×
10.07.2015
216.013.5e67

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРОВ ДЛЯ ГЛУБОКОЙ ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Данный способ включает пропитку оксидно-алюминиевого носителя раствором соединений металлов VIII и VI групп при pH пропиточного раствора 1,5-5,0, вакуумирование носителя перед контактом его с пропиточным раствором, использование пропитки при повышенных температурах. При этом в качестве исходных соединений для приготовления пропиточного раствора используются натриевые соли Mo и одного из модификаторов X из группы (B, P, Si, V, Zn, Ge, Sn), растворяемые в воде в мольном соотношении Mo/X=12/1, после чего раствор пропускается через колонну с катионитом в H-форме и в него добавляется ацетат Co или Ni. Предлагаемый способ позволяет получать катализаторы, обладающие повышенной активностью и селективностью по отношению к реакциям гидродесульфуризации, гидродеазотирования, гидрирования олефинов и ароматических соединений. 1 з.п. ф-лы, 5 табл., 11 пр.

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки нефтяных фракций, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Известные катализаторы для гидроочистки дизельных фракций от соединений серы содержат молибден и/или вольфрам и кобальт и/или никель в оксидной форме, нанесенные на поверхность пористого термостойкого оксида металла. Известным способом получения катализаторов гидроочистки, содержащих диспергированные на Al2O3 оксиды Co(Ni)-Mo(W), является экструзия массы гидроксида алюминия, смешанной с солями Co и/или Ni и Mo и/или W. В этом случае активные компоненты добавляют в пептизированный какой-либо одноосновной кислотой гидроксид алюминия (RU 2189860, B01J 37/04, 23/882, 27.09.02; 2137541, B01J 23/88, C10G 45/08, 20.09.99). В качестве предшественников активного компонента используются труднорастворимые соли молибдена и вольфрама, в основном аммоний молибденовокислый (NH4)6Mo7O24·4H2O, и соли кобальта и никеля, в основном нитраты (RU 2137541, B01J 23/88, 20.09.99). Основным недостатком катализаторов, полученных по данному способу, является их низкая активность, не позволяющая использовать их для глубокой гидроочистки нефтяных фракций (с остаточным содержанием серы менее 500 ppm). Это объясняется тем, что часть внесенных в массу гидроксида алюминия активных компонентов не находится на активной поверхности катализатора, а заключено в объеме Al2O3.

Другим известным способом получения катализаторов гидроочистки типа CoO(NiO)MoO3(WO3)/Al2O3 является способ пропитки оксида алюминия растворами соединений активных компонентов, сушки и прокаливания. Нанесение активных компонентов осуществляют как последовательной пропиткой из отдельных растворов, так и одностадийной пропиткой из совместного раствора. Для стабилизации совместного раствора соединений Co(Ni) и Mo(W) в пропиточные растворы добавляют минеральные кислоты, в основном фосфорную кислоту. Основным недостатком совместных пропиточных растворов соединений Co(Ni) и Mo(W), стабилизированных неорганическими фосфорсодержащими кислотами, является их низкая устойчивость в присутствии избытка фосфорной кислоты и NH4+ иона из-за выпадения осадков фосфатов Co или Ni и фосформолибдатов аммония. Для создания устойчивых совместных пропиточных растворов используют также концентрированный раствор аммиака, который образует комплексные соединения с Co(Ni), что не позволяет образоваться осадкам молибдатов этих металлов. В случае аммиачной пропитки в недостаточно концентрированном растворе аммиака возможно выпадение осадков молибдатов Co или Ni.

Для стабилизации совместных растворов соединений Co(Ni) и Mo(W) можно использовать также комплексообразующие органические кислоты [А.С. 1297899 СССР, B01J 23/88. №3954947/31-04; заявл. 01.08.85; опубл. 23.03.87, Бюл. №11 - 3 с.]. Недостатком данного способа приготовления катализатора является высокая температура прокаливания катализатора (550°C) после нанесения активных компонентов пропиткой из совместного раствора солей молибдена и никеля или кобальта. Известно, что при температурах выше 500°C возможно образование шпинелей - соединений оксида алюминия и оксида никеля или кобальта. Если катализатор после нанесения солей Ni или Co на носитель, содержащий оксид алюминия, прокаливают при температурах выше 500°C, часть промотора (Ni или Co) связывается с носителем и не входит в состав активной фазы «CoMoS», которая образуется после сульфидирования, т.е. фактически становится неактивной в реакциях гидроочистки.

Наиболее близким к предлагаемому решению является способ приготовления катализаторов для глубокой очистки нефтяных фракций, включающий пропитку алюмооксидного носителя раствором соединений металлов VIII и VI групп, отличающийся тем, что готовится совместный пропиточный раствор, содержащий соединение молибдена и нитрат кобальта или ацетат кобальта при мольном соотношении Mo/Co, равном 1,70-2,30, стабилизированный 25,8-35,0 мл 30%-ного H2O2 на 100 мл пропиточного раствора, при pH среды 1,5-5,0, и производится однократная пропитка оксида алюминия с завершающим прокаливанием готового катализатора при температурах не выше 400°C в окислительной или инертной средах [RU 2385764, B01J 23/882, B01J 37/02].

Недостатком данного способа приготовления катализатора является то, что для приготовления пропиточного раствора применяются готовые гетерополисоединения молибдена, отсутствующие в свободной продаже. Способ синтеза таких соединений требует холодильного оборудования для охлаждения до 0÷(-3)°C или специального фильтровального оборудования [Руководство по неорганическому синтезу: В 6-ти томах. - Т. 6. - Под. ред. Г. Брауэра. - М.: Мир, 1986. - 360 с.] и не может быть осуществлен в условиях катализаторных производств. Кроме того, данный способ приготовления катализаторов гидроочистки не предусматривает возможность введения на стадии однократной пропитки известных модификаторов активной фазы (соединений элементов B, P, Si, V, Zn, Ge, Sn), которые повышают активность катализаторов и изменяют их селективность по отношению к реакциям гидродесульфуризации, гидродеазотирования, гидрирования олефинов и ароматических соединений, что является существенным для гидроочистки различных по пределам выкипания нефтяных фракций и вторичных нефтепродуктов.

Техническим результатом настоящего изобретения является способ создания катализатора гидроочистки нефтяных фракций одностадийной пропиткой носителя пропиточным раствором, содержащим основной активный компонент (Mo), промотор (Co или Ni) и один модификатор из группы (B, P, Si, V, Zn, Ge, Sn) в виде неорганического устойчивого комплекса. В качестве носителя используется Al2O3. Пропиточный раствор готовится путем растворения в воде натриевых солей Mo и одного из модификаторов из группы (B, P, Si, V, Zn, Ge, Sn) в определенном соотношении и пропускания раствора через колонну с катионитом в H+-форме; в полученный раствор, содержащий Mo гетерополикислоту 12 ряда, добавляют ацетат Co или Ni. Катализатор подвергается термической обработке (сушке) на воздухе при температуре не выше 120°C, что предотвращает термическое разложение гетерополикислоты.

При этом на стадии приготовления оксидной формы катализатора осуществляется контакт на молекулярном уровне между основным активным компонентом (молибденом), промотором (кобальтом или никелем) и модификатором (B, P, Si, V, Zn, Ge, Sn) в строго заданных соотношениях. Условия пропитки носителя и термической обработки готового катализатора обеспечивают промотирование молибдена Co или Ni и включение модификатора в активную фазу на основе дисульфида молибдена. После сульфидирования оксидного предшественника катализатор CoXMoS/Al2O3 имеет модифицированную активную фазу CoXMoS, что позволяет проводить глубокую гидроочистку нефтяных фракций.

Отличительным признаком предлагаемого изобретения является совокупность предлагаемых решений, включающая: использование в качестве исходных соединений для приготовления пропиточного раствора натриевых солей Mo и одного из модификаторов X из группы (B, P, Si, V, Zn, Ge, Sn) в мольном соотношении Mo/X=12/1; пропускание раствора через колонну с катионитом в H+-форме; добавление в полученный раствор, содержащий Mo гетерополикислоту 12 ряда, ацетата Co или Ni; завершающую термическую обработку (сушка) катализатора при температурах не выше 120°C, что не разрушает структуру гетерополианиона (подтверждено экспериментами, сочетающими ДТА, РФА и ИК-спектроскопию). Данные решения в совокупности дают возможность синтезировать катализатор, позволяющий проводить глубокую гидроочистку различных по пределам выкипания нефтяных фракций.

Технический результат достигается тем, что приготовление катализатора для глубокой гидроочистки нефтяных фракций включает пропитку оксидно-алюминиевого носителя раствором соединений металлов VIII и VI групп при pH пропиточного раствора 1,5-5,0, вакуумирование носителя перед контактом его с пропиточным раствором, использование пропитки при повышенных температурах. В качестве исходных соединений для приготовления пропиточного раствора используются натриевые соли Mo и одного из модификаторов X из группы (B, P, Si, V, Zn, Ge, Sn), растворяемые в воде в мольном соотношении Mo/X=12/1, после чего раствор пропускается через колонну с катионитом в H+-форме и в него добавляется ацетат Co или Ni. Завершающая термическая обработка (сушка) катализатора проводится при температурах не выше 120°C.

Исходные соединения для приготовления совместного пропиточного раствора, условия пропитки носителя совместным пропиточным раствором приведены в табл.1. Носитель представлял собой экструдат γ-Al2O3 в форме трилистника диаметром 1,2-1,3 мм и длиной 4-6 мм.

Катализаторы испытывали в виде частиц размером 0,25-0,5 мм, приготовленных путем измельчения и рассеивания исходных гранул прокаленного катализатора. Катализаторы сульфидировали при атмосферном давлении и температуре 400°C в смеси 20% об. H2S и H2 в течение 2 часов. Такие условия сульфидирования, по данным H. Topsoe, позволяют получить на поверхности катализатора активную фазу «CoMoS» II типа. Испытания активности катализаторов проводили на лабораторной проточной установке под давлением водорода. Загрузка сульфидированного катализатора 20 см3. Характеристика нефтяных фракций приведена в табл.2 и 3. Условия испытания: парциальное давление водорода 4,0 МПа, кратность циркуляции водорода 600 нл/л сырья, объемная скорость подачи сырья 1,0 ч-1, температуры в реакторе 340, 360 и 380°C. Гидрогенизаты отделяли от водорода в сепараторе при давлении, практически равном давлению в реакторе, и температуре 20°C, затем подвергали обработке 10%-ным раствором NaOH в течение 10 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали в течение суток над прокаленным CaCl2. Содержание серы определяли с помощью рентгенофлюоресцентного анализатора. Содержание азота определяли с помощью рентгенофлюоресцентного энергодисперсионного анализатора. Содержание ароматических соединений определяли спектрофотометрически. Брали среднее значение из двух параллельных измерений. Результаты испытания катализаторов представлены в табл.4 и 5.

ПРИМЕРЫ

Пример 1

26,89 г дигидрата молибдата натрия и 0,88 г натрия борнокислого десятиводного растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в H+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 12,41 г ацетата кобальта четырехводного и концентрируют до объема 63 мл. Носитель массой 39,39 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 2,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 60°C.

Состав готового катализатора, % масс.:

MoO3 - 16,0, CoO - 4,9, оксид модификатора - 0,3, Al2O3 - 78,8.

Пример 2

20,17 г дигидрата молибдата натрия и 2,48 г ортофосфата натрия двенадцативодного растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в H+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 7,09 г ацетата кобальта четырехводного и концентрируют до объема 67,8 мл. Носитель массой 42,35 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 1,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 70°C.

Состав готового катализатора, % масс.:

MoO3 - 12,0, CoO - 2,8, оксид модификатора - 0,5, Al2O3 - 84,7.

Пример 3

26,89 г дигидрата молибдата натрия и 3,31 г ортофосфата натрия двенадцативодного растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в Н+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 11,91 г ацетата кобальта четырехводного и концентрируют до объема 62,9 мл. Носитель массой 39,32 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 1,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 80°C.

Состав готового катализатора, % масс.:

MoO3 - 16,0, CoO - 4,7, оксид модификатора - 0,7, Al2O3 - 78,6.

Пример 4

33,61 г дигидрата молибдата натрия и 4,13 г ортофосфата натрия двенадцативодного растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в Н+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 15,45 г ацетата кобальта четырехводного и концентрируют до объема 58,5 мл. Носитель массой 36,54 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 1,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 90°C.

Состав готового катализатора, % масс.:

MoO3 - 20,0, CoO - 6,1, оксид модификатора - 0,8, Al2O3 - 73,1.

Пример 5

33,61 г дигидрата молибдата натрия и 4,13 г ортофосфата натрия двенадцативодного растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в Н+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 10,13 г ацетата никеля четырехводного и концентрируют до объема 60,1 мл. Носитель массой 37,59 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 1,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 100°C.

Состав готового катализатора, % масс.:

MoO3 - 20,0, NiO - 4,0, оксид модификатора - 0,8, Al2O3 - 75,2.

Пример 6

26,89 г дигидрата молибдата натрия и 2,63 г метасиликата натрия девятиводного растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в Н+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 11,40 г ацетата кобальта четырехводного и концентрируют до объема 63,2 мл. Носитель массой 39,47 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 2,0. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 110°C.

Состав готового катализатора, % масс.:

MoO3 - 16,0, CoO - 4,5, оксид модификатора - 0,6, Al2O3 - 78,9.

Пример 7

26,89 г дигидрата молибдата натрия и 1,13 г метаванадата натрия растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в H+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 10,89 г ацетата кобальта четырехводного и концентрируют до объема 63,1 мл. Носитель массой 39,43 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 3,0. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 120°C. Состав готового катализатора, % масс.:

MoO3 - 16,0, CoO - 4,3, оксид модификатора - 0,8, Al2O3 - 78,9.

Пример 8

26,89 г дигидрата молибдата натрия и 1,32 г цинката натрия растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в H+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 10,39 г ацетата кобальта четырехводного и концентрируют до объема 63,3 мл. Носитель массой 39,57 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 3,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 80°C.

Состав готового катализатора, % масс.:

MoO3 - 16,0, CoO - 4,1, оксид модификатора - 0,8, Al2O3 - 79,1.

Пример 9

26,89 г дигидрата молибдата натрия и 1,40 г германата натрия растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в H+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 9,88 г ацетата кобальта четырехводного и концентрируют до объема 63,3 мл. Носитель массой 39,56 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 4,5. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 90°C.

Состав готового катализатора, % масс.:

MoO3 - 16,0, CoO - 3,9, оксид модификатора - 1,0, Al2O3 - 79,1.

Пример 10

26,89 г дигидрата молибдата натрия и 1,82 г станната натрия растворяют в 50 мл дистиллированной воды. Полученный раствор подвергают катионообмену на катионите в H+-форме. В получаемом элюате контролируют отсутствие ионов натрия. В полученный раствор вводят 9,37 г ацетата кобальта четырехводного и концентрируют до объема 63,1 мл.

Носитель массой 39,45 г выдерживают в вакууме 30 мин, затем заливают подогретым до 70°C раствором. Пропитку проводят при pH пропиточного раствора 5,0. После выдерживания носителя в пропиточном растворе в течение 30 мин избыток раствора сливают. Конечную термообработку готового катализатора проводят при температуре 100°C.

Состав готового катализатора, % масс.:

Moo3 - 16,0, CoO - 3,7, оксид модификатора - 1,4, Al2O3 - 78,9.

Пример 11 (по прототипу, пример 1)

Состав готового катализатора, % масс.:

MoO3 - 14,0, CoO (NiO) - 3,2, Al2O3 - 82,8.

Таблица 1
Соединения молибдена, модификатора, кобальта или никеля, используемые для приготовления пропиточного раствора, гетерополикислота Мо в составе пропиточного раствора
Соединение для приготовления пропиточного раствора Гетерополикислота Mo в составе пропиточного раствора Соединение промотора, вводимое в состав пропиточного раствора кобальта(никеля) Содержание в катализаторе, % масс.
молибдена модификатора MoO3 СоО (NiO) Оксида моди-фикатора
1 Na2MoO4·2H2O Na2B4O7·10H2O Н5ВМо12О40 (СН3СОО)2Со·4H2O 16,0 4,9 0,3
2 Na2MoO4·2H2O Na3PO4·12H2O Н3РМо12О40 (СН3СОО)2Со·4H2O 12,0 2,8 0,5
3 Na2MoO4·2H2O Na3PO4·12H2O Н3РМо12О40 (СН3СОО)2Со·4H2O 16,0 4,7 0,7
4 Na2MoO4·2H2O Na3PO4·12H2O Н3РМо12О40 (СН3СОО)2Со·4H2O 20,0 6,1 0,8
5 Na2MoO4·2H2O Na3PO4·12H2O Н3РМо12О40 (CH3COO)2Ni·4H2O 20,0 (4,0) 0,8
6 Na2MoO4·2H2O Na2SiO3·9H2O H4SiMo12O40 (СН3СОО)2Со·4H2O 16,0 4,5 0,6
7 Na2MoO4·2H2O NaVO3 H3VMo12O40 (СН3СОО)2Со·4H2O 16,0 4,3 0,8
8 Na2MoO4·2H2O Na2ZnO2 H6ZnMo12O40 (СН3СОО)2Со·4H2O 16,0 4,1 0,8
9 Na2MoO4·2H2O Na2GeO3 H4GeMo12O40 (СН3СОО)2Со·4H2O 16,0 3,9 1,0
10 Na2MoO4·2H2O Na2SnO3 H4SnMo12O40 (СН3СОО)2Со·4H2O 16,0 3,7 1,4
11 По прототипу, пример 1

Таблица 2
Характеристика дизельной фракции
Плотность при 20°C, кг/м3 nD20 Содержание серы, млн-1 Содержание азота, млн-1 Содержание ПАУ*, % масс.
816 1,4671 12467 560 13,34

Таблица 3
Характеристика вакуумной фракции
Пределы выкипания Плотность при 20°C, кг/м3 nD50 Содержание серы, млн-1 Содержание ПАУ*, % масс. Цвет, ед. ЦНТ ИВ
334-454 901 1,4892 17900 3,07 3,0 75

* - сумма би- и трициклических ароматических углеводородов.

Таблица 4
Результаты испытания катализаторов в гидроочистке дизельной фракции
Катализатор по примеру Температура испытания, °C Содержание серы, млн-1 Содержание азота, млн-1 Содержание ПАУ, % масс.
По примеру 1 340 50 - 4,72
По примеру 1 360 12 240 5,92
По примеру 1 380 8 - 6,44
По примеру 3 340 30 - 4,42
По примеру 3 360 7 250 5,20
По примеру 3 380 3 - 5,81
По примеру 6 340 130 - 5,39
По примеру 6 360 47 430 6,87
По примеру 6 380 18 - 7,44

Таблица 5
Результаты испытания катализаторов в гидроочистке вакуумной фракции
Катализатор, приготовленный по примеру Температура испытания, °C Содержание серы, млн-1 Содержание ПАУ, % масс.
По примеру 4 340 795 1,24
По примеру 4 360 131 0,96
По примеру 4 380 59 0,98
По примеру 5 340 1081 0,81
По примеру 5 360 622 0,86
По примеру 5 380 106 0,94
По примеру 7 340 2025 1,23
По примеру 7 360 1232 1,42
По примеру 7 380 760 1,64

Источник поступления информации: Роспатент

Showing 11-20 of 77 items.
27.07.2014
№216.012.e50d

Способ производства яблочного бренди

Из яблок получают сок, сбраживают его и перегоняют сброженный сок с получением спирта. Фракционно перегоняют спирт с отбором первой, второй и третьей фракций дистиллята. Отбор третьей фракции ведут из ректификационной колонны, подвергают ее ароматизации методом настаивания на кожуре яблок в...
Тип: Изобретение
Номер охранного документа: 0002524427
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e51b

Устройство для измерения вектора скорости движения изображения объекта со случайным распределением яркостей

Изобретение относится к оптоэлектронным устройствам для определения параметров движения объектов и может быть использовано для измерения составляющих вектора скорости движения летательных и плавательных аппаратов различного назначения относительно подстилающей поверхности. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002524441
Дата охранного документа: 27.07.2014
20.08.2014
№216.012.e91e

Способ получения антибиотического покрытия на фильтрующем материале

Изобретение относится к области получения и производства фильтрующих материалов для очистки воздуха промышленных помещений на основе полимерных волокон, обладающих антибиотическими свойствами. Осуществляют синтез полимера на фильтрующем материале в низкотемпературной плазме тлеющего разряда...
Тип: Изобретение
Номер охранного документа: 0002525486
Дата охранного документа: 20.08.2014
20.10.2014
№216.012.fe0d

Электролит для химического источника тока (его варианты)

Изобретение относится к области электротехнической промышленности, в частности к разработке расплавляемого электролита для химических источников тока, включающего метаванадат лития и соли лития, калия, при этом в качестве солей лития электролит содержит фторид и бромид, а в качестве соли калия...
Тип: Изобретение
Номер охранного документа: 0002530893
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.011c

Установка для подготовки подпиточной воды теплоэлектроцентрали

Изобретение относится к энергетике. Установка для подготовки подпиточной воды теплоэлектроцентрали, у которой паровая турбина оснащена поверхностным конденсатором первой и второй ступеней нагрева для подогрева сырой подпиточной воды. Изобретение позволяет увеличить электрическую мощность,...
Тип: Изобретение
Номер охранного документа: 0002531682
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.01d3

Адаптивный релейный регулятор

Изобретение относится к области средств автоматизации и может использоваться в системах управления технологическими процессами в химической промышленности, теплотехнике, энергетике. Технический результат - обеспечение автоматической стабилизации амплитуды автоколебаний регулируемой координаты...
Тип: Изобретение
Номер охранного документа: 0002531865
Дата охранного документа: 27.10.2014
20.02.2015
№216.013.2754

Производные 2-r1-4-r2-6-полинитрометил-1,3,5-триазинов, обладающие антибактериальной активностью

Изобретение относится к применению 2-R-4-R-6-полинитрометил-1,3,5-триазинов общей формулы: где n=0, X=NO, Cl, Br, R=R=OR, OAr (R=CH, СН, СН(СН)СН, CHCHCl, Ar=мета-СНСН), R=OR, OAr, R=N(CH); n=1, X=Cl, R=OR, R=NH(CH)NH, N(CHCH)NCH в качестве соединений, обладающих антибактериальной активностью....
Тип: Изобретение
Номер охранного документа: 0002541525
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.27e5

Способ производства фруктового продукта из яблок и ягодного сырья

Изобретение относится к пищевой промышленности, в частности к изготовлению фруктовых продуктов из яблок и ягодного сырья. Яблоки подготавливают, удаляют несъедобные части и кожуру, режут на ломтики толщиной 2-3 мм. Ломтики замораживают при температуре -20°C в течение 1 часа. Обрабатывают...
Тип: Изобретение
Номер охранного документа: 0002541670
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.27f9

Способ производства фруктового продукта из яблок и цитрусового сырья

Изобретение относится к пищевой промышленности, в частности к изготовлению фруктового продукта из яблок. Способ производства фруктового продукта предусматривает подготовку яблок, которая включает удаление несъедобных частей и кожуры, их резку на ломтики толщиной 5-8 мм, обработку в растворе,...
Тип: Изобретение
Номер охранного документа: 0002541690
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.29a9

Способ производства фруктового продукта из яблок

Изобретение относится к пищевой промышленности, в частности к изготовлению фруктовых продуктов из яблок. Яблоки подготавливают, удаляют несъедобные части и кожуру, режут на ломтики толщиной 1-3 мм. Ломтики обрабатывают раствором, содержащим 70 мас.% натурального сахара и 30 мас.% сока актинидии...
Тип: Изобретение
Номер охранного документа: 0002542122
Дата охранного документа: 20.02.2015
Showing 11-20 of 130 items.
10.11.2013
№216.012.7cea

Способ хонингования отверстий

Изобретение относится к машиностроению и может быть использовано при обработке отверстий в тонкостенных деталях. Деталь размещают в приспособлении для закрепления и вводят хон с абразивными брусками в отверстие детали. Одновременно равномерно нагружают удельным давлением стенки детали, подавая...
Тип: Изобретение
Номер охранного документа: 0002497651
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ceb

Способ упрочнения абразивных кругов

Изобретение относится к машиностроению и может быть использовано при упрочнении абразивных кругов, работающих на повышенных скоростях, или при силовом шлифовании. Круг формообразуют, подвергают термической обработке и создают остаточные напряжения сжатия путем нанесения на боковые поверхности...
Тип: Изобретение
Номер охранного документа: 0002497652
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7e1c

Устройство для автоматического управления процессом нагрева жидкого металла в газовой отражательной печи

Изобретение относится к области автоматического управления процессом нагрева жидкого металла и может быть использовано для плавления алюминиевых сплавов в газовых отражательных печах ванного типа. Устройство управления содержит два датчика температуры с задатчиками температуры и управляемый...
Тип: Изобретение
Номер охранного документа: 0002497957
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.837a

Электролит для химического источника тока

Изобретение относится к области электротехнической промышленности, в частности заявлен электролит для химического источника тока, включающий нитрат лития и галогенид другого щелочного элемента. При этом в качестве галогенида другого элемента взят бромид калия при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002499334
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.85f2

Способ упрочнения стволов огнестрельного оружия

Производят упрочняющую термообработку казенной части ствола с последующим наружным обжатием ствола, при этом обжатие создают путем нанесения на наружную поверхность ствола детонационного покрытия. Повышается качество и упрощается процесс упрочнения ствола.
Тип: Изобретение
Номер охранного документа: 0002499968
Дата охранного документа: 27.11.2013
27.12.2013
№216.012.8f2b

Мясные рубленые изделия

Изобретение относится к пищевой промышленности, а именно к производству мясных рубленых изделий повышенной пищевой ценности для здорового, детского, диетического, лечебно-профилактического питания. Мясные рубленые изделия содержат фарш из говядины, муку топинамбура гидратированную и соль...
Тип: Изобретение
Номер охранного документа: 0002502344
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.8f2c

Мясные рубленые изделия

Изобретение относится к пищевой промышленности, а именно к производству мясных рубленых изделий для школьного, детского питания, диетического и лечебно-профилактического питания. Мясные рубленые изделия включают мясной фарш из говядины, сухари панировочные и пасту из топинамбура. Паста получена...
Тип: Изобретение
Номер охранного документа: 0002502345
Дата охранного документа: 27.12.2013
20.01.2014
№216.012.9697

Рыбные рубленые изделия повышенной пищевой ценности

Изобретение относится к пищевой промышленности. Рыбные рубленые изделия включают в определенных соотношениях фарш рыбный, панировочные сухари и добавку. В качестве добавки используют пасту, полученную путем тепловой обработки клубней топинамбура. Изобретение обеспечивает повышение...
Тип: Изобретение
Номер охранного документа: 0002504250
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.97f4

Способ нанесения детонационного покрытия на поверхность детали

Изобретение относится к области машиностроения, а именно к нанесению детонационных покрытий на поверхности деталей машин. Технический результат - повышение равномерности толщины получаемого покрытия. Способ включает напыление частиц покрытия на поверхность, при этом часть напыляемых частиц...
Тип: Изобретение
Номер охранного документа: 0002504599
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9a41

Рыбные рубленые изделия повышенной пищевой ценности

Изобретение относится к пищевой промышленности. Рыбные рубленые изделия включают в определенных соотношениях фарш рыбный, добавку и соль пищевую. В качестве добавки используют гидратированную муку топинамбура, полученную путем разведения муки топинамбура в воде при соотношении 1:2-1:6 и...
Тип: Изобретение
Номер охранного документа: 0002505195
Дата охранного документа: 27.01.2014
+ добавить свой РИД