×
10.07.2015
216.013.5b76

Результат интеллектуальной деятельности: ПРЯМОТОЧНОЕ ЕСТЕСТВЕННО-КОНВЕКТИВНОЕ ОХЛАЖДАЮЩЕЕ УСТРОЙСТВО ДЛЯ ТЕРМОСТАБИЛИЗАЦИИ МЕРЗЛОГО ГРУНТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области строительства в районах распространения многолетне-мерзлых грунтов и, конкретно, к устройствам, обеспечивающим мерзлое состояние грунтов оснований сооружений при проектном значении отрицательной температуры. Технический результат - повышение эффективности работы устройства за счет обеспечения его автоматического запуска при понижении температуры атмосферного воздуха в заданной зоне. Устройство для термостабилизации мерзлого грунта имеет конденсатор, горизонтальный испаритель и систему автоматического управления запуском. Эта система включает в себя один или несколько электромагнитных датчиков для измерения внутренних параметров устройства. В качестве этих параметров предусмотрены температура и/или давление в конденсаторе, и/или датчик уровня конденсата в конденсаторе, датчик температуры наружного воздуха, анализатор сигналов датчиков и электромагнитный клапан. Данный клапан смонтирован на участке между выходом потока хладагента из трубки испарителя и его входом в конденсатор и имеет возможность срабатывания от внешнего - управляющего электрического сигнала анализатора на основе заложенного в его память критерия сравнения текущих показаний датчиков с критическими значениями внутренних параметров устройства. Упомянутые критерии и параметры установлены расчетом или опытным путем из условия предотвращения образования запирающей пробки конденсата выше местоположения монтажа электромагнитного клапана. 1 ил.
Основные результаты: Прямоточное естественно-конвективное охлаждающее устройство для термостабилизации мерзлого грунта с конденсатором и горизонтальным испарителем, отличающееся тем, что оно снабжено системой автоматического управления запуском, включающей в себя: один или несколько электромагнитных датчиков для измерения внутренних параметров устройства, таких как температура и/или давление в конденсаторе, и/или датчик уровня конденсата в конденсаторе; датчик температуры наружного воздуха; анализатор сигналов датчиков и электромагнитный клапан, который смонтирован на участке между выходом потока хладагента из трубки испарителя и его входом в конденсатор и имеющий возможность срабатывания от внешнего - управляющего электрического сигнала анализатора на основе заложенного в его память критерия сравнения текущих показаний датчиков с критическими значениями внутренних параметров устройства, которые установлены расчетом или опытным путем из условия предотвращения образования запирающей пробки конденсата выше местоположения монтажа электромагнитного клапана.

Изобретение относится к области строительства в районах распространения многолетне-мерзлых грунтов, а конкретно - к устройствам, обеспечивающим мерзлое состояние грунтов оснований сооружений при проектном значении отрицательной температуры (то есть - для их термостабилизации).

Известно устройство с конденсатором и горизонтальным испарителем (охлаждающим элементом) для термостабилизации мерзлых грунтов оснований сооружений - система ГЕТ [1. Г.М. Долгих, С.Н. Окунев, С.Н. Стрижков, Д.С. Паздерин, Н.Г. Гилев. Исследования систем температурной стабилизации грунтов на опытно-промышленном полигоне // Материалы международной научно-практической конференции по инженерному мерзлотоведению, 2011, Тюмень, 7-10 ноября, с.36-42, рис.1]. Работа устройства обеспечивается замкнутым циклом естественно-конвективного движения хладагента в двух фазах: жидкая фаза с отбором тепла от грунта испаряется в трубе испарителя, а пар конденсируется в конденсаторе, отдавая тепло в атмосферу, и стекает обратно в испаритель. Система ГЕТ является прямоточной, в которой сток конденсата из конденсатора и обратное поступление пара в него осуществляется по раздельным магистралям (в противоточных системах сток конденсата и обратный поток пара происходит по общей магистрали).

Проведенные исследования показывают, что работа подобных устройств (с относительно длинным горизонтальным испарителем) является весьма неустойчивой. Одной из серьезных проблем в их работе является затрудненный запуск циркуляции хладагента, несмотря на уже имеющееся в данный момент значительное охлаждение конденсаторного блока [2. Я.Б. Горелик, Р.Я. Горелик. Лабораторное моделирование работы двухфазного естественно-конвективного устройства с горизонтальной испарительной частью // Криосфера Земли, T.XV, №2, 2011, с.34-43]. В итоге это приводит к тому, что под влиянием высокого давления в испарителе системы, где температура и, соответственно, давление насыщающих паров выше, чем в конденсаторе, весь конденсат собирается в конденсаторе и "зависает" в нем без возможности стока в испаритель (система запирается). Причиной такого поведения системы является образование жидкой пробки конденсата, локализованной на стыке конечного горизонтального участка испарителя с восходящим отводом к конденсатору устройства. Возникновение этой пробки приводит к резкому повышению гидравлического сопротивления на входе двухфазного потока хладагента в конденсатор и запиранию системы.

Задачей, стоящей перед изобретением, является повышение эффективности работы устройства путем обеспечения его автоматического запуска при понижении температуры атмосферного воздуха в зоне размещения конденсатора.

Для решения поставленной задачи в конструкцию прямоточного естественно-конвективного устройства с конденсатором и горизонтальным испарителем включена система автоматического управления запуском. Система управления включает в себя один или несколько электромагнитных датчиков для измерения внутренних параметров устройства и параметров окружающей его внешней среды, анализатор сигналов датчиков и двухпозиционный (закрыто - открыто) электромагнитный клапан, срабатывающий от внешнего (управляющего) электрического сигнала, который вырабатывается анализатором на основе заложенного в его память критерия. Клапан врезан в трубку испарителя несколько ниже того отрезка, на котором происходит образование запирающей пробки. В качестве датчиков, характеризующих состояние внешней среды, достаточно иметь датчик температуры, размещаемый на некотором удалении от конденсатора. Датчики внутреннего состояния могут измерять температуру и давление, а также уровень конденсата в конденсаторе.

Изобретение поясняется чертежом, на котором приведена схема прямоточного естественно-конвективного охлаждающего устройства для термостабилизации мерзлого грунта.

Прямоточное естественно-конвективное охлаждающее устройство содержит герметично соединенные между собой горизонтальный испаритель 1 и конденсатор 2. Устройство заполнено дозированным количеством легкокипящей жидкости 3, уровень которой в конденсаторе зависит от его рабочего состояния (предпусковое состояние, нормальная работа, запертое состояние). Элементы системы автоматического управления запуском размещены в различных частях устройства. На конденсаторе размещены датчик 4 температуры конденсатора и/или датчик давления 5. На мерной трубке 6 уровня конденсата размещен датчик 7 уровня (в иллюстрируемом варианте - емкостного типа). Клапан 8 размещен на конечном горизонтальном участке испарителя перед ее переходом в вертикальный отвод к конденсатору. Анализатор 9 системы запуска размещен внутри пылевлагозащищенного металлического шкафа 10, имеющего ввод электропитания 11. Датчик 12 температуры атмосферного воздуха установлен на внешней стенке шкафа 10. Коммутационные провода 13 от клапана и всех датчиков заведены в шкаф 10 и смонтированы совместно с анализатором 9 (и иными необходимыми дополнительными элементами) в электрическую схему системы запуска.

Рассмотрим критерий срабатывания клапана на примере датчика уровня конденсата.

При нормальной работе устройства уровень конденсата в конденсаторе близок к минимальному значению hmin (которое несколько превышает положение испарителя, принимаемое за точку отсчета уровня) и определяется расчетом или опытным путем [2]. При образовании пробки и запирании системы весь конденсат скапливается в конденсаторе и его уровень достигает максимального значения hmax, которое легко вычисляется на основе известных параметров конструкции конденсатора и известного количества заправляемого хладагента. До момента начала понижения температуры атмосферного воздуха (когда его температура выше температуры грунта, подлежащего охлаждению) устройство находится в предпусковом состоянии, которое характеризуется тем, что весь конденсат занимает низшее положение из возможных, то есть находится в трубке испарителя.

В предпусковом состоянии датчик уровня фиксирует положение уровня конденсата ниже значения hmin. Условие h<hmin закладывается в память анализатора в качестве критерия для выработки управляющего сигнала на закрытие клапана. При наступлении зимнего периода температура наружного воздуха начинает понижаться, что вызывает понижение температуры внутри конденсатора. Это в свою очередь влечет понижение давления насыщающих паров хладагента внутри него. При постоянной температуре на испарителе (и соответствующем давлении насыщающих паров в нем) и по достижении достаточно низкой температуры атмосферного воздуха образуется достаточно большой перепад давлений между испарителем и конденсатором, который вызывает движение жидкой фазы хладагента из испарителя в конденсатор по стоковой линии FDCBA при закрытом положении клапана. Через определенное время практически весь конденсат собирается в конденсаторе. Конструкция конденсатора в прямоточном устройстве (для описываемого здесь процесса) не допускает попадания конденсата в зону, располагающуюся выше клапана (выше точки Н), то есть в этом процессе образование запирающей пробки исключено.

Опыт показывает, что устойчивая циркуляция и эффективная работа устройства может быть обеспечена при срабатывании клапана на открытие при выполнении условия h>0,9 hmax. Надежность и устойчивость такого запуска обусловлена тем, что гидравлическое сопротивление восходящей линии испарителя GHPQO в момент открытия клапана является минимальным, а кинетическая энергия восходящего потока - максимальна, что не позволяет запустить процесс формирования пробки (характерный для низких энергий двухфазного потока).

Условие h>0,9 hmax принимается в качестве критерия для выработки управляющего сигнала на открытие клапана. При временных повышениях температуры воздуха в течение зимы до значений, превышающих температуру текущего состояния грунта, весь конденсат скатывается в испаритель, что вызывает закрытие клапана по первому критерию. При последующем похолодании срабатывает второй критерий и так далее. Таким образом обеспечивается устойчивость работы устройства с применением системы автоматического запуска по показаниям датчика уровня.

Аналогичным образом может быть осуществлен запуск устройства по показаниям датчика температуры конденсатора. Для этого необходимо учесть, что при нормальной работе устройства температура конденсатора имеет максимальное значение, которое устанавливается расчетом или опытным путем (для заданной температуры наружного воздуха). При запирании системы эта температура принимает минимальное значение, близкое к значению окружающего воздуха.

Поскольку давление в конденсаторе однозначно связано с соответствующей температурой согласно кривой насыщения для конкретного хладагента, то аналогичная процедура может быть организована по показаниям датчика давления в конденсаторе. Для повышения надежности запуска управляющий сигнал на закрытие/открытие клапана может быть сформирован на основе дублирования показаний датчиков разных типов, анализа их синхронных сигналов и формулировки соответствующих критериев.

Прямоточное естественно-конвективное охлаждающее устройство для термостабилизации мерзлого грунта с конденсатором и горизонтальным испарителем, отличающееся тем, что оно снабжено системой автоматического управления запуском, включающей в себя: один или несколько электромагнитных датчиков для измерения внутренних параметров устройства, таких как температура и/или давление в конденсаторе, и/или датчик уровня конденсата в конденсаторе; датчик температуры наружного воздуха; анализатор сигналов датчиков и электромагнитный клапан, который смонтирован на участке между выходом потока хладагента из трубки испарителя и его входом в конденсатор и имеющий возможность срабатывания от внешнего - управляющего электрического сигнала анализатора на основе заложенного в его память критерия сравнения текущих показаний датчиков с критическими значениями внутренних параметров устройства, которые установлены расчетом или опытным путем из условия предотвращения образования запирающей пробки конденсата выше местоположения монтажа электромагнитного клапана.
ПРЯМОТОЧНОЕ ЕСТЕСТВЕННО-КОНВЕКТИВНОЕ ОХЛАЖДАЮЩЕЕ УСТРОЙСТВО ДЛЯ ТЕРМОСТАБИЛИЗАЦИИ МЕРЗЛОГО ГРУНТА
Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
27.01.2013
№216.012.209d

Способ диспергирования льда

Изобретение относится к способу получения диспергированного льда для использования его в различных отраслях промышленности. Способ диспергирования льда включает его механическое измельчение при отрицательной температуре. Непосредственно перед измельчением ко льду добавляют гидрофобизированный...
Тип: Изобретение
Номер охранного документа: 0002473850
Дата охранного документа: 27.01.2013
10.12.2014
№216.013.0d86

Устройство для термостабилизации приустьевой зоны скважин

Изобретение относится к нефтяной и газовой промышленности и может быть использовано при освоении и эксплуатации месторождений, расположенных в зоне многолетнемерзлых пород. Устройство для термостабилизации приустьевой зоны скважин включает совокупность размещенных вокруг устья скважины...
Тип: Изобретение
Номер охранного документа: 0002534879
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.16f8

Способ получения пористых стекломатериалов

Изобретение относится к пористым стекломатериалам. Технический результат изобретения заключается в снижении температуры и времени плавления шихты. Готовят шихту на основе кремнистых пород и доводят соотношение SiO/CaO до 0,75-1,04. Шихту плавят при температуре 1500-1550°C, при следующем...
Тип: Изобретение
Номер охранного документа: 0002537304
Дата охранного документа: 27.12.2014
10.08.2015
№216.013.68c9

Способ определения максимального размера пор мембраны

Изобретение относится к контрольно-измерительной и экспериментальной технике и может быть использовано для контроля качества фильтрующих материалов. Способ определения максимального размера пор мембраны включает установку мембраны в ячейку и заполнение ячейки жидкостью, создание условий для...
Тип: Изобретение
Номер охранного документа: 0002558378
Дата охранного документа: 10.08.2015
20.11.2015
№216.013.9291

Способ получения пористого строительного материала

Изобретение относится к области переработки кремнеземсодержащего нерудного сырья: опал-кристобалитовых горных пород, а также глин и суглинков в пористые пеностеклокристаллические материалы, используемые в строительной индустрии и для теплоизоляции промышленного оборудования различного...
Тип: Изобретение
Номер охранного документа: 0002569138
Дата охранного документа: 20.11.2015
10.02.2016
№216.014.c1d1

Способ получения стабильной дисперсии геля поливинилового спирта в виде порошка

Изобретение относится к способу получения стабильной дисперсии геля поливинилового спирта в виде порошка, стабилизированной гидрофобизированным нанокремнеземом, устойчивой к циклам оттаивания и замерзания. Способ включает смешивание воды с гелеобразующей добавкой - поливиниловым спиртом и...
Тип: Изобретение
Номер охранного документа: 0002574403
Дата охранного документа: 10.02.2016
Showing 1-5 of 5 items.
10.12.2014
№216.013.0d86

Устройство для термостабилизации приустьевой зоны скважин

Изобретение относится к нефтяной и газовой промышленности и может быть использовано при освоении и эксплуатации месторождений, расположенных в зоне многолетнемерзлых пород. Устройство для термостабилизации приустьевой зоны скважин включает совокупность размещенных вокруг устья скважины...
Тип: Изобретение
Номер охранного документа: 0002534879
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.16f8

Способ получения пористых стекломатериалов

Изобретение относится к пористым стекломатериалам. Технический результат изобретения заключается в снижении температуры и времени плавления шихты. Готовят шихту на основе кремнистых пород и доводят соотношение SiO/CaO до 0,75-1,04. Шихту плавят при температуре 1500-1550°C, при следующем...
Тип: Изобретение
Номер охранного документа: 0002537304
Дата охранного документа: 27.12.2014
10.08.2015
№216.013.68c9

Способ определения максимального размера пор мембраны

Изобретение относится к контрольно-измерительной и экспериментальной технике и может быть использовано для контроля качества фильтрующих материалов. Способ определения максимального размера пор мембраны включает установку мембраны в ячейку и заполнение ячейки жидкостью, создание условий для...
Тип: Изобретение
Номер охранного документа: 0002558378
Дата охранного документа: 10.08.2015
20.11.2015
№216.013.9291

Способ получения пористого строительного материала

Изобретение относится к области переработки кремнеземсодержащего нерудного сырья: опал-кристобалитовых горных пород, а также глин и суглинков в пористые пеностеклокристаллические материалы, используемые в строительной индустрии и для теплоизоляции промышленного оборудования различного...
Тип: Изобретение
Номер охранного документа: 0002569138
Дата охранного документа: 20.11.2015
10.02.2016
№216.014.c1d1

Способ получения стабильной дисперсии геля поливинилового спирта в виде порошка

Изобретение относится к способу получения стабильной дисперсии геля поливинилового спирта в виде порошка, стабилизированной гидрофобизированным нанокремнеземом, устойчивой к циклам оттаивания и замерзания. Способ включает смешивание воды с гелеобразующей добавкой - поливиниловым спиртом и...
Тип: Изобретение
Номер охранного документа: 0002574403
Дата охранного документа: 10.02.2016
+ добавить свой РИД