×
10.07.2015
216.013.5bbf

Результат интеллектуальной деятельности: СПОСОБ АНАЛИЗА МНОЖЕСТВА ФЕРРОМАГНИТНЫХ ЧАСТИЦ

Вид РИД

Изобретение

Правообладатели

№ охранного документа
0002555028
Дата охранного документа
10.07.2015
Аннотация: Изобретение относится к способу анализа множества ферромагнитных частиц. Способ характеризуется тем, что выравнивают частицы упомянутого множества таким образом, что каждая из упомянутых частиц ориентирована практически в одном и том же направлении. Затем фиксируют частицы упомянутого множества в этом выравнивании и обнажают внутренние области упомянутых частиц, выровненных таким образом. После определяют природу сплава, составляющего каждую из упомянутых частиц, группируют упомянутые частицы по категориям в зависимости от их природы и определяют в каждой категории металлургическую структуру и химический состав одной или более из упомянутых частиц. Достигаемый при этом технический результат заключается в повышении точности и надежности анализа ферромагнитных частиц. 13 з.п. ф-лы, 6 ил.

Изобретение относится к способу анализа множества ферромагнитных частиц.

Устройство, внутри которого в неком контуре циркулирует текучая среда, может при работе выделять в эту текучую среду металлические или другие частицы. В качестве примера, такое устройство представляет собой двигатель, в частности авиационный двигатель (турбомашину), а контур может, например, представлять собой контур охлаждения или смазывания. Частицы загрязняют текучую среду и должны удаляться из контура. Для этой цели используют установленные в контуре магнитные пробки и/или фильтры, которые задерживают частицы, таким образом, чтобы эти частицы можно было удалять из контура и провести их анализы.

Как правило, эти частицы происходят от различных деталей, составляющих двигатель (или устройство), в результате износа или повреждения деталей. Когда частицы извлечены из контура, очень важно идентифицировать те детали, из которых они происходят, чтобы можно было при необходимости проверить эти детали и заменить их, если это целесообразно.

Таким образом, чтобы установить происхождения частиц, необходимо осуществить анализ каждой из этих частиц.

Этот анализ состоит в определении природы этих частиц (металл, керамика, полимер) и, если это целесообразно, их микроструктуры, чтобы точно идентифицировать те детали, из которых они происходят. В подавляющем большинстве случаев представляют интерес только ферромагнитные частицы, поскольку детали, у которых желательно определить, повреждены или изношены ли они, являются ферромагнитными.

В настоящее время извлекают частицы, захваченные магнитными пробками или фильтрами, а затем некоторые из частиц выбирают случайным образом и анализируют спектрометром (энергодисперсионным спектрометром, или EDS) и сканирующим электронным микроскопом (СЭМ), чтобы определить их химический состав. Учитывая, что частицы имеют размер порядка миллиметра и что они извлекаются в количестве сотен или даже тысяч, только десятки частиц можно проанализировать за разумный период времени и с разумными затратами.

Этот способ имеет следующие недостатки.

Анализируемые частицы обязательно выбирают наугад, поскольку невозможно определить типы металлических сплавов по внешнему виду их поверхности. В большинстве случаев частицы происходят из многочисленных различных деталей и, таким образом, даже не подвергаются анализу. Поэтому существующий способ анализа не позволяет исчерпывающим образом определить категории металлических деталей, которые изношены или повреждены.

Исследование поверхности данной частицы методом СЭМ и спектрометром EDS не позволяет определить металлургическое состояние частицы и, в частности, ее металлургическую историю (предшествующие термические обработки) или ее микроструктурные модификации, и это представляет собой ограничение.

В том случае, когда поверхность частицы отличается от остальной части частицы (например, поскольку частица покрыта инородными телами, происходящими из другой детали в результате трения, или поскольку частица окислена, или поскольку частица происходит из поверхности детали, которую первоначально подвергали поверхностной обработке), исследование поверхности такой частицы методом СЭМ и спектрометром EDS не выявляет природу остальной части частицы, т.е. ее первоначальную природу.

Эти недостатки точности анализа существующим способом уже приводили к тому, что авиационные двигатели разбирали беспредметно и с большими затратами из-за того, что поврежденные детали не были правильно идентифицированы, или приводили к отказам двигателей вследствие того, что дефектная деталь не была заменена своевременно.

Цель изобретения заключается в том, чтобы предложить способ, который позволяет сделать более надежным анализ ферромагнитных частиц, извлеченных фильтрами или магнитными пробками.

Эта цель достигается за счет того, что:

(a) выравнивают частицы этого множества таким образом, что каждая из упомянутых частиц ориентирована практически в одном и том же направлении;

(b) фиксируют частицы данного множества в этом выравнивании;

(c) обнажают внутреннюю область частиц, выровненных таким образом;

(d) определяют природу каждой из частиц и группируют частицы по категориям в зависимости от их природы;

(e) определяют в каждой категории металлургическую структуру и химический состав одной или более из частиц.

Посредством данных действий внутренняя область каждой частицы оказывается обнаженной (открытой) и может быть затем проанализирована непосредственно, в результате чего устраняются затруднения (присутствие поверхностного покрытия или обработка частиц, загрязнение поверхности частиц инородными телами и т.д.), которые искажают результаты анализов в способах согласно уровню техники.

Кроме того, можно подсчитать и проанализировать категории металлических частиц, а также по ассоциации с точностью определить задействованные деталь или детали, из которых происходят некоторые из этих частиц.

Например, на этапе (a) частицы выравнивают, помещая их в магнитное поле в ту область, где силовые линии поля являются параллельными.

Это позволяет легким и воспроизводимым образом выравнивать ферромагнитные частицы в одном и том же направлении, а именно в направлении силовых линий магнитного поля B.

Изобретение становится хорошо понятным, а его преимущества оказываются более очевидными при чтении нижеследующего подробного описания варианта реализации, представленного в качестве неограничительного примера. Описание содержит ссылки на сопровождающие чертежи, на которых:

- фигура 1A представляет собой схематическое изображение, иллюстрирующее этап (a) способа по изобретению;

- фигура 1B представляет собой схематическое изображение, иллюстрирующее этап (b) способа по изобретению;

- фигура 1C представляет собой схематическое изображение, иллюстрирующее этап (c) способа по изобретению;

- фигура 1D представляет собой схематическое изображение, иллюстрирующее этап (d) способа по изобретению;

- фигура 1E представляет собой схематическое изображение, иллюстрирующее этап (e) способа по изобретению; и

- фигура 2 представляет собой фотографию частицы, анализируемой способом по изобретению.

Ферромагнитные частицы 1 собирают фильтрами и/или магнитными пробками и сводят их вместе, таким образом образуя множество частиц.

Все частицы 1 множества выравнивают за один этап таким образом, что каждая из частиц 1 ориентирована практически в одном и том же направлении.

Например, каждая из частиц 1 простирается в главной плоскости (P), и на этапе (a) все главные плоскости (P) практически выравнивают.

Под «главной плоскостью (P)» частицы 1 понимают плоскость, в которой главным образом простирается эта частица, т.е. если частицу поместить между двумя параллельными плоскостями, касательными к этой частице, то эти две плоскости будут параллельны плоскости (P), когда они отделены минимальным расстоянием.

Фигура 1A демонстрирует плоскость (P) для частицы 1 произвольной формы.

Это выравнивание может быть реализовано с помощью магнита, как описано ниже.

Чтобы добиться выравнивания частиц 1 (этап (a) способа по изобретению), эти частицы 1 размещают на дне немагнитного контейнера 10. Контейнер 10 помещают на магнит 30. Частицы 1, таким образом, оказываются в магнитном поле, создаваемом магнитом 30, и распределяются, становясь практически выровненными вдоль линий L магнитного поля. На уровне дна контейнера 10, на которое помещены частицы 1, силовые линии L поля являются практически параллельными друг другу и перпендикулярными дну контейнера 10, так что частицы 1 выравниваются перпендикулярно дну контейнера 10.

Частицы 1, таким образом, поставлены (подняты) перпендикулярно на дне контейнера, как представлено на фигуре 1A.

Например, частицы 1 выравнивают таким образом, что одно из главных измерений каждой из частиц 1 оказывается практически перпендикулярным дну контейнера.

Если это необходимо, прокладывают между магнитом 30 и контейнером 10 немагнитную прокладку 20, которая отделяет контейнер 10 от магнита 30 таким образом, что на уровне дна контейнера 10 силовые линии L поля практически параллельны друг другу и перпендикулярны дну контейнера 10.

В качестве примера, использованный магнит 30 создавал магнитное поле порядка 50 А/м.

Данный способ позволяет легко и за один этап выравнивать большое число частиц.

Таким образом, способ по изобретению является более быстрым, а значит, менее дорогостоящим, чем способы согласно уровню техники.

Преимущественно, контейнер 10 является прозрачным, что позволяет проверять, что частицы 1 действительно были выровнены.

Авторы изобретения обнаружили, что если перед помещением частиц в магнитное поле магнита 30 поместить контейнер, содержащий эти частицы 1, в устройство размагничивания, то, преимущественно, частицы 1 стремятся отделиться друг от друга, в результате чего предотвращается перекрывание между ними, что упрощает их последующий металлургический анализ.

В качестве альтернативы, можно использовать другие средства, кроме магнитных, чтобы отдалить друг от друга частицы 1 перед их выравниванием.

Использование магнитного поля для выравнивания частиц 1 просто является одним из средств, позволяющих достичь этого выравнивания.

После этого, чтобы зафиксировать частицы 1 в их поднятом (выровненном) положении, заливают в контейнер 10 материал 40, который обволакивает и затопляет частицы 1, как представлено на фигуре 1B. Материал 40 является достаточно жидким, чтобы полностью обволакивать (покрывать) каждую из частиц 1 без изменения положения частиц 1, и способен отверждаться (затвердевать).

В качестве примера, этот материал 40 представляет собой смолу.

Как только частицы 1 оказываются полностью затопленными материалом 40, дают материалу 40 затвердеть, так что к концу процесса затвердевания частицы 1 зафиксированы постоянным образом в поднятом положении. Этот этап (b) способа по изобретению проиллюстрирован на фигуре 1B.

Во время всей длительности операции обволакивания и до полного затвердевания смолы 40 поддерживают частицы 1 «погруженными» в магнитном поле таким образом, что частицы 1 удерживаются в поднятом положении.

Преимущественно, используют прозрачную или полупрозрачную смолу 40 с тем, чтобы иметь возможность наблюдать за положениями частиц 1.

Например, смола 40 может представлять собой прозрачную эпоксидную смолу.

После этого затвердевшую смолу 40 извлекают из контейнера 10. Затем блок смолы 40 разрезают или полируют в плоскости, перпендикулярной направлению выравнивания частиц 1. Этот этап (c) способа по изобретению представлен на фигуре 1C.

Учитывая, что все частицы 1 стоят на дне контейнера 10 во время их обволакивания, все частицы 1 расположены в одной и той же области блока смолы 40 (области, которая находилась в контакте с дном контейнера 10). Такое расположение частиц 1 позволяет, разрезав блок смолы 40 в этой области, за один этап разрезать все частицы 1, в результате чего достигается экономия времени.

Кроме того, поскольку все частицы 1 выровнены перпендикулярно плоскости разреза, поверхность 45 разреза (плоскость разреза блока 40, см. фигуру 1D) проходит через центральную часть каждой из частиц 1, что позволяет вскрыть (обнажить) их внутреннюю область (сердцевину). Таким образом, для каждой из частиц 1, которые подлежат последующему анализу (этапы (d) и (e)), результаты анализа определенно будут относиться к материалу, составляющему сердцевину данной частицы (и, соответственно, к материалу, составляющему ту деталь, из которой происходит данная частица), а не к какому-либо покрытию или поверхностному материалу на данной частице 1.

Кроме того, смола 40 позволяет прочно удерживать частицы 1 в процессе разрезания и тем самым избежать выхода каких-либо частиц 1 из состояния выравнивания.

В качестве альтернативы, блок смолы 40 можно строгать до тех пор, пока не будет обнажена внутренняя область каждой из частиц.

Таким образом, согласно изобретению внутренние области всех частиц 1 обнажают за один единственный этап.

После этапа (c) осуществляют первоначальный анализ (этап (d)), при котором выявляют природу сплава, составляющего каждую из частиц 1, т.е. категорию, к которой принадлежит каждый сплав. Чтобы определить, принадлежит ли данная частица 1 к некой определенной категории, осуществляют испытание, которое позволяет идентифицировать эту категорию, т.е. которое является характерным для этой категории.

Благодаря способу по изобретению, внутренние области всех частиц 1 являются одновременно доступными и видимыми на поверхности 45 разреза блока смолы 40. Каждое испытание, характеристическое для одной категории, позволяет, таким образом, обнаружить за один этап все частицы, принадлежащие к данной категории, в результате чего экономится время. Осуществляя последовательно множество испытаний, каждое из которых является характерным для одной категории сплавов, определяют категорию, к которой принадлежит каждая из частиц.

Например, испытания осуществляют, используя химические реагенты, которые позволяют выявить природу каждой из частиц 1.

Фигура 1D схематично иллюстрирует пример результата испытаний, выполненных с тремя известными реагентами на поверхности 45 разреза блока смолы 40: реагент № 1 (Nital 2), реагент № 2 (Nital 6) и реагент № 3 (15/15). Эти названия известны специалисту в данной области техники. Нелегированные стали реагируют с реагентом № 1 (частицы, обозначенные номером 101 на фигуре 1D), низколегированные стали (частицы, обозначенные номером 102 на фигуре 1D) реагируют с реагентом № 2, а высоколегированные стали (частицы, обозначенные номером 103 на фигуре 1D) реагируют с реагентом № 3. Частицы, которые не подвергаются травлению никаким из данных реагентов (частицы, обозначенные номером 104 на фигуре 1D), состоят из других сталей или других сплавов.

Реагенты выбирают таким образом, что каждая категория, ассоциируемая с каждым реагентом, объединяет материалы, соответствующие конкретной категории деталей (например, категории подшипниковых сталей). Таким образом, становится известно, что все из частиц, реагирующих с данным реагентом, обязательно происходят из этой категории деталей.

Преимущественно, на этапе (d) используют оптический микроскоп после нанесения химических реагентов с тем, чтобы более точно определить природу каждой из частиц 1.

Чтобы более точно установить происхождение некоторых из частиц, осуществляют второй анализ (этап (e)) на одной или нескольких частицах, выбранных в каждой категории, идентифицированной во время первого анализа. Преимущественно, отсутствует необходимость осуществлять анализ всех частиц каждой категории, поскольку в результате первого анализа уже известно, что частицы, принадлежащие к одной и той же категории, являются практически идентичными.

Цель этого второго анализа заключается в том, чтобы определить металлургическую структуру и химический состав каждой из выбранных частиц. Это позволяет точно определить, из какой детали в двигателе (или механическом устройстве) происходит анализируемая частица, связывая результаты этого второго анализа с положением фильтра или магнитной пробки, где была отобрана анализируемая частица, и знанием того, какие детали находятся на пути циркуляции текучей среды, проходящей через данный фильтр или магнитную пробку.

Преимущественно, используют электронный микроскоп и спектрометр, чтобы определить в каждой категории металлургическую структуру и химический состав одной или более из частиц 1.

В способе согласно уровню техники анализ спектрометром EDS не позволяет количественно определять углерод в металлическом сплаве, поэтому этот анализ не позволяет различать два сплава, у которых значительно различается содержание углерода, но состав легирующих элементов является аналогичным или близким. Например, этот анализ не позволяет различать болтовую сталь и подшипниковую сталь и поэтому может приводить к ошибочному выводу в отношении действительного происхождения частиц.

Напротив, в способе по изобретению, учитывая, что благодаря первому анализу (этап (a)) уже качественно известен, по меньшей мере частично, состав данной частицы (например, содержание в ней углерода), исследования с помощью электронного микроскопа и спектрометра (фигура 1E) в ходе второго анализа позволяют сделать достоверные выводы о химическом составе и микроструктуре данной частицы.

Например, частицы анализируют спектрометром (энергодисперсионным спектрометром, или EDS) и сканирующим электронным микроскопом (СЭМ) с тем, чтобы определить их химический состав и их микроструктуру.

Фигура 2 представляет собой фотографию частицы 1, проанализированной с помощью способа по изобретению после ее исследования на этапе (e).

Поверхность данной частицы 1 покрыта покрытием из серебра 3. Таким образом, анализ этой частицы способом согласно уровню техники представлял бы собой исключительно исследование ее поверхности, в результате которого был бы сделан неправильный вывод о том, что эта частица состоит из серебра.

Сердцевина 2 частицы 1 обнажена способом по изобретению. Анализ сердцевины 2 с помощью электронного микроскопа и спектрометра EDS выявил, что сердцевина состоит из низколегированной стали с мартенситной микроструктурой в отпущенном закаленном состоянии.

Из этого делают вывод о том, что частица 1 происходит из стали 40NCD7 сепаратора подшипника (качения). Присутствие этой частицы 1 позволяет заключить, что произошло повреждение подшипника, находящегося на пути циркуляции текучей среды, проходящей через магнитную пробку, где была отобрана частица 1. Таким образом, необходимо демонтировать и заменить этот подшипник.


СПОСОБ АНАЛИЗА МНОЖЕСТВА ФЕРРОМАГНИТНЫХ ЧАСТИЦ
СПОСОБ АНАЛИЗА МНОЖЕСТВА ФЕРРОМАГНИТНЫХ ЧАСТИЦ
СПОСОБ АНАЛИЗА МНОЖЕСТВА ФЕРРОМАГНИТНЫХ ЧАСТИЦ
СПОСОБ АНАЛИЗА МНОЖЕСТВА ФЕРРОМАГНИТНЫХ ЧАСТИЦ
СПОСОБ АНАЛИЗА МНОЖЕСТВА ФЕРРОМАГНИТНЫХ ЧАСТИЦ
СПОСОБ АНАЛИЗА МНОЖЕСТВА ФЕРРОМАГНИТНЫХ ЧАСТИЦ
Источник поступления информации: Роспатент

Showing 371-380 of 928 items.
27.10.2015
№216.013.89a0

Устройство уменьшения шума взаимодействия струи/пилона в турбореактивных двигателях

Пилон летательного аппарата для удержания двух- или трехконтурного турбореактивного двигателя (1) содержит верхнюю поверхность соединения с летательным аппаратом, две боковые стороны и подошву в своей нижней части. Пилон содержит часть, проходящую ниже по потоку от сопла (5) холодного потока...
Тип: Изобретение
Номер охранного документа: 0002566835
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8ad0

Способ и устройство для электролитического осаждения покрытия

Изобретение относится к области гальванотехники и может быть использовано для ремонта лопаток соплового аппарата газовой турбины. Согласно изобретению обеспечивают лопатку (120, 130), образующую катод и имеющую покрываемую поверхность, ограничивающую критическую зону (21), анод (19),...
Тип: Изобретение
Номер охранного документа: 0002567143
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8af9

Способ неразрушающего контроля и устройство для осуществления способа

Использование: для неразрушающего контроля механической детали. Сущность изобретения заключается в том, что устройство неразрушающего контроля механической детали, в частности, такой как турбинная лопатка, содержит источник испускания высокоэнергетического электромагнитного излучения по оси...
Тип: Изобретение
Номер охранного документа: 0002567184
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bda

Термическая обработка мартенситной нержавеющей стали после переплавки под слоем шлака

Изобретение относится к области металлургии. Для повышения выносливости мартенситной нержавеющей стали проводят электрошлаковый переплав, затем охлаждают полученный слиток и осуществляют по меньшей мере один аустенитный термический цикл, состоящий в нагреве слитка выше температуры...
Тип: Изобретение
Номер охранного документа: 0002567409
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e09

Способ изготовления никелевых суперсплавов типа inconel 718

Изобретение относится к области металлургии, а именно к способу изготовления никелевого суперсплава типа INCONEL 718. При изготовлении никелевого суперсплава типа INCONEL 718 последний этап ковки осуществляют при температуре Т ниже, чем температура δ-растворимости, с обеспечением во всех точках...
Тип: Изобретение
Номер охранного документа: 0002567968
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8f0c

Способ изготовления металлического элемента жесткости лопатки турбомашины

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении металлического элемента жесткости композитной или металлической лопатки турбомашины. Металлический пруток деформируют горячей ковкой через две фильеры. При этом получают промежуточную деталь,...
Тип: Изобретение
Номер охранного документа: 0002568229
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8f83

Компрессор и газотурбинный двигатель с оптимизированным коэффициентом полезного действия

Осевой компрессор (10) газотурбинного двигателя содержит корпус (12), который имеет внутреннюю стенку, образующую аэродинамическую базовую поверхность для канала для прохода газа, и в котором смонтировано рабочее колесо (14), имеющее радиальные лопатки (18). Кольцевое углубление образовано на...
Тип: Изобретение
Номер охранного документа: 0002568355
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90eb

Способ изготовления изделия из композиционного материала

Изобретение относится к способу изготовления изделия из композиционного материала, содержащего полимерную матрицу, армированную волокнистой структурой. Способ включает в себя этапы, на которых волокнистую структуру укладывают на опору, образующую формовочную поверхность, закрывают ее...
Тип: Изобретение
Номер охранного документа: 0002568715
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90f3

Герметизирующее устройство для масляной камеры турбореактивного двигателя

Изобретение касается герметизирующего устройства для камеры, образованной, по меньшей мере, одним вращающимся органом и одним неподвижным органом турбореактивного двигателя и предназначенной для удержания суспензии капель смазочного масла (h). Герметизирующее устройство содержит, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002568723
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9252

Устройство перехода винта в реверс, содержащее приводной механизм, действующий на кривошип

Изобретение относится к области авиации, в частности к конструкциям устройств управления шагом лопастей винтов. Устройство управления переходом в режим реверса винтовентиляторной турбомашины содержит грузик (14), выполненный с возможностью перевода упомянутых винтов в положение флюгирования под...
Тип: Изобретение
Номер охранного документа: 0002569074
Дата охранного документа: 20.11.2015
Showing 371-380 of 668 items.
27.10.2015
№216.013.8915

Способ изготовления массивной детали

Группа изобретений относится к изготовлению деталей из волокнистой объемной структуры. Способ изготовления массивной детали включает этап тканья волокнистой объемной структуры из металлических прядей, образованных множеством металлических нитей, скрученных между собой вокруг продольной оси...
Тип: Изобретение
Номер охранного документа: 0002566696
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.89a0

Устройство уменьшения шума взаимодействия струи/пилона в турбореактивных двигателях

Пилон летательного аппарата для удержания двух- или трехконтурного турбореактивного двигателя (1) содержит верхнюю поверхность соединения с летательным аппаратом, две боковые стороны и подошву в своей нижней части. Пилон содержит часть, проходящую ниже по потоку от сопла (5) холодного потока...
Тип: Изобретение
Номер охранного документа: 0002566835
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8ad0

Способ и устройство для электролитического осаждения покрытия

Изобретение относится к области гальванотехники и может быть использовано для ремонта лопаток соплового аппарата газовой турбины. Согласно изобретению обеспечивают лопатку (120, 130), образующую катод и имеющую покрываемую поверхность, ограничивающую критическую зону (21), анод (19),...
Тип: Изобретение
Номер охранного документа: 0002567143
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8af9

Способ неразрушающего контроля и устройство для осуществления способа

Использование: для неразрушающего контроля механической детали. Сущность изобретения заключается в том, что устройство неразрушающего контроля механической детали, в частности, такой как турбинная лопатка, содержит источник испускания высокоэнергетического электромагнитного излучения по оси...
Тип: Изобретение
Номер охранного документа: 0002567184
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bda

Термическая обработка мартенситной нержавеющей стали после переплавки под слоем шлака

Изобретение относится к области металлургии. Для повышения выносливости мартенситной нержавеющей стали проводят электрошлаковый переплав, затем охлаждают полученный слиток и осуществляют по меньшей мере один аустенитный термический цикл, состоящий в нагреве слитка выше температуры...
Тип: Изобретение
Номер охранного документа: 0002567409
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e09

Способ изготовления никелевых суперсплавов типа inconel 718

Изобретение относится к области металлургии, а именно к способу изготовления никелевого суперсплава типа INCONEL 718. При изготовлении никелевого суперсплава типа INCONEL 718 последний этап ковки осуществляют при температуре Т ниже, чем температура δ-растворимости, с обеспечением во всех точках...
Тип: Изобретение
Номер охранного документа: 0002567968
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8f0c

Способ изготовления металлического элемента жесткости лопатки турбомашины

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении металлического элемента жесткости композитной или металлической лопатки турбомашины. Металлический пруток деформируют горячей ковкой через две фильеры. При этом получают промежуточную деталь,...
Тип: Изобретение
Номер охранного документа: 0002568229
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8f83

Компрессор и газотурбинный двигатель с оптимизированным коэффициентом полезного действия

Осевой компрессор (10) газотурбинного двигателя содержит корпус (12), который имеет внутреннюю стенку, образующую аэродинамическую базовую поверхность для канала для прохода газа, и в котором смонтировано рабочее колесо (14), имеющее радиальные лопатки (18). Кольцевое углубление образовано на...
Тип: Изобретение
Номер охранного документа: 0002568355
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90eb

Способ изготовления изделия из композиционного материала

Изобретение относится к способу изготовления изделия из композиционного материала, содержащего полимерную матрицу, армированную волокнистой структурой. Способ включает в себя этапы, на которых волокнистую структуру укладывают на опору, образующую формовочную поверхность, закрывают ее...
Тип: Изобретение
Номер охранного документа: 0002568715
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90f3

Герметизирующее устройство для масляной камеры турбореактивного двигателя

Изобретение касается герметизирующего устройства для камеры, образованной, по меньшей мере, одним вращающимся органом и одним неподвижным органом турбореактивного двигателя и предназначенной для удержания суспензии капель смазочного масла (h). Герметизирующее устройство содержит, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002568723
Дата охранного документа: 20.11.2015
+ добавить свой РИД