×
20.07.2015
216.013.6359

Результат интеллектуальной деятельности: СПОСОБ ЭКОЛОГИЧЕСКОГО ИЗМЕРЕНИЯ БЕРЕЗНЯКА ПО ФЛУКТУИРУЮЩЕЙ АСИММЕТРИИ ЛИСТЬЕВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к инженерной биологии и индикации окружающей среды. Способ включает выбор учетных деревьев березы. На каждом учетном дереве относительно сторон света на нижней части кроны выбирают пробные ветви с флуктуирующей асимметрией листьев. По периметру березняка выбирают не менее 10 учетных деревьев березы. Затем на каждом учетном дереве по четырем сторонам света выбранные пробные ветви с флуктуирующей асимметрией листьев отмечают меткой. Измеряют высоту от точки расположения метки до поверхности почвы и расстояние от точки расположения метки до границы березняка. Дополнительно измеряют расстояние от границы березняка до ствола каждой учетной березы. Измеряют периметр ствола учетной березы. Далее по результатам полученных измерений проводят статистическое моделирование с определением коэффициента корреляции полученных статистических моделей по измеренным параметрам. По коэффициенту корреляции осуществляют оценку экологического состояния территории. Такая технология позволит расширить функциональные возможностей оценки экологического состояния территории за счет использования косвенных показателей, а также повысить точность индикации качества окружающей листья березы локальной среды. 2 з.п. ф-лы, 11 ил., 1 табл.

Изобретение относится к инженерной биологии и индикации окружающей среды в виде березняка свойствами пространственного расположения пробных листьев для измерения флуктуирующей асимметрии, например, может быть применено для измерения экологического качества городских скверов, степных колок и других небольших по площади естественных древостоев или антропогенных насаждений. Научно-техническое решение относится к косвенным измерениям качества территории пространственного распределения ростовых органов преимущественно проб в виде листьев берез с простой и небольшой листовой пластинкой. Оно может быть применено также при экологических измерениях множества берез, произрастающих на городских и сельских территориях, при оценке локального антропогенного годичного загрязнения воздуха точечными, линейными и объемными источниками загрязнения.

Известен способ экологического испытания листьев березы по В.М. Захарову флуктуирующей асимметрии листьев березы (Захаров, В.М. К оценке асимметрии билатеральных признаков как популяционной характеристики / В.М. Захаров, В.В. Зюганов // Экология. 1980. - №1, с.10-16; Захаров, В.М. Онтогенез и популяция (стабильность развития и популяционная изменчивость) / В.М. Захаров // Экология. 2001. - №3. - С.164-168); Здоровье среды: методика оценки / Захаров В.М. [и др.]. - М.: Центр экологической политики России, 2000. - 68 с.; Здоровье среды: практика оценки / Захаров В.М. [и др.]. - М.: Центр экологической политики России, 2000. - 320 с.), включающий взятие листьев от учетных деревьев, растущих в одинаковых экологических условиях местопроизрастания, причем листья с одного дерева хранятся отдельно, чтобы можно было проанализировать полученные результаты индивидуально для каждой березы, а для этого следует собранные с одного дерева листья связывать за черешки, причем все листья, собранные для одной выборки, следует сложить в полиэтиленовый пакет, туда же вложить этикетку, в которой указаны номер выборки, место сбора, делая максимально подробную привязку к местности, дату сбора, причем для непродолжительного хранения собранный материал хранится в полиэтиленовом пакете на нижней полке холодильника, а для длительного хранения можно зафиксировать материал в 60% растворе этилового спирта или гербаризировать, при этом для измерения каждый лист помещают перед собой стороной, обращенной к верхушке побега, с каждого листа снимают показатели по пяти параметрам листа с левой и правой сторон листа, а для измерений применяют измерительный циркуль, линейку и транспортир, причем промеры длин снимаются циркулем-измерителем, а угол между жилками измеряется транспортиром.

Наше изобретение расширяет признак аналога «делая максимально подробную привязку к местности».

Основным недостатком известного способа является то, что нарушается принцип индивидуальности флуктуирующей асимметрии, когда берутся в каждой выборка 100 листьев (по 10 листьев с 10 растений). Это выполнено в угоду существующей теории средней арифметической величины. Но такого параметра нет у листьев, поэтому каждый листочек имеет свои значения параметров, которые нужно определять.

Известен также способ экологического испытания листьев березы по патенту 2374828, включающий взятие пробы листьев березы из относительно чистых и загрязненных участков зеленых насаждений города или на любой местности около автомагистрали, причем до взятия пробы листьев выбирают учетные деревья и отмечают на карте местности их расположения относительно сторон света и автомагистрали, затем на каждом учетном дереве выбирают точки отбора проб относительно сторон света и автомагистрали на нижней части кроны.

Недостатком является также нарушение принципа индивидуальности флуктуирующей асимметрии, когда берутся в каждой пробе массы листьев обезличенные выборки и тем самым не удается проводить испытание отдельных листьев. При этом в прототипе также недостаточно выполнена максимально подробная привязка к местности, когда рассматривается только одно дерево березы, а пробы листьев в совокупности по массе, обеспечивающей расчетную точность взвешивания на переносных весах, берутся с разных сторон света. Поэтому из прототипа признаки массы и процесса взвешивания отпадают и остаются только признаки геодезической привязки к местности у отдельных листьев как биологических особей, произрастающих на нескольких (не менее 10) материнских березах.

Технический результат - расширение функциональных возможностей экологических измерений по косвенным относительно известного по налогу способа измерений флуктуирующей асимметрии, а также точности индикации качества окружающей листья березы локальной среды в виде самого березняка.

Таким образом, мы полностью восстанавливаем принцип индивидуальности биологических измерений по геометрии распределения проб листьев для измерения флуктуирующей асимметрии и флуктуации параметров у каждого листа. И этот принцип распространяем вне способа экологического испытания отдельных листьев как независимых друг от друга биологических особей. Таким образом, без проведения самих действий взятия листьев и последующих измерений на собранных листьях, только по выполнению требований к взятию листьев и измерений мест потенциального взятия, можно оценивать экологическое качество городского березняка или степной колки. Тогда получается, что по намечаемым местам взятия отдельных листьев как биологических особей появляется возможность измерения всей среды существования намечаемых листьев, то есть измерения проводятся на самом березняке без или с взятием листьев.

Этот технический результат достигается тем, что способ экологического измерения березняка по флуктуирующей асимметрии листьев, включающий взятие пробы листьев березы из относительно чистых или загрязненных участков зеленых насаждений города или на любой местности, причем до взятия пробы листьев выбирают учетные деревья березы и отмечают на карте местности их расположение относительно сторон света, затем на каждом учетном дереве выбирают точки отбора проб относительно сторон света на нижней части кроны, отличающийся тем, что по периметру березняка выделяются не менее 10 учетных деревьев березы, затем по четырем сторонам света выделяются пробные ветви с листьями, а все четыре выделяемые для измерения флуктуирующей асимметрии листьев ветви отмечают меткой, после этого из точки расположения метки измеряются высота до поверхности почвы и расстояние до границы березняка, дополнительно измеряют расстояние от границы березняка до ствола каждой учетной березы, а также периметр ствола учетной березы, после проведения измерений результаты подвергают статистическому моделированию, а об экологическом качестве березняка судят по коэффициенту корреляции полученных статистических моделей.

Для измерения флуктуирующей асимметрии листья отмечают метками в виде привязки на ветви около середины у не менее четырех пробных листьев цветной ленточки.

Дополнительно измеряют расстояние от дороги до ствола учетной березы геодезической мерной лентой, а также периметр ствола учетной березы на высоте от поверхности почвы 1,5 м гибкой мерной лентой.

Сущность изобретения заключается в том, что по крайней мере принимаются два объекта - сами листья, которые можно взять или не брать, но отмечать места взятия метками в виде цветной ленты на кисти листьев, для измерений флуктуирующей асимметрии, и деревья березы, на которых растут эти листья. Тогда даже не беря пробы листьев, а только выбирая и намечая их места взятия потенциально, но при этом четко измеряя место расположения этих потенциальных особей в виде отдельных листьев, можно оценивать косвенно сам древостой.

Такой метод мы назвали косвенной индикацией. Здесь выполняются все правила отбора пробных листьев по методу В.М. Захарова, но при этом листья могут и не браться и флуктуирующая асимметрия не измеряется. Поэтому измерениям подвергаются только сами места (точки в пространстве кроны учетных берез), на которых можно брать пробные листья. Эти измерения относятся уже к деревьям и ко всему березняку в целом. Но размер березняка должен быть малым, например, равным расположенному в одном городском квартале скверу.

Сущность изобретения заключается и в том, что по периметру березняка выделяются не менее 10 учетных деревьев березы, затем по четырем сторонам света выделяются кисти с листьями, а на всех четырех кистях намечаются не менее четырех пробных листьев для измерения флуктуирующей асимметрии. Эти листья отмечаются метками в виде привязки около пробного листа цветной ленточки, после этого из точки расположения места взятия у потенциальной пробы листа измеряются высота расположения пробного листа до поверхности почвы и расстояние до автомобильной дороги. Кроме этого измеряются расстояние от дороги до ствола растущей учетной березы, а также периметр ствола учетной березы на высоте от поверхности почвы 1,5 м.

Сущность изобретения заключается также в том, что флуктуирующая асимметрия есть проявление внутри индивидуальной изменчивости, т.е. характеризует различия между гомологичными структурами внутри одного индивида. Подобный тип изменчивости широко распространен у растений, где в пределах одного индивида можно провести разносторонний анализ метамерных структур, например листьев (они наиболее часто используются для этих целей). Но важно отметить, что если уровень флуктуирующей асимметрии является характеристикой индивидуума, а значит, можно оценивать различие разных групп особей по среднему уровню различий между сторонами, то данное явление (флуктуирующая асимметрия) может рассматриваться и с позиции надиндивидуальной (популяционной) изменчивости.

Новизна технического решения заключается в том, что впервые выполняется косвенная индикация экологического качества территории, на которой расположен относительно небольшой березняк, по местам распределения проб листьев (точнее проб ветвей с кисточкой из пробных листьев), принимаемых строго по методике В.М. Захарова для изучения флуктуирующей асимметрии. В итоге появляется практическая возможность не проводить сами измерения флуктуирующей асимметрии, то есть не брать для измерений сами пробные листья, а проводить анализ только по параметрам пространственного расположения вертикально свисающих ветвей, из которых рекомендуется брать пробы листьев.

Положительный эффект заключается в том, что значительно расширяются функциональные возможности метода флуктуирующей асимметрии за счет дополнительного учета параметров расположения нужных для анализа ветвей у учетных берез. В итоге повышается точность измерений экологического качества березняка за счет измерения расстояний от его границы (или же от дороги как наиболее значимого и наиболее распространенного антропогенного объекта). Кроме того, косвенная индикация значительно сокращает время и труд при проведении измерений. Если же дополнительно берутся листья для измерения флуктуирующей асимметрии, то появляется уверенность в результатах экологического анализа за счет применения нескольких новых способов биоиндикации.

Таким образом, предлагаемое научно-техническое решение обладает существенными признаками, новизной и положительным эффектом. В научно-технической и патентной литературе информационных материалов, порочащих новизну предлагаемого изобретения, нами не обнаружено. Мы считаем это решение на уровне изобретения пионерским.

На фиг.1 приведен спутниковый снимок городского березового сквера; на фиг.2 показана карта городского березового сквера с указанием мест расположения 10 учетных берез; на фиг.3 показаны березы одного возраста городского сквера; на фиг.4 показан момент отметки места взятия пробного листа; на фиг.5 дана расчетная схема учетной березы с местом взятия листа на восточной стороне (обозначено буквой В) от ствола дерева: Lдд - расстояние от вертикальной оси ствола дерева до границы березняка или дороги, м; Lсд - расстояние от перпендикуляра, опущенного из места сбора листьев, с учетом стороны света, до границы березняка или дороги, м; H - высота от земли до места сбора листьев, м; P1.5 - периметр у ствола дерева березы на высоте 1,5 м от поверхности почвы (примерно 1,3 м от корневой шейки ствола березы), м; на фиг.6 показана расчетная схема, вид сверху, на расположение по меньшей мере четырех кистей с пробными листьями, причем стороны света измеряются по компасу по азимуту φ - угол, отсчитанный по ходу движения часовой стрелки между направлениями на север и на ориентир от центра ствола дерева до места взятия пробы листа (север С - 0°; восток В - 90°; юг Ю - 180°; запад З - 270°), град.; на фиг.7 показан график изменения высоты H расположения места взятия проб листьев для анализа флуктуирующей асимметрии в зависимости от расстояния от места сбора до дороги, то есть функция H=f(Lсд); на фиг.8 показана четвертая волна колебательной адаптации пробных листьев по высоте их расположения; на фиг.9 показан график влияния периметра ствола березы на высоту взятия проб; на фиг.10 приведен график влияния расстояния до пробных веток на изменение расстояния до ствола березы; на фиг.11 показан график изменения периметра ствола в зависимости от расстояния до пробной ветки и пробных листьев.

Способ экологического измерения березняка по флуктуирующей асимметрии листьев при отсутствии дорог включает такие действия.

Пусть березняк не имеет контуров или границ антропогенного воздействия, например границ автомобильной или иной дороги. Тогда расстояния Lдд и Lсд определяются до границы самого березняка.

По периметру березняка выделяются не менее 10 учетных деревьев березы, затем по четырем сторонам света выделяются пробные ветви с листьями, а все четыре выделяемые для измерения флуктуирующей асимметрии листьев ветви отмечают меткой, после этого из точки расположения метки измеряются высота до поверхности почвы и расстояние до границы березняка. Дополнительно измеряют расстояние от границы березняка до ствола каждой учетной березы, а также периметр ствола учетной березы, после проведения измерений результаты подвергают статистическому моделированию, а по экологическому качеству березняка судят по коэффициенту корреляции полученных статистических моделей.

Для измерения флуктуирующей асимметрии листья отмечают метками в виде привязки на ветви около середины у не менее четырех пробных листьев цветной ленточки.

Дополнительно измеряют расстояние от границы березняка до ствола учетной березы геодезической мерной лептой, а также периметр ствола учетной березы на высоте от поверхности почвы 1,5 м с помощью гибкой мерной ленты.

Способ экологического измерения березняка по флуктуирующей асимметрии листьев, например, городского сквера, окруженного с запада и востока двумя улицами с разной интенсивностью движения автотранспорта, включает такие действия.

В данном случае расстояния Lдд и Lсд определяются до дороги, которая даже при очень малой интенсивности движения с травой на поверхности дороги четко проглядывается как граница антропогенного воздействия на деревья и листву берез через автомобильные выбросы в воздух.

При этом принимается допущение, что границей березняка как экосистемы становится край дороги (грунтовой, асфальтовой, бетонной). Эту погрешность в измерениях дороги и границы экосистемы пока не сможем выделить особо, поэтому в каждом конкретном случае нужно принимать отдельные решения о том, что же является границей экосистемы березняка. Если же дороги нет, то погрешность установления границы земельного участка у березняка возрастает. При наличии даже мало интенсивной по движению дороги четко виден край полосы дороги, где начинает отсутствовать травяная растительность или она очень плохая.

По периметру березняка выделяются не менее 10 учетных деревьев березы, затем по четырем сторонам света выделяются пробные ветви с листьями, а все четыре выделяемые для измерения флуктуирующей асимметрии листьев ветви отмечают меткой, после этого из точки расположения метки измеряются высота до поверхности почвы и расстояние до границы в виде края дороги березняка, дополнительно измеряют расстояние от границы или края дороги березняка до ствола каждой учетной березы, а также периметр ствола учетной березы, после проведения измерений результаты подвергают статистическому моделированию, а об экологическом качестве березняка судят по коэффициенту корреляции полученных статистических моделей.

Для измерения флуктуирующей асимметрии листья отмечают метками в виде привязки на ветви около середины у не менее четырех пробных листьев цветной ленточки. Дополнительно измеряют расстояние от дороги до ствола учетной березы геодезической мерной лентой, а также периметр ствола учетной березы на высоте от поверхности почвы 1,5 м гибкой мерной лентой.

Пример. В городе Звенигово Республики Марий Эл небольшой озелененный земельный участок (фиг.1) вытянутой прямоугольной формы находится в середине улицы Чехова. Общая площадь сквера составляет около 0,56 га. Сквер окружен с северной и восточной сторон грунтовой автомобильной дорогой, с южной стороны расположен лесной массив. По обе стороны от сквера (восточная и западная стороны) расположены дома.

Для эксперимента были отобраны 10 берез (фиг.2) по периметру сквера. На территории сквера растут береза и ель. Большую часть (березняком называется древостой с содержанием более 50% березы) занимает береза (фиг.3).

Методика эксперимента

Из всего многообразия известных методов биоиндикационных исследований считается, что наиболее полно отвечает необходимым критериям метод анализа флуктуирующей асимметрии по В.М. Захарову.

Таким образом, аналог сохраняется в части методики взятия проб листьев, но в данном научно-техническом решении они могут и не браться, а если берутся, то в любом случае обрабатываются с тщательной геометрической привязкой к местности.

У березы сбор листьев намечали из нижней части кроны дерева с максимальным количеством доступных веток с четырех сторон света, которые определяли с помощью компаса. Листья собирали только с укороченных побегов. С помощью мерной ленты измерили высоту от земли до места, с которого срывали листья. Также измеряли периметр ствола дерева, расстояние от дерева до дороги и расстояние от кистей веток до дороги (фиг.5), произрастающих с разных сторон света по азимуту φ, град.

Выборка включает в себя 160 листьев (по 4 листа с 4 сторон света с 10 растений). Листья с одного дерева связывали ниткой за черешки. Все листья с одной территории упаковывали в полиэтиленовый пакет, в него также помещали этикетку с названием места сбора пробных листьев.

Результаты измерений

В таблице 1 представлены результаты измерений параметров мест произрастания у пробных листьев и учетных деревьев, произрастающих на территории сквера.

Дополнительно снимались параметры дерева и места взятия пробы:

1) азимут φ - угол, отсчитанный по ходу движения часовой стрелки между направлениями на север и на ориентир, град.;

2) Lдд - расстояние от вертикальной оси ствола дерева до дороги, м;

3) Lсд - расстояние от перпендикуляра, опущенного из места сбора листьев, с учетом стороны света, до дороги, м;

4) H - высота от земли до места сбора листьев, м;

5) P1.5 - периметр дерева березы на высоте 1,5 м от поверхности почвы (примерно 1,3 м от корневой шейки ствола березы), м.

Таблица 1
Промеры мест взятия у пробных листьев березы в городском сквере
№ березы Сторона света Азимут φ, град Расстояние Lдд, м Расстояние Lсд, м Высота H, м Периметр P1.5 м
1 Ю 180 3.17 3.10 2.00 0.30
С 0 3.17 3.45 2.10 0.30
З 270 3.17 2.94 2.15 0.30
В 90 3.17 3.48 2.05 0.30
2 Ю 180 5.82 6.00 2.00 0.66
С 0 5.82 5.80 2.20 0.66
З 270 5.82 6.34 2.20 0.66
В 90 5.82 5.65 2.20 0.66
3 Ю 180 7.50 8.65 1.90 1.20
С 0 7.50 6.05 2.00 1.20
З 270 7.50 8.48 1.80 1.20
В 90 7.50 7.15 1.70 1.20
4 Ю 180 1.15 0.92 1.80 0.93
С 0 1.15 1.50 1.68 0.93
З 270 1.15 1.80 1.70 0.93
В 90 1.15 0.60 1.82 0.93
5 Ю 180 8.50 8.00 2.00 1.80
С 0 8.50 9.15 1.90 1.80
З 270 8.50 8.85 2.10 1.80
В 90 8.50 7.95 1.70 1.80
6 Ю 180 6.85 6.80 1.65 1.43
С 0 6.85 6.85 1.60 1.43
З 270 6.85 7.50 1.50 1.43
В 90 6.85 6.25 1.78 1.43
7 Ю 180 3.29 3.29 1.67 0.90
С 0 3.29 3.35 1.60 0.90
З 270 3.29 3.65 1.65 0.90
В 90 3.29 2.86 1.70 0.90
Ю 180 6.96 7.00 1.80 0.33
С 0 6.96 6.90 1.90 0.33
З 270 6.96 7.25 1.84 0.33
В 90 6.96 6.50 1.90 0.33
9 Ю 180 6.03 6.00 1.80 1.05
С 0 6.03 6.10 1.80 1.05
З 270 6.03 6.45 1.80 1.05
В 90 6.03 5.85 2.00 1.05
10 Ю 180 7.06 7.06 1.70 0.25
С 0 7.06 7.05 1.75 0.25
З 270 7.06 7.26 2.10 0.25
В 90 7.06 6.78 1.90 0.25

При проведении эксперимента было обнаружено, что встречаются поврежденные листья, но их мало, всего 5% от всех собранных листьев.

Влияние внешних пяти факторов

По отношению к пробным листьям (собираемым или несобираемым) указанные пять факторов являются внесистемными. Вычислительные эксперименты показали, что они со средней теснотой факторной связи оказывают влияние на 10 показателей флуктуирующей асимметрии по методу В.М. Захарова.

Но между собой они имеют сложную взаимную связь:

- азимут φ на малые площади березняка оказывает слабейшее влияние и тем более не зависит от березняка, а является параметром Земли;

- расстояние от вертикальной оси ствола дерева до дороги Lдд является высокозначимым фактором, но он уступает расстоянию от веток;

- расстояние от ветки до дороги Lсд очень сильно влияет на Lдд и H;

- высота от земли до места сбора листьев H влияет на P1.5;

- периметр P1.5 ствола березы на высоте 1,5 м влияет на H.

Рассмотрим каждое из этих факторных отношений.

Влияние расстояния от пробной ветки Lсд на высоту взятия проб

По результатам измерения высоты взятия проб получаем формулу:

H1=1,84424exp(0,0026196Lсд), H2=A1 cos(πLсд/p1+1,18600),

,

, H3=A2 cos(πLсд/p1+3,17428),

,

, H4=A3 cos(πLсд/p3+4,21276),

, p3=0,15599.

Коэффициент корреляции стал 0,8354. По остаткам от модели (1) можно было идентифицировать еще волновые функции. Однако возможности программной среды CurveEixpert-1.40 этого не позволяют.

Поэтому пятая составляющая (четвертая волна возмущения) получает вид очередного (фиг.8) асимметричного вейвлет-сигнала

,

,

где A - амплитуда (половина) колебательного возмущения пробных веток и листьев учетных берез.

Таким образом, высота места расположения пробного листа имеет четкое множество волн колебательной адаптации листьев и веток к окружающей их среде произрастания.

Влияние периметра ствола березы на высоту взятия проб

Оказалось, что крупность дерева, которая определяется периметром окружности ствола, сильно влияет на изменение высоты расположения пробного листа.

С коэффициентом корреляции 0,7907 определена (фиг.9) формула

,

,

H3=A cos(πP1.5/p-2,75836), A=0,10474exp(0,44367P1.5),

.

Таким образом, оказалось, что через флуктуирующую асимметрию можно выйти на функциональные связи между стволом (очень долговременный накопитель массы древесных клеток) и листвой (ежегодно регенерирующие и затем сбрасывающиеся клетки) березовых деревьев.

Влияние расстояния от пробной ветки Lсд на расстояние Lдд до деревьев

Оба этих расстояния определены человеком и дают представления о некой характеристике условной границы между березняком и антропогенными объектами, в частности с дорогами.

После структурно-параметрической идентификации (фиг.10) была получена формула вида

,

, ,

.

Таким образом выясняется, что деревья березы и их висячие ветви, способные давать пробные листья для измерений флуктуирующей асимметрии, расположены не случайно, а вполне закономерным образом.

Влияние высоты взятия проб листьев на периметр ствола

Оказалось, что периметр ствола очень сильно зависит от высоты взятия пробных листьев (фиг.11). И это влияние значимее обратного влияния периметра ствола на высоту взятия проб листьев по формуле (3).

С коэффициентом корреляции 0,8328 получена формула

, ,

P3=A1 cos(πLсд/p1+2,31636),

, p1=0,20325,

P4=A2 cos(πLсд/p2+5,65078),

,

, P5=A3 cos(πLсд/p3+1,15861),

,

.

Таким образом, параметры места произрастания Lдд и P1.5 берез, границы экосистемы Lсд и места обитания пробных листьев H и φ на висячих ветках становятся взаимно влияющими друг на друга. При этом азимут косвенно и при этом очень сильно влияет на другие параметры пробных для измерения флуктуирующей асимметрии ветвей и листьев.

Преимуществом предлагаемого способа является техническая простота исполнения, так как из оборудования требуется только геодезическая мерная лента до 20 м, гибкая миллиметровая лента и компас.

Поэтому изобретение может быть широко реализовано в школьных экологических кружках, пришкольных лесничествах и даже в детских садах, а также в географических и иных экспедициях при дополнительном исследовании качества территории по косвенной индикации свойствами расположения ветвей и листьев учетных берез.


СПОСОБ ЭКОЛОГИЧЕСКОГО ИЗМЕРЕНИЯ БЕРЕЗНЯКА ПО ФЛУКТУИРУЮЩЕЙ АСИММЕТРИИ ЛИСТЬЕВ
СПОСОБ ЭКОЛОГИЧЕСКОГО ИЗМЕРЕНИЯ БЕРЕЗНЯКА ПО ФЛУКТУИРУЮЩЕЙ АСИММЕТРИИ ЛИСТЬЕВ
СПОСОБ ЭКОЛОГИЧЕСКОГО ИЗМЕРЕНИЯ БЕРЕЗНЯКА ПО ФЛУКТУИРУЮЩЕЙ АСИММЕТРИИ ЛИСТЬЕВ
СПОСОБ ЭКОЛОГИЧЕСКОГО ИЗМЕРЕНИЯ БЕРЕЗНЯКА ПО ФЛУКТУИРУЮЩЕЙ АСИММЕТРИИ ЛИСТЬЕВ
СПОСОБ ЭКОЛОГИЧЕСКОГО ИЗМЕРЕНИЯ БЕРЕЗНЯКА ПО ФЛУКТУИРУЮЩЕЙ АСИММЕТРИИ ЛИСТЬЕВ
СПОСОБ ЭКОЛОГИЧЕСКОГО ИЗМЕРЕНИЯ БЕРЕЗНЯКА ПО ФЛУКТУИРУЮЩЕЙ АСИММЕТРИИ ЛИСТЬЕВ
СПОСОБ ЭКОЛОГИЧЕСКОГО ИЗМЕРЕНИЯ БЕРЕЗНЯКА ПО ФЛУКТУИРУЮЩЕЙ АСИММЕТРИИ ЛИСТЬЕВ
СПОСОБ ЭКОЛОГИЧЕСКОГО ИЗМЕРЕНИЯ БЕРЕЗНЯКА ПО ФЛУКТУИРУЮЩЕЙ АСИММЕТРИИ ЛИСТЬЕВ
СПОСОБ ЭКОЛОГИЧЕСКОГО ИЗМЕРЕНИЯ БЕРЕЗНЯКА ПО ФЛУКТУИРУЮЩЕЙ АСИММЕТРИИ ЛИСТЬЕВ
СПОСОБ ЭКОЛОГИЧЕСКОГО ИЗМЕРЕНИЯ БЕРЕЗНЯКА ПО ФЛУКТУИРУЮЩЕЙ АСИММЕТРИИ ЛИСТЬЕВ
СПОСОБ ЭКОЛОГИЧЕСКОГО ИЗМЕРЕНИЯ БЕРЕЗНЯКА ПО ФЛУКТУИРУЮЩЕЙ АСИММЕТРИИ ЛИСТЬЕВ
Источник поступления информации: Роспатент

Showing 1-10 of 157 items.
27.01.2013
№216.012.20cd

Способ испытания растительного покрова на участках трассы продуктопровода

Способ включает распределение земельных участков трассы по наличию растительного покрова в виде лугов и кустарниковой растительности. На трассе продуктопровода выделяют участки с испытуемой древесной растительностью. Расстояния между створами наблюдений на каждом выделенном земельном участке...
Тип: Изобретение
Номер охранного документа: 0002473898
Дата охранного документа: 27.01.2013
10.03.2013
№216.012.2cf4

Способ измерения формы листьев у древесных растений

Способ включает взятие листьев от учетных деревьев, растущих в разных экологических условиях, обведение контура листа на миллиметровой бумаге и подсчет квадратиков на миллиметровой бумаге для определения площади листа. Каждый измеряемый лист размещают на подложке с закрепленным на ней листом...
Тип: Изобретение
Номер охранного документа: 0002477039
Дата охранного документа: 10.03.2013
20.06.2013
№216.012.4dcd

Способ отбора проб для анализа почвы

Изобретение относится к области экологии и может быть использовано для отбора проб для анализа почвы. Для этого определяют место, частоту, длительности отбора проб почвы на площадках по координатной сетке, указывая их номера и координаты. При этом в каждом узле координатной сетки или ее части...
Тип: Изобретение
Номер охранного документа: 0002485499
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5e20

Способ анализа кроны учетной ели по испытаниям хвоинок годичных веточек

Изобретение относится к лесной промышленности и может быть использовано для анализа кроны учетной ели по испытаниям хвоинок годичных веточек. Для этого проводят выбор учетного дерева ели и ее мутовку. Затем выбирают ветвь первого порядка внутри выбранной мутовки с измерением геодезического...
Тип: Изобретение
Номер охранного документа: 0002489717
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.68ca

Способ биотестирования по проращиванию семян

Изобретение относится к области экологии и может быть использовано для укладки семян в чашку Петри при биотестировании речной воды. Для этого проводят равномерную укладку семян редиса красного круглого с белым кончиком на фильтровальную бумагу в чашке Петри. В чашку наливают по 5 мл исследуемой...
Тип: Изобретение
Номер охранного документа: 0002492473
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.7440

Способ анализа ветвей кроны дерева ели

Изобретение относится к экологии и может быть использовано для измерения ветвей кроны дерева ели. Для этого проводят описание свойств выбранного учетного дерева и места его произрастания. Наносят на ствол отметки о южной стороне ели. Устанавливают местоположение шейки корня. Измеряют от шейки...
Тип: Изобретение
Номер охранного документа: 0002495417
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7441

Способ измерения комля древесного растения

Изобретение относится к экологии и может быть использовано для измерения комля древесного растения. Для этого проводят выбор пробной площади, отбор дерева на пробной площади, описание свойств выбранного дерева и места его произрастания. Устанавливают местоположение шейки корня, измеряют диаметр...
Тип: Изобретение
Номер охранного документа: 0002495418
Дата охранного документа: 10.10.2013
20.11.2013
№216.012.832c

Способ биотестирования по длине корней тестового растения загрязненной нефтью воды

Изобретение относится к экологии и может быть использовано для оценки опасных уровней загрязнения водных объектов нефтью. Для этого выбирают тест-растение, проводят равномерную укладку семян тест-растения на фильтровальную бумагу в контрольной и испытуемой чашке Петри диаметром 10 см. Далее в...
Тип: Изобретение
Номер охранного документа: 0002499256
Дата охранного документа: 20.11.2013
20.01.2014
№216.012.97a9

Смесь для получения искусственного строительного камня

Изобретение относится к промышленности строительных материалов, а именно к составам сырьевых смесей для изготовления строительных изделий, и может быть использовано в производстве искусственного строительного камня методом прессования. Технический результат изобретения - повышение прочности...
Тип: Изобретение
Номер охранного документа: 0002504524
Дата охранного документа: 20.01.2014
10.07.2014
№216.012.dbab

Автомат разгерметизации гидросистемы

Автомат разгерметизации гидросистемы предназначен для автоматического отключения систем гидравлического привода рабочего оборудования. Устройство содержит два корпуса с камерами, в которых размещено с зазором два поршня со штоками. В корпусах выполнены входные и выходные отверстия, сообщающие...
Тип: Изобретение
Номер охранного документа: 0002522013
Дата охранного документа: 10.07.2014
Showing 1-10 of 165 items.
20.01.2014
№216.012.962f

Способ разработки лесосек машинами манипуляторного типа

Способ включает разбивку лесосек на пасеки с технологическими коридорами и заездами на полупасеки, валку деревьев на пасеках с использованием машины манипуляторного типа для заготовки сортиментов, обрезку сучьев, раскряжевку на сортименты. Между технологическими коридорами и границами заездов...
Тип: Изобретение
Номер охранного документа: 0002504146
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.97a9

Смесь для получения искусственного строительного камня

Изобретение относится к промышленности строительных материалов, а именно к составам сырьевых смесей для изготовления строительных изделий, и может быть использовано в производстве искусственного строительного камня методом прессования. Технический результат изобретения - повышение прочности...
Тип: Изобретение
Номер охранного документа: 0002504524
Дата охранного документа: 20.01.2014
27.02.2014
№216.012.a55f

Способ тестирования реакции человека на движущийся объект

Изобретение относится к области медицины и предназначено для тестирования реакции человека на движущийся объект. На горизонтальной поверхности световым излучателем, управляемым компьютером, создают световое пятно. Испытуемый размещается в центре пятна, программно в течение заданного времени...
Тип: Изобретение
Номер охранного документа: 0002508050
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a904

Станок для распиловки лесоматериалов

Изобретение относится к деревообрабатывающей промышленности и может быть использовано для поперечной распиловки лесоматериалов на готовые сортименты. Станок содержит станину, механизм пиления и механизм надвигания. Механизм надвигания устройства выполнен в виде сварной рамы, установленной...
Тип: Изобретение
Номер охранного документа: 0002508983
Дата охранного документа: 10.03.2014
10.05.2014
№216.012.c1b9

Устройство для измерения сопротивления сверлению

Изобретение относится к устройствам для исследования или анализа свойств материалов. Устройство измерения сопротивления сверлению, состоящее из электрического двигателя привода вращения бурового сверла; каретки, установленной на направляющих и приводимой в движение от электрического двигателя...
Тип: Изобретение
Номер охранного документа: 0002515342
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c1ba

Устройство для измерения сопротивления сверлению

Изобретение относится к устройствам для исследования или анализа свойств материалов путем определения величины сопротивления их просверливанию (плотности) и может быть использовано для определения физико-механических характеристик древесины растущих деревьев, пиломатериалов, деревянных...
Тип: Изобретение
Номер охранного документа: 0002515343
Дата охранного документа: 10.05.2014
10.07.2014
№216.012.dbab

Автомат разгерметизации гидросистемы

Автомат разгерметизации гидросистемы предназначен для автоматического отключения систем гидравлического привода рабочего оборудования. Устройство содержит два корпуса с камерами, в которых размещено с зазором два поршня со штоками. В корпусах выполнены входные и выходные отверстия, сообщающие...
Тип: Изобретение
Номер охранного документа: 0002522013
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.de6d

Способ изготовления торцевых щитовых элементов из древесины

Изобретение относится к деревообрабатывающей промышленности и может быть использовано при производстве торцевой паркетной доски, облицовочных щитовых элементов, а также элементов столярных, мебельных изделий. Способ изготовления торцевых щитовых элементов из древесины включает оцилиндровку...
Тип: Изобретение
Номер охранного документа: 0002522727
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.def9

Способ и устройство для проверки параллельности установочной линейки к оси нижнего переднего вальца лесопильной рамы

Группа изобретений относится к деревообрабатывающей промышленности и может быть использована для измерения направляющих элементов лесопильных рам. Устройство для проверки параллельности установочной линейки к оси нижнего подающего вальца лесопильной рамы содержит горизонтальную опору с...
Тип: Изобретение
Номер охранного документа: 0002522867
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df73

Способ отбора проб для анализа почвы луга

Изобретение относится к области почвоведения и предназначено для отбора проб для анализа почвы луга. Способ включает определение места, частоты, длительности отбора проб почвы с поверхностного слоя 0-5 см на площадках по координатной сетке, указывая их номера и координаты. Места отбора проб...
Тип: Изобретение
Номер охранного документа: 0002522989
Дата охранного документа: 20.07.2014
+ добавить свой РИД