания (~8-10%), при которых наблюдается резкое снижение эксплуатационных свойств, при повторном после отжига облучении будет происходить значительно быстрее - за ~5-8 лет эксплуатации и не обеспечит продление суммарного срока службы до 60 лет. Указанные соображения наглядно показывают, почему отжиг при температуре 700-800°C, обеспечивающей практически полный возврат физико-механических свойств, не представляет большого интереса с экономической точки зрения.

В таблице 1 показано изменение распухания после отжига при различных режимах.

Видно, что по мере повышения температуры отжига процент распухания снижается и при температуре ~1000°C и выдержке 120-130 ч достигает минимальных значений, характерных для начальной стадии распухания. Следует отметить, что при данной температуре отжига, кроме существенного уменьшения пористости, также наблюдается практически полный возврат структурного состояния: растворение избыточных радиационно-индуцированных фаз, исчезновение радиационных дефектов - дислокационных петель. Возврат структурного состояния приводит и к восстановлению механических свойств материала.

Таким образом, показано, что оптимальным режимом восстановительного отжига является 1000±25°C в течение 120-130 ч. При более низкой температуре невозможно добиться полного восстановления физико-механических свойств материала, а следовательно, нельзя рассчитывать на значительное увеличение ресурса ВКУ.

Более высокая температура восстановительного отжига нежелательна из-за осложнений технологического и экономического характеров.

Способ реализуется следующим образом.

Отработавшее свой ресурс ВКУ водо-водяного энергетического реактора после воздействия эксплуатационных факторов извлекается из корпуса реактора и подвергается нагреву до температуры 975-1025°C. При этой температуре осуществляют выдержку в течение 120-130 ч, а затем ведут охлаждение на воздухе.

Способ восстановления физико-механических свойств материала внутрикорпусных устройств водо-водяного энергетического реактора ВВЭР-1000 после воздействия эксплуатационных факторов, включающий извлечение внутрикорпусных устройств из корпуса реактора и их последующую термообработку путем нагрева, выдержки и охлаждения, при этом нагрев ведут до температуры 975-1025°C, выдержку осуществляют при этой температуре в течение 120-130 ч, а охлаждение ведут на воздухе.
СПОСОБ ВОССТАНОВЛЕНИЯ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ВНУТРИКОРПУСНЫХ УСТРОЙСТВ ВОДО-ВОДЯНОГО ЭНЕРГЕТИЧЕСКОГО РЕАКТОРА ВВЭР-1000
Источник поступления информации: Роспатент

Showing 101-110 of 265 items.
20.04.2016
№216.015.3472

Способ изготовления сверхпроводящих многосекционных оптических детекторов

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде...
Тип: Изобретение
Номер охранного документа: 0002581405
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3605

Структура полупроводник-на-изоляторе и способ ее получения

Изобретение относится к твердотельной электронике. Изобретение заключается в том, что на изоляторе формируют поверхностный слой полупроводника. В изоляторе на расстоянии от поверхностного слоя полупроводника, меньшем длины диффузии носителей заряда, возникающих при облучении внешним...
Тип: Изобретение
Номер охранного документа: 0002581443
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3827

Способ изготовления сварного составного образца типа ст для испытаний на трещиностойкость облученного металла

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного...
Тип: Изобретение
Номер охранного документа: 0002582626
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3891

Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах

Изобретение относится к диагностике профилей (распределения плотности тока по сечению пучка) пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002582490
Дата охранного документа: 27.04.2016
27.08.2016
№216.015.506f

Способ изготовления и модификации электрохимических катализаторов на углеродном носителе

Изобретение относится к области электрохимии, а именно к способам модификации электрохимических катализаторов на углеродном носителе, применяемых для электролизеров или топливных элементов с твердым полимерным электролитом (ТПЭ). Техническим результатом заявленного изобретения является...
Тип: Изобретение
Номер охранного документа: 0002595900
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.508a

Полимеросодержащее лекарственное средство на основе противоопухолевого препарата этопозида

Изобретение относится к области фармакологии и медицины, а именно к новому поколению противоопухолевых препаратов на основе этопозида, и описывает полимерсодержащее лекарственное средство на основе противоопухолевого препарата этопозида, который включает биодеградируемый полимер в виде...
Тип: Изобретение
Номер охранного документа: 0002595859
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.5247

Способ получения радионуклида лютеций-177

Изобретение относится к технологии получения радионуклидов для ядерной медицины. Способ получения радионуклида Lu включает изготовление мишени, содержащей лютеций природного изотопного состава или обогащенный по изотопу Lu, облучение нейтронами мишени, с последующим выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002594020
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5862

Способ преобразования энергии

Изобретение относится к энергетике. В способе преобразования энергии в энергоустановку подают воздух, сжимаемый затем в компрессоре, а также газообразное топливо, продукты сгорания которого расширяют в газовой турбине, используемой в качестве привода компрессора и электрогенератора, а затем...
Тип: Изобретение
Номер охранного документа: 0002588313
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.62a8

Способ изготовления наноструктурированной мишени для производства радиоизотопов молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Mo), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). Способ изготовления мишени для производства радиоизотопа молибден-99 осуществляется посредством реакции Mo(n,γ)Mo, протекающей в...
Тип: Изобретение
Номер охранного документа: 0002588594
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6394

Способ регулирования параметров ядерного реактора

Изобретение относится к области ядерной техники и может быть использовано в системах управления ядерными реакторами. В способ регулирования параметров ядерного реактора путем перемещения регулятором органов изменения реактивности по сигналу отклонения измеренного параметра от заданного...
Тип: Изобретение
Номер охранного документа: 0002589038
Дата охранного документа: 10.07.2016
Showing 101-110 of 164 items.
20.03.2016
№216.014.c9f3

Способ защиты от окисления биполярных пластин и коллекторов тока электролизеров и топливных элементов с твердым полимерным электролитом

Изобретение относится к способу защиты от окисления биполярных пластин топливных элементов и коллекторов тока электролизеров с твердым полимерным электролитом (ТПЭ), заключающемуся в предварительной обработке металлической подложки, нанесении на обработанную металлическую подложку...
Тип: Изобретение
Номер охранного документа: 0002577860
Дата охранного документа: 20.03.2016
20.04.2016
№216.015.3472

Способ изготовления сверхпроводящих многосекционных оптических детекторов

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде...
Тип: Изобретение
Номер охранного документа: 0002581405
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3605

Структура полупроводник-на-изоляторе и способ ее получения

Изобретение относится к твердотельной электронике. Изобретение заключается в том, что на изоляторе формируют поверхностный слой полупроводника. В изоляторе на расстоянии от поверхностного слоя полупроводника, меньшем длины диффузии носителей заряда, возникающих при облучении внешним...
Тип: Изобретение
Номер охранного документа: 0002581443
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3827

Способ изготовления сварного составного образца типа ст для испытаний на трещиностойкость облученного металла

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного...
Тип: Изобретение
Номер охранного документа: 0002582626
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3891

Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах

Изобретение относится к диагностике профилей (распределения плотности тока по сечению пучка) пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002582490
Дата охранного документа: 27.04.2016
27.08.2016
№216.015.506f

Способ изготовления и модификации электрохимических катализаторов на углеродном носителе

Изобретение относится к области электрохимии, а именно к способам модификации электрохимических катализаторов на углеродном носителе, применяемых для электролизеров или топливных элементов с твердым полимерным электролитом (ТПЭ). Техническим результатом заявленного изобретения является...
Тип: Изобретение
Номер охранного документа: 0002595900
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.508a

Полимеросодержащее лекарственное средство на основе противоопухолевого препарата этопозида

Изобретение относится к области фармакологии и медицины, а именно к новому поколению противоопухолевых препаратов на основе этопозида, и описывает полимерсодержащее лекарственное средство на основе противоопухолевого препарата этопозида, который включает биодеградируемый полимер в виде...
Тип: Изобретение
Номер охранного документа: 0002595859
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.5247

Способ получения радионуклида лютеций-177

Изобретение относится к технологии получения радионуклидов для ядерной медицины. Способ получения радионуклида Lu включает изготовление мишени, содержащей лютеций природного изотопного состава или обогащенный по изотопу Lu, облучение нейтронами мишени, с последующим выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002594020
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5862

Способ преобразования энергии

Изобретение относится к энергетике. В способе преобразования энергии в энергоустановку подают воздух, сжимаемый затем в компрессоре, а также газообразное топливо, продукты сгорания которого расширяют в газовой турбине, используемой в качестве привода компрессора и электрогенератора, а затем...
Тип: Изобретение
Номер охранного документа: 0002588313
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.62a8

Способ изготовления наноструктурированной мишени для производства радиоизотопов молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Mo), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). Способ изготовления мишени для производства радиоизотопа молибден-99 осуществляется посредством реакции Mo(n,γ)Mo, протекающей в...
Тип: Изобретение
Номер охранного документа: 0002588594
Дата охранного документа: 10.07.2016
+ добавить свой РИД